现在位置:范文先生网>教案大全>数学教案>小数数学教案

小数数学教案

时间:2023-03-01 14:45:23 数学教案 我要投稿

小数数学教案(15篇)

  作为一名教职工,常常要写一份优秀的教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。教案应该怎么写才好呢?下面是小编精心整理的小数数学教案,欢迎阅读与收藏。

小数数学教案(15篇)

小数数学教案1

  目标

  使学生掌握最简分数能或者不能化成有限小数的规律,培养学生的判断和推理能力。

  教学及训练

  重点

  掌握最简分数能或者不能化成有限小数的规律。

  仪器

  教具

  教学内容和过程

  教学札记

  一、复习

  1.让学生说一说怎样把下面的小数化成分数。

  1.250.20413.480.109

  2.把下面的分数化成小数

  16

  二、新课

  1、教学例3

  教师出示例3,提问:例3中各分数的分母与例2的有什么不同?怎样把这些分母不是10、100、1000......的分数化成小数?

  教师把例题中的分数按照书上的顺序从上到下写出来。

  教师:我们先看怎样把化成小数,根据分数与除法的关系,分数的分子相当于除法中的什么?分母相当于除法中的什么?那么以写成什么?

  教师在3/4的右面板书:=3÷4,并提问:3除以4你们会做了吗?

  然而让学生依次把这些题做完,当做到最后两题时,教师可提醒学生按照题目的要求,用约等号和近似数分别表示出它们的近似值,再引导学生出分数化成小数的一般方法,并让学生把教科书第109页上面的法则读一遍,同时指出例题中把分数改写成除法算式,目的是强调分数与除法的关系,计算熟练以后这一步可以省略不写。

  2.教学最简分数能或者不能化成有限小数的规律。

  我们把每个分数的分母分解质因数(如下)。

  4=2×225=5×540=2×2×2×5

  9=3×314=2×7

  引导学生想出:能化成有限小数的分母中只含有质因数2和5,如果分母中含有2和5以外的质因数,就不能化成有限小数。

  然后教师归纳成书上的结语,还要向学生指出:看一个分数能不能化成有限小数,首先要看这个分数是不是最简分数,不是最简分数的,要把它约成最简分数后再运用这一规律来判断。

  2.做书上第109页下面”练一练“中的题目

  让学生先直接运用规律判断,并说一说判断的依据,再把分数化成小数来验证。

  三、课堂练习

  做练习二十一的第5-10题

  1、第5题,让学生自己做,教师巡视,发现问题,及时辅导。

  2、第6题,让学生独立做,订正时让学生说一说这些分数化成的小数之间有什么联系,使学生发现只要记住等于0.5就容易想出等于0.25(0.5的一半),也容易想出等于0.75(3个0.25),等于0.125(0.25的一半)等等。

  3.第7、题,让学生先直接判断,再抽出两个分数化成小数来检验判断的是否正确。

  4.第8、9、题,让学生独立做,教师巡视,检查学生化成的`小数对不对,订正时指名说一说哪些分数能化成有限小数,哪些分数不能化成有限小数。

  6.第10题,提示学生如果能直接看出谁大、谁小可以直接判断,如果看不出来,就要把分数化成小数或者把小数化成分数再进行判断,哪种简便就用哪种方法,订正时指名说一说自己是怎样判断的,对运用简便方法进行判断的同学,要给予鼓励。

  四、

  教师:能化成有限小数的最简分数有什么特点?怎样判断一个最简分数能不能化成有限小数?

  分数和小数的互化(二)

  分数转化成小数的一般方法:

  用分数的分子除以分数的分母,除不尽的一般保留三位小数。

  判断一个分数能否转化为有限小数的方法:

  (1)不是最简分数的,要先把它约成最简分数。

  (2)能化成有限小数的分母中只含有质因数2和5;

  (3)如果分母中含有2和5以外的质因数,就不能化成有限小数。

小数数学教案2

  活动设计背景

  根据本班幼儿情感需要和年龄特点,引导幼儿区分大与小。

  活动目标

  1, 认识大与小

  2, 区分大小饼干后,开心的分别喂食大小鸭子吃饼干。

  3, 培养幼儿的观察力、判断力及动手操作能力。

  4, 培养幼儿比较和判断的能力。

  5, 引导幼儿积极与材料互动,体验数学活动的乐趣。

  教学重点、难点

  区分大小

  活动准备

  1.褐色色卡纸做的大小不同的“饼干”若干(保证每人一块大的,一块小的)

  2,带有大鸭子的盒子及小鸭子盒子

  3.背景音乐

  活动过程(活动过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把活动的主要环节很清楚地再现,即开始环节、基本环节、结束环节、延伸环节。注:重点表述基本环节)

  1,说儿歌《小胖猪》“小猪吃得饱饱,闭上眼睛睡觉,两只耳朵扇扇,小尾巴摇摇。”,吸引幼儿注意力。

  2.出示大小两个篮球。和幼儿玩“我滚球,你来接”的游戏,并请幼儿说一说自己拿到的是大球还是小球。

  3,给幼儿发褐色色卡纸做的`“大饼干,小饼干”每人一套

  听口令,举起手中的大小不同的饼干的游戏。

  4.游戏:听口令,喂饼干

  每个小朋友手里都有什么样子的饼干呢?(大饼干和小饼干)

  老师说:“大饼干”,你们就把大饼干举起来喂小鸭子;老师说“小饼干”你们应该举起什么饼干啊?(小饼干)

  老师说:“小鸭子要吃那大饼干,小鸭子要吃那小饼干……”背景音乐《莫扎特-小小鸭子水中游》

  3.喂饼干

  *老师出示带有两只不同大小的鸭子的盒子:

  现在,我们把饼干喂给鸭子吃好吗?

  这两个鸭子哪个大?哪个小?

  我们要让大鸭子吃大饼干,小鸭子吃小饼干,这样它们就都能吃得饱饱的了。

  现在就请小朋友们准备把饼干喂给小鸭子吃吧!来第一组的小朋友上来喂饼干,依次其他组。

  背景音乐《开心的笑》

  课外延伸:1,请幼儿观看课件上大小不同的东西。

  2,请家长帮助幼儿观察生活的大小不同的东西。

  教学反思

  1有的孩子将小饼干放进大箱子。平时在园利用玩具等让幼儿多次复习所学内容。课件上面吸引幼儿注意。

  2环节清晰,但语言不够精练。应该多思考孩子会怎样说,更加合理的问出自己的问题。

小数数学教案3

  教学内容:整数、小数四则混合运算的顺序,包括带有中、小括号的式题,课本第 38- 39 页的`例 1 - 3 ,练习十 1-4题。

  一、复习

  1、口算:

  3.6+ 4.4 10- 5.2 3.4 × 0.2 7.8÷ 6

  1÷4 7.5÷0.3 9.8- 8 0÷27.9

  6.5 ×0.2 0.1×0.5 13.2+6.8 0.15÷15

  二、新授

  (一)、1、 教学例1,讲解“级”的含义。

  2、做一做 第 37 页

  请四位同学板演,其余的做在本子上,教师巡视。

  教师讲评。

  (二)、教学例3,讲解有括号的算式运算顺序。

  0.4×(3.2—0.8)÷1.2

  5×〔(3.2+4.06)÷6.05〕

  三、全课总结(略)

  四、巩固练习

  1、说一说练习十1、2题个题的运算顺序。

  2、练习十 4

  五、课堂作业

  练习十 3

  ⑴4.8与2.7的和乘以4.02,积是多少 ?

  ⑵35.7除以0.7的商,加上12.5与4.8的积,和是多少?

  ⑶10.2减去2.5的差,除以0.3与2的积,商是多少?

小数数学教案4

  教学内容:P30练习五第3—6题。

  教学目的:

  1、使学生进一步理解并循环小数、有限小数、无限小数的概念,掌握它们之间的联系和区别,并能正确区分。

  2、培养学生总结规律的能力,使学生既长知识,又长智慧。

  3、培养学生学习数学的积极情感。

  教学重点:进一步掌握相关概念并建立联系。

  教学难点:对循环小数的实际应用。

  教学过程:

  一、主动回顾,知识再现:上节课我们学习了什么知识?

  二、单项训练,夯实基础:

  1、进一步理解循环小数的概念。

  下面哪些数是循环小数,如何判断的?

  0.666… 3.27676… 301415926… 40.03666… 100.7878

  0.06262… 3.203203… 0.2142857142857… 70.2641

  2、上面这些小数可以分为几类?哪几类?这几类小数有怎样的关系?

  有限小数

  小数 循环小数

  无限小数

  无限不循环小数

  三、综合练习,运用提高:

  1、求循环小数的近似值:P30第3题

  先请学生说说取近似值的方法,再让学生独立完成。

  2、P30第6题

  先观察这些小数的特点,再试一试.

  请学生说出判断大小的过程,教师适时评价。

  方法:把这些简便记法的循环小数还原。

  师小结:先观察需要还原的小数位数,再比较,比较方法与以前比较小数的大小方法相同。

  四、独立练习 :P30第4、5题。

  课后小记:

  在今天的课上,我向学生说明了为什么所有除法算式的`商不可能为无限不循环小数。因为余数必须要比除数小,所以任何除法算式余数的可能性是有限的。当除的次数比余数可能性的个数多时,必定出现与前面余数相同的现象。我用1除以7来举例说明,学生领悟得很快,绝大多数学生明白了其中的奥妙。

  其次,我还向学生介绍了无限不循环小数即是初中所要学到的“无理数”。有学生(张子钊)问“我们学不学无理数呢?”,我简单介绍了六年级即将认识的小学阶段唯一一个无理数派。孩子们对无理数十分感兴趣,我又利用课余时间为他们补充介绍了无理数产生的数学史。

小数数学教案5

  一、教学目标:

  1、掌握口算除数是整数的小数除法。

  2、掌握笔算除数是整数的小数除法的方法。

  3、运用乘除法关系,求除法算式中的未知数。

  二、教学重点:

  掌握笔算除数是整数的小数除法的.方法。

  难点:提高计算正确率。

  三、教学准备:卡片和多媒体

  四、教学过程:

  A、口算训练:P-30第一题。

  要求学生掌握口算技能,提高口算能力。

  B、计算训练:

  1、P-46第二题。

  a、要求学生独立完成,掌握方法。

  b、说一说你为什么算得怎么快?

  c、学生报得数,进行校对。说一说你错误的原因。

  2、计算并用乘法验算。P-46第三题的第一排。

  a、抽三名学生板演,校对。

  b、说一说除数是整数的小数除法的计算方法。

  3、求未知数P-45第四题。

  a、抽四名学生板演,教师巡视,帮助学困生。

  b、说一说每题计算的依据是什么?

  C、讲解应用题:P-46第五题和第六题。

  1、学生用分析法或综合法分析解题思路。

  2、说一说时间、速度和路程的三者之间的关系。

  3、学生独立完成。校对。

  D、发展题:

  1、引导学生进行分析和推理。

  △÷△=□□是几?

  △-△=☆☆是几?

  △+△=○○=11.4-1=10.4

  □+○+☆=11.4

  △=()△=5.2

  E、布置作业:P-46第三题。

  课后小结:本节课的最后,我安排了一道发散题,重在发现学生的思维,以及综合运用小数乘除加减法的能力,在这一题的练习中,我先通过让学生小组讨论,然后小组派代表交流。最后选择其中一题讲解思路。效果不错。

小数数学教案6

  教学目标

  1、理解并掌握除数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。

  2、培养学生的分析能力和类推能力。

  3、体验所学知识与现实生活的联系,能应用所学知识解决生活中简单的问题,从中获得价值体验。

  教学重难点

  教学重点:理解并掌握除数是整数的小数除法的计算方法。

  教学难点:理解商的小数点定位问题。

  教学工具

  ppt课件

  教学过程

  一、复习引入

  1、填空:(PPT课件)

  2、(PPT课件出示)

  (1)引导学生列式:224÷4

  (2)为什么这样列式?(路程÷时间=速度)

  (3)说一说:224÷4这道题是怎样计算的?(教师板演)

  【设计意图】通过复习整数除法,唤醒学生对整数除法计算方法和计算步骤的回忆,为新知的教学打好基础。

  二、探究新知

  (一)教学例1

  1、出示例1,引导理解题意。(PPT课件演示。)

  (1)题目中告诉了我们什么?(坚持晨练可以锻炼身体,王鹏坚持晨练,他计划4周跑步22。4 km。)

  (2)题目中要我们求什么?(按计划他平均每周应跑多少千米?)

  2、尝试列式,分析数量关系。

  (1)要求“他平均每周应跑多少千米”,应该怎样列式?(学生口头列式,教师板书或PPT课件演示:22。4÷4。)

  (2)引导思考:为什么用“22。4÷4”?(路程÷时间=速度)

  3、揭示新课,感受学习价值。

  (1)请同学们观察这道除法算式,和我们前面复习的除法计算有什么不同?(除数还是整数,但被除数是小数。)

  (2)揭示课题:看来,在实际生活中常常遇到需要用小数除法计算的问题,这节课我们就来研究新的课题──除数是整数的小数除法。

  (3)板书课题:除数是整数的小数除法。

  4、提出问题,自主思考算法。

  (1)提出问题:我们已经会计算整数除法,那想一想,被除数是小数的除法该怎样计算呢?

  (2)学生先独立思考,再在小组里交流自己的想法。(教师巡视,了解学生思维活动,参与小组交流,给予适当指导。)

  5、教师引导,交流不同算法。

  (1)我们已经会计算整数除法,在不改变商的大小的前提下,怎样把小数变成整数呢?谁来说一说你的想法?

  (2)指名学生回答。(教师PPT课件演示。)

  (3)我们小数除法还可以列竖式计算。下面我们就一起来探讨列竖式计算小数除法的方法。

  (4)指导学生列出除法竖式。(教师板书)

  6、交流两种算法和感受:

  引导学生比较列竖式计算和将22。4 km改写成22 400m计算的结果,提问:这两种算法的结果相同吗?(相同)哪种算法比较简便?(算法二计算过程比较麻烦,算法一比较简便。)

  7、算一算,比一比。

  (1)42÷3= 4。2÷3=

  (2)学生独立计算,教师巡视。

  (3)教师PPT课件演示。

  (4)这两道题有哪些相同点和不同点?学生讨论,交流。

  (相同点:整数除以整数与小数除以整数计算方法相同;不同点:小数除以整数要把商的小数点与被除数的小数点对齐。)

  【设计意图】例1的教学是本节课的重点、难点所在,通过例1的教学要使学生理解并掌握除数是整数的小数除法的计算方法,要理解商的小数点如何定位。在本环节的教学中,先让学生结合具体情境,在解决实际问题中引出计算问题,感受学习除数是整数的小数除法的必要性。在解决计算问题时,教师先放手学生自主探索计算方法,再引导学生用已有知识和经验解释竖式计算过程,结合数的含义理解商的小数点要和被除数的小数点对齐的道理,理解除数是整数的小数除法的一般计算方法,为学生下一环节的学习做好充分的铺垫。

  (二)教学例2

  1、出示例2。(PPT课件演示。)

  2、引导学生理解题意,列出算式。(教师PPT课件演示:28÷16)

  3、教师板演竖式计算过程,让学生明确算理和算法。(教师板书)

  (1)除到被除数的末尾还有余数时,为什么可以添0继续除?

  (2)“120”表示120个()分之一?除得的7为什么写在十分位上?

  (3)“80”表示80个()分之一?除得的5为什么写在百分位上?

  4、计算除数是整数的小数除法要注意什么?

  (1)商的小数点要和被除数的'小数点对齐;

  (2)如果有余数,要添0再除。

  (三)教学例3

  1、出示例3。(PPT课件演示。)

  2、引导学生理解题意,列出算式。(教师PPT课件演示:5.6÷7)

  3、引导学生观察被除数和除数有什么特点?(被除数比除数小);商会出现什么情况?怎样商?(不够商1,用0占位)

  4、让学生把题补充完整。

  5、引导学生自己尝试验算。

  (1)引导:要检验小数除法的计算结果是否正确,可以怎么办?

  (2)学生自主验算。

  (3)教师板演。

  【设计意图】例2和例3是除数是整数的小数除法中的两种特殊情况,例2是除到被除数的末尾仍有余数,需要添0继续除;例3是被除数比除数小,整数部分不够商1。在例2、例3的教学中,重点关注学生的数学思维发展,放手让学生探讨、交流,在解释每步计算的含义中找到解决问题的方法,在相互交流中强化对算理和算法的深入理解。通过引导学生自主验算,既帮助学生加深对乘除法之间关系的理解,又强化学生验算的意识和习惯。

  三、智慧城堡

  1、下面各题的商哪些是小于1的?在括号里画“√”

  5.04÷6 76.5÷45 45÷36 0.84÷28

  (1)引导学生判断。

  (2)引导学生想一想,什么情况下得到的商比1小?

  2、

  (1)引导学生判断对错。

  (2)这道题的7应该商在哪位上?

  3、

  (1)引导学生理解题意。

  (2)引导学生根据“一共花的钱÷分钟数=每分钟花的钱”的数量关系列式。

  (3)学生列竖式计算,然后展台展示学生做题情况。

  四、我的收获是……

  引导学生说出这节课的收获。

  (1)按整数除法的方法去除。

  (2)商的小数点要和被除数的小数点对齐。

  (3)整数不够除,商0,点上小数点。如果有余数,要添0再除。

小数数学教案7

  教学目标:使学生进一步掌握小数除法的计算法则并能根据乘、除法互逆关系,求乘、除法的末知项;提高学生的计算能力。

  教学重点、难点:根据乘、除法互逆关系,求乘、除法的末知项。

  教学过程:

  一、练习

  1、口算,课本P22的第11题

  复习小数四则运算的计算方法

  2、看谁算得又对又快

  第一组第二组

  49.3÷1712.6-3.79

  5.6+13.870.138×0.12

  91.2÷0.0246.298÷0.47

  二、新课练习

  1、课本P22第12题

  引导学生观察比较第一栏右面各栏中已填出的`被除数、除数和商与第一栏中对应的数有什么变化?再考虑空缺的栏内应填什么数?

  2、求末知数x

  0.4×x=1x÷0.35=4.8

  0.36÷x=0.225x+0.842=1.5

  根据加与减、乘与除的互逆关系,求末知数x(四人板演)

  3、在括号里填上适当的数

  45分=()小时4小时42分=()小时

  ()小时=18分()分=2.15小时

  (注:提醒学生时和分之间的进率是60)

  三、综合练习:课本第23页第18~20题

  (根据课堂的时间而定)

  四、课堂作业

  课本第23页第14题部分,第15题、第16题、第17题(填入书上)

小数数学教案8

  教学目标

  1.理解循环小数的意义,初步认识有限小数和无限小数.

  2.通过观察、比较,培养学生抽象、概括的能力.

  3.向学生进行辩证唯物主义“对立统一”观点的教育.

  教学重点

  理解循环小数的意义,并能用循环小数的近似值表示除法的商.

  教学难点

  理解循环小数的意义,并能用循环小数的近似值表示除法的商.

  教学过程

  一、复习引新

  (一)求下面各数的近似值(保留两位小数)

  54.246 7.685 5.354 14.2971

  (二)分组计算下面各题

  3.45÷5 10÷3 58.6÷11

  讨论:为什么第一道题做得快,第二道题和第三道题做得慢?

  二、学习新课

  (一)观察思考:第二道题和第三道题的商有什么特点?想一想,这是为什么?

  (第二道题因为余数重复出现1,所以商就重复出现3,总也除不尽;第三道题因为余数重复出现3和8,所以商就重复出现27,总也除不尽.)

  教师把重复出现的余数用红笔圈出.

  (二)比较异同

  思考讨论:第一道题和第二道题、第三道题的商小数部分的数位有什么不同?

  (第一道题除得尽,商的小数部分的位数是有限的,第二道题和第三道题除不尽,商的小数部分的位数是无限的`)

  教师说明:当小数部分的位数是无限的,可以用省略号表示.

  (三)建立概念

  小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.

  (四)循环小数

  1.像第二道题的商0.3333……,第三道题的商5.32727……就是循环小数

  2.思考

  (1)这两道题的商有什么特点?

  小结:小数部分的一个数字或几个数字重复出现

  (2)小数部分的数字重复出现的地方有什么区别?

  小结:

  1、小数部分从某一位起,数字开始重复出现

  2、概括循环小数的意义

  一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

  3、加深理解:循环小数后边的省略号表示什么?(小数部分的位数是无限的)

  教师说明:循环小数是无限小数

  4、简便写法:3.33……写作 ,5.32727……

  练习:判断下面的数,哪写是循环小数,为什么?是循环小数的用循环点表示.

  0.875 2.7373…… 5.2858585 3.1415926535……

  (五)教学例9

  一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)

  1.列式解答

  130÷6=21.666≈21.67(千克)

  答:大约用去21.67千克汽油.

  2.强调:

  (1)保留两位小数,要在千分位上四舍五入;

  (2)用四舍五入法得到的近似值要用“≈”表示.

  三、巩固概念,强化练习

  (一)下面各小数

  0.3737…… 2.855

  5.306306…… 7.6

  有限小数有( )

  无限小数有( )

  循环小数有( )

  (二)判断

  1. ( )

  2. ( )

  3. ( )

  4. 是循环小数,也是无限小数.( )

  5.所有的循环小数都一定是无限小数.( )

  (三)比较两个数的大小.

  0.33○ ○1.233 ○

  四、课后作业

  (一)计算下面各题,哪些商是循环小数?

  5.7÷9 14.2÷11 5÷8 10÷7

  (二)下面的循环小数,各保留三位小数写出它们的近似值.

  1.29090……( ) 0.083838……( )

  0.4444……( ) 7.275275……( )

  五、板书设计

  循环小数

  一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断的重复出现,这样的小数叫做循环小数.

  例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)

  130÷6=21.666≈21.67(千克)

  答:大约用去21.67千克汽油.

小数数学教案9

  教学内容

  苏教版第八册第117-118页例1-例4,“练一练”,练习二十四1-6题。

  教学目标

  1、理解并掌握小数的性质;

  2、能运用小数的性质进行小数的化简和改写;

  3、培养学生对所学知识的归纳概括,分析综合及灵活运用的能力。

  教学重点

  通过探索,发现小数的性质,运用小数的性质解决相关问题。

  教学难点

  在小数部分什么位置添“0”去“0”,小数的大小不变,以及“变”与“不变”的辨证统一关系。

  教学设想

  通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。

  教学过程

  一、导入新课

  在商店里,经常把商品的标价写成这样的小数:手套每双2.50元,毛巾每条3.00元。这里的2.50元、3.00元分别是多少钱?(2.50元是2元5角,3.00元是3元)为什么能这样写呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。

  二、讲授新课

  1、研究小数的性质

  (1)(板书“1”)师:在“1”的末尾依次添上1个“0”、2个“0”,数的大小变化了吗?怎么变?你能不能在括号里填上合适的单位名称,使下面的等式成立

  1( )=10( )=100( )

  得出:1元=10角=100分

  1米=10分米=100厘米

  1分米=10厘米=100毫米

  出示米尺,1分米是1/10米,可写成怎样的小数?(0.1米);10厘米是10个1/100米,可写成怎样的小数?(0.10米),100毫米是100个1/1000米可写成怎样的小数?(0.100米)

  板书:因为1分米=10厘米=100毫米

  所以0.1米=0.10米=0.100米

  师:0.1、0.10、0.100是否相等?为什么?

  (板书:0.1=0.10=0.100)

  A、从左往右看,是什么情况?(小数的末尾添上“0”,小数大小不变)

  B、从右往左看,是什么情况?(小数的末尾去掉“0”,小数大小不变)

  C、由此,你发现了什么规律?(小数的末尾添上“0”或去掉“0”,小数大小不变)

  (2)出示:0.4元、0.5、0.05、0.40元4.0元。师:这些数中有大小相等的小数吗?说出理由。(学生交流,教师适时适当地引导)

  (3)让学生在两张同样大小的正方形纸上(其中一张均分为100格,一张均分为10格)表示出0.40、0.4,比较其大小,说明40个1/100就是4个1/10,

  0.40=0.4

  (4)师:如果在它们的末尾添上两个“0”呢,三个“0”呢?相等吗?为什么?

  (5)0.5添上“0”成0.05,大小有没有变化?为什么?

  (6)揭示小数的性质。

  2、小数性质的应用

  师:根据这个性质,遇到小数末尾有“0”的时候,一般地可以去掉末尾的“0”,把小数化简。

  (1)化简小数

  出示例3:把0.60和203.0500化简。

  提问:这样做的'根据是什么?弄清题意后,学生回答,教师板书:0.60=0.6;

  203.0500=203.05。

  口答:课本“练一练”第1题。

  (2)把整数或小数改写成指定数位的小数

  师:有时根据需要,可以在小数的末尾添上“0”;还可以在整数的个位右下角点上小数点,再添上“0”,把整数写成小数的形式。

  如:2.5元=2.50元3元=3.00元

  (3)出示例4:不改变数的大小,把0.4、3.16、10改写成小数部分是三位的小数。

  0.4=0.400 3.16=3.160 10=10.000

  练习:口答“练一练”第2题。

  讨论小结:改写小数时一定要注意下面三点:

  A、不改变原数的大小;

  B、只能在小数的末尾添上“0”;

  C、把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添“0”。(想一想为什么)

  三、巩固练习

  练习二十四

  第1题:下面的数,哪些“0”可以去掉,哪些“0”不能去掉?指名同桌对口令,其余学生当小评委。

  第2题:下面的数如果末尾添“0”哪些数的大小不变,哪些数的大小变化?小组讨论,提问订正,找规律(小数的末尾添“0”大小不变,整数的末尾添“0”大小变了)。

  第3题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。

  第4题:化简下面小数,采取抢答来完成。

  第5题:先填书上再口答订正。

  第6题:用元作单位,把下面的钱数改写成小数部分是两位的小数。2人板演,其余学生齐练,评价鼓励。

小数数学教案10

  首先出个问题,假设给你一个小数(无限循环小数),你能说出小数点后第10000位的数字是几吗?10000位?是在开玩笑吗?数都要数好久。其实用心点的同学们就已经知道了,这个数字肯定是有一定的规律可寻的,不然,真的就是死记硬背的数学了。

  每天10分钟头脑大风暴,开发智力,培养探索能力,让你成为学习小天才。

  教案分析:

  阿尔法趣味数学课程教案是通过对小学数学课本上的知识点分析和趣味故事相结合,让同学们感知到数学其实还挺有趣的。培养孩子学习数学的兴趣、逻辑思维能力和独立解决问题的能力。

  教案要求及解读:

  老师通过趣味小故事的形式引导同学们在游戏中学习。

  教学目的:

  了解和认识无限循环小数的意思及其特点,规律,学会在什么场景下使用循环小数;

  了解除法中商的小数部分的特点。

  适合年级:小学五年级

  教学重点:认识循环小数。教学难点:循环小数的循环节和循环点。循环小数的意思:

  一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。像:5.333…和7.14545…都是循环小数。一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节、例如:

  5.333…的循环节是3。

  7.14545…的循环节是45。

  6.9258258…的循环节是258。

  写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。例如:

  教学过程:

  老师:同学们,最近你的数学学习进步很大呀,我来考你们一道题吧。5÷7等于多少?

  学生:这么简单呀,约等于0.71

  老师:说准确点!小数点后第1000位的数字是几?

  学生:啊!这个可难住我们了,到底是多少呀,老师给我们讲讲吧。

  老师:这道题的得数是个无限循环小数:5÷7=0.714285714285......

  循环小数是有循环节的,循环节首尾相接循环出现。仔细看"714285"这6个数字在不断循环。那循环节就是它们6个了!这样就好算第1000位是多少了。1000÷6=166……4,循环节在到第1000位的时候循环了166次,并余下4个数字,那么从循环节开始往后数第4位就是2。

  学生:哦,也就是小数点后第1000位的数字应该是2.

  老师:那我再问你们,前1000个数字的和是多少?

  学生:是4496,哈哈,你考不倒我。这个得数是经过166次循环再加上余下的4位数字得到的。那么这个小数的循环节的和是7+144+2+8+5-27,那么166 × 27=4482;剩下的4个数字之和是7+1+4+2=14,所以前1000个数字之和就是4482+14=4496。

  思维挑战:

  你学会这种方法了吗?来试试吧:计算5÷13的'商的小数点后面第1000位的数字是多少?

  提示:解答这道题要注意:一是5÷13的商要算准确,否则就无法求出第1000位的数字;二是要找准商的循环节,看清循环节有几个数。

  教案总结:

  无限循环小数是由小数除法的商产生的,学习无限循环小数的前提是要掌握好除法,商和余数。

  课后思考:

  计算5÷13的商的小数点后面第10000位的数字是多少?

  无限小数一定比有限小数大。

  无限小数都是循环小数。

  循环小数都是无限小数。

  0.66666是循环小数。

  一个小数不是有限小数,就是无限小数。

小数数学教案11

  教学内容:小数点移动引起小数大小变化的规律

  教学目的:

  1、通过创设生动的情境??“小数点搬家”这一童话故事,使学生探索出小数点向左、右移动引起小数大小变化的规律。

  2、能运用这一规律计算相关的小数乘除法。

  3、激发学生学习数学的兴趣,培养合作意识和应用意识。

  教学重点:探索、概括出小数点的移动引起小数大小的变化规律。

  教学难点:能够应用这一规律计算小数乘除法。

  教学准备:教学课件“小数点搬家” 、数字卡片。

  教学过程:

  一、激趣导入:

  同学们,老师这里有三张卡片(出示三张写有100的卡片),你能在适当位置添上小数点,使这个数最大吗?(100.)最小呢?(1.00)还可以是多少?(10.0)小数点位置不一样,它们的大小也就不一样了。是呀,小数点真重要,今天我们就来探讨有关小数点方面的知识(板书:小数点搬家)看了这个课题,你想知道什么?(生答)带着这些问题,让我们走进山羊快餐厅。

  二、童话激趣,发现变化。

  1、出示三张情境图:同学们,请看屏幕,从图中你看到了什么?学生讲述,老师随机板书:4.00元、0.40元、0.04元。

  2、提问 (1)这些小数的实际价格是多少?生说,师板书。(2)请同学们认真观察4.00、0.40、0.04小数点的位置有什么变化?它们的大小又有什么变化?请你们在小组里讨论一下吧。

  3、小组汇报:

  汇报交流,师适时板书:

  小数点 大小变化

  向左移动一位 缩小10倍(缩小到原来的 )

  向左移动二位 缩小100倍(缩小到原来的` )

  向左移动三位 缩小1000倍(缩小到原来的 )

  ……

  4、来了这么多客人,山羊真开心呀,可月底一算,亏本了,热心的小数点知道自己闯祸了,赶紧往右搬家,请想一想:小数点向右移动小数的大小有什么变化?小组讨论后完成课本40页“试一试”。

  小组合作讨论之后,全班交流。

  从而得出:小数点向右移动引起小数大小的变化规律:

小数数学教案12

  教材分析:

  这部分内容是在学生学过百分数的意义,明确了百分数和分数、小数的联系的基础上教学的。由于百分数的计算,通常是化成分数、小数来进行,而求百分率,又要把算出的结果化成百分数,所以学好这部分内容就为后面学习百分数的计算和应用打下基础。教材先教学百分数和小数的互化,再教学百分数和分数的互化。

  学情分析:

  学生以前学过小数与分数的互化,因此,学习本课内容对于学生来说并不会很困难。在学习新课之前有必要引导学生复习小数与分数互化的知识和百分数的意义,十分必要。同时教学中还要引导学生总结、理解掌握百分数和分数、小数互化的方法,从而使其明确三者之间的关系。

  教学目标:

  1.使学生掌握百分数、小数、分数互化的.方法,并能正确的互化。

  2.在学习互化的过程中使学生认识到这三者之间的内在联系,为后面学习百分数的计算和应用打下基础。

  3.在学习的过程中培养学生的分析思维和抽象概括能力。

  教学重点:使学生理解掌握百分数和分数、小数互化的方法。

  教学难点:明确三者之间的关系。

  教具准备:小黑板

  教学过程

  教学设补充(点评)补充(点评)

  活动(一)复习准备

  1.我们以前学过小数和分数,现在又学习了百分数。想一想,小数和分数之间可以互相转化吗?

  2.(1)把下面的小数化成分数,并说说怎样把小数怎样化成分数。

  0.451.20.367

  (2)把下面的分数化成小数,并说说怎样把分数又怎样化成小数。

  3/25,63/100,15/8

  (3)把下列分数写成百分数的形式。

  37/100,8.6/100,5/100

  3.引入。

  在生产、工作和生活中进行统计和分析时,为了便于统计和比较,我们常用百分数表示一些数据。除了用百分数表示,还可以用什么数表示?(小数和分数。)

  这节课我们就来学习百分数和小数的互化以及百分数和分数的互化。

  学习新课

  第一课时

  活动(二)百分数和小数的互化。

  (1)回忆小数化分数的过程。

  (2)小数要化成百分数,分母应是多少?怎样使它的分母变成100呢?

  (3)出示例1。

  活动(三)百分数化成小数

  例1把0.25,1.4,0.123化成百分数。

  ①小数化百分数分几步进行?

  ②(先把小数化成分母是100的分数,再化成百分数。)学生回答,教师板书:0.25=25/100=25%

  ③1.4怎样化成分母是100的分数?根据什么?

  ④做一做:把下面各小数化成百分数。

  0.381.050.0553

  ⑤观察例1的各小数,化成百分数后发生了怎样的变化?(把小数点向右移动了两位,添上了百分号。)

  你所做的练习的各数是不是也发生了同样的变化?这一变化符合什么?(分数的基本性质。)

  ⑥现在你能很快地把下列小数化成百分数吗?(口答)

  2.50.7850.16

  (4)百分数又怎样化成小数呢?

  (5)出示例2。

  例2把27%,135%,0.4%化成小数。

  学生自己试做,学生总结方法

  ①说一说百分数化小数的方法。

  (先把百分数化成分母是100的分数,再化成小数。)

  ②观察百分数化成小数发生了什么变化?

  (小数点向左移动了两位,去掉了百分号。)

  ③把下面各百分数化成小数

  15%80%3.5%

  (6)小结。

  通过刚才的分析、归纳,谁能说一说百分数和小数怎样互化?

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移两位。

  巩固与提高

  1、补充练习:

  (1).判断题:0.5%化成小数是0.005.()

  12后面添上一个%得到的数,就是原数缩小100倍.()

  (2)把百分数化成小数或整数.

  2%25%0.04%150%300%

  10%280%17%0.2%4.5%

  课题:百分数和分数的互化上课时间:年月日

  活动(一)复习导入分数可以化成小数,我们又学习了小数化成百分数的方法,你能利用已有的知识把分数化成百分数吗?

  (3)掌握了分数化百分数的方法。百分数化分数又怎么做呢?

  (4)出示例3。

  活动(二)百分数化成分数

  例3把20%,80%,12.5%化成分数。

  ①说说你的想法。

  (先把百分数写成分母是100的分数,再约成最简分数。)

  把12.5%化成分数后,分子部分是小数应怎样处理?

  (先利用分数的基本性质把分子、分母同时扩大若干倍,去掉分子的小数点,然后再约分。)

  12.5%=12.5/100=125/10000=1/8

  出示例4

  你能用百分数表示出其中的分数吗?

  1/5=0.2=20%

  4/5=80/100=80%

  1/14=1140.071=7.1%

  学生自己试做

  循环小数不能化成分母是100的分数怎么办?(取近似值。)

  师:一般要求百分数的分子要保留一位小数,那么当把分数化小数时应保留几位小数?(保留三位小数。)

  (5)说一说百分数和分数应怎样互化?

  打开课本看109页百分数和分数互化的方法。

  (6)总结

  通过今天的学习,你能把分数、小数,百分数三者之间任意转化吗?互相说一说转化的方法。

  补充练习:选择题

  (1)六折改写百分数是()(补充有关打折的常识)

  A.600%B.60%C.6%D.0.6%

  (2)在7的后面添上百分号,这个数()

  A.大小不变B.缩小100倍C.缩小100%

  (3)和25%不相等的数是()

  A.2.5B.1/4C.0.25

小数数学教案13

  教学目标

  1、 结合具体情境,进一步体会小数的意义及其与日常生活的密切联系。

  2、 会正确读写小数。

  3、 通过实际操作,体会小数与十进制分数的.关系,并能进行互化。

  重点 了解小数的意义,会正确读写小数。

  难点 理解小数的意义。

  教具 课件、正方形卡纸

  教学过程

  复习导入:元6角4分=( )元

  10元5角=( )元

  =( )元

  7分=( )元

  谁能说出生活中还有那些小数。

  学习目标:

  1、理解小数的意义。

  2、会正确读写小数。

  3、小数与分数能进行互化。

  自主学习(方式)、教师指导方案:

  1、看书上第2页认一认。

  2、把“1”平均分成1000份,其中的1份是( ) ,也可以表示( )。

  其中的59份是( ),也可以表示( )。

  3、读出下面的小数,并写出它们所表示的意义。

  0.9读作:

  表示:

  0.304读作:

  表示

  0.06读作:

  表示:

  展示方式:(学习目标中1、2……采取什么方式展示)

  1、 抽生回答,集体点评。

  2、 小组交流,抽生回答。

  3、 学生展示,集体交流。

  检测内容:

  填空:

  0.2 表示是( )位小数,它表示( )分之( )。

  0.15是( )位小数,它表示( )分之( )。

  0.008是( )位小数,它表示( )分之( )。

  0.3里面有( )个十分之一

  0.05里面有( )个百分之一

  0.009里面有( )个千分之一

  板书设计:

  小数的意义

  把1平均分成10份,其中的一份是1/10,也可以表示为0.1.

  把1平均分成100份,其中的一份是1/100,也可以表示为0.01.

  作业:

  6页2、3、4题

小数数学教案14

  教学内容:课本第102页回顾与整理以及练习与应用1-6题。

  教学要求:使学生进一步理解小数乘法的意义,掌握计算法则,能够比较熟练进行小数乘法、除法笔算和简单的口算;会用“四舍五入”法截取积、商是小数的近似值。

  教具准备:小黑板

  教学过程:

  回顾与整理

  (一)计算:0.67X7.5 8.36X0.25 0.125X0.24

  学生计算后集体订正。

  小组讨论然后汇报交流:

  1、小数乘法和整数乘法有什么相同和不同的地方?

  2、计算小数乘法时,怎样确定积的小数位数?算出积后,积的小数位数不够应该怎么办?

  (二)小数除法的计算法则。

  (1)提问:小数除法的计算法则是什么?怎样把除数是小数的除法转化为除数是整数的除法?商的`小数点的位置怎样呢?

  (2)计算:1.89÷0.5 4 7.1÷2.5 0.51÷0.22学生做完后集体订正。

  二、练习与应用

  1、第1题:学生独立计算,教师巡视指导。集体订正。

  2、第2题:先分组完成题目,然后通过计算和比较,让学生进一步整理小数乘除法的计算方法。

  3、第5题:学生独立审提题解答,教师巡视。让学生根据平均数的意义估计得数范围。

  4、做第6题。主要让学生练习根据具体的问题情境合理截取商的近似值。

  小结。

  三、作业设计

  完成整理与练习第3题和第4题。

小数数学教案15

  (一)教学目标

  1.让学生自主探索小数加、减法的计算方法,理解计算的算理并能正确地进行加、减及混合运算。

  2.使学生理解整数运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算,进一步发展学生的数感。

  3.使学生体会小数加、减运算在生活、学习中的广泛应用,提高小数加、减计算能力的自觉性。

  (二)教材说明和教学建议

  教材说明

  1.本单元的内容结构及其地位作用。

  在人类生产和生活中,诸多问题的解决,离不开小数加、减法。它是数的运算中不可缺少的内容,是形成良好的计算能力的重要组成部分。

  本单元的主要内容有:小数加、减法、混合运算以及整数的运算定律推广到小数。以上内容具体编排如下表:

  2.本单元教材的编写特点。

  (1)选择学生熟悉的、感兴趣的体育运动素材,作为计算教学的背景。

  本单元从人类五彩缤纷的生活中选择体育运动为背景,选择运动员在某些运动项目中的得分情况或运动器材的价格为学习小数加减法的素材。它紧密联系2004雅典奥运会上中国运动员取得的骄人成绩,联系学生在学校的运动情况,联系与体育运动相关的人或事来开展小数加减法的教学活动。这样的选择十分贴近学生的兴趣和爱好,利于对学生进行爱国主义和强身健体的教育。在这样的背景下学习小数加减法,能使学生体会小数加减计算对人类活动的重大意义,体会数学的工具性作用。同时激发学生学习小数加减法的兴趣,涌动长大也要为国争光的豪情,提高学习的主动性和自觉性。

  (2)小数加减运算集中编排。

  小数加减法的计算方法基本相同;计算的重点、难点都集中在小数点的处理问题上;计算的结果都要考虑是否要用小数的基本性质使之变成最简。基于以上原因,所以把小数加减法放在同一个例题(例1)中进行教学。这样既突出了知识之间的有机联系,又节省了教学时间,使学生能以较快的速度形成小数加减的良好认知结构。

  (3)为学生提供自主探索小数加减笔算方法和解决问题多种策略的空间。

  小数加减法与整数加减法在算理上是相通的。对于小数加减法,学生有似曾相识的感觉。教材紧紧抓住学生的这一认知特点,有意不给出小数加减法的计算过程,不概括小数的加减法法则,而是刻意引导学生利用已掌握的整数加减法的旧知迁移到小数加减法这一新的情境中。如例1、例2中,让学生自主探索小数加减法的竖式写法,经历计算的全过程,同时经过合作交流,共同总结笔算的一般方法,理解“数位对齐”就是“小数点对齐”的道理,知道当计算结果的末尾有0时,应根据小数的基本性质省略0不写,使结果形式达到最简。又如,例3中的小数加减混合运算,出示了解题的三种不同思路,为学生用不同的方法解决同一问题作了积极的引导。

  (4)情境呈现方式故事性强,灵活多样。

  本单元的教学内容看似枯燥,但由于创设了故事性强,灵活多样的呈现方式,使小数的加减运算变得具有磁铁般的吸引力,使学生在解答用小数计算的实际问题时,能始终带着饱满的热情思考解决问题的不同方案,掌握小数运算的基本方法。如,例1,父子看雅典奥运会女子10米跳台双人跳水比赛,边看边计算成绩,形如场外裁判;例3,一家三口看环城自行车赛,边看边用自己的方式计算运动员还要骑的路程,有一种为运动员着急、鼓励运动员快速、顺利抵达终点的关爱情怀;例4,两位学生推测校运动会中本班4×100米接力赛的成绩,体现对班集体的热爱之情。从例1~例4,教材均用学生感兴趣的图片、表格以及图文相结合的形式,呈现学习内容。这些措施改变了以往小数计算中比较单一、严肃的学习面孔,使鲜活的体育活动和看似机械演练的小数运算融为一体,使计算、推理、概括这些抽象的数学活动变得令学生乐于接纳、乐于探究。

  教学建议

  1.选择近期对学生有较大影响的活动来学习小数加减法。

  现实生活中,蕴含着小数加减计算的活动大量存在,这些活动中,哪些是在近期对学生影响较大的?是学生感兴趣的?这是我们选择素材的一条基本思路。因此,教学时,既可根据教材提供的运动场上的信息,特别是雅典奥运会中的一些运动项目为素材,也可根据当地生活、生产实际,如家庭用水、用电、用煤气的数量与价钱;农家各项农产品的产量、收入;购买有关生活、学习用品的价钱等等,都可作为学生学习小数加减法的素材,通过结合学生熟悉的生活来学习,使学生获得积极的情感体验。

  2.鼓励学生自主学习小数加减法知识。

  小数加减法和整数加减法,两者之间有着割不断的联系和相同之处。整数加减法的计算方法,学生在第一学段的三年级时就已经掌握了。因此,让学生充分应用旧知来自主学习小数的加减法成为本单元教学的一个重要策略。教学时,教师的职责是:帮助学生激活整数加减法的计算方法这一已有知识经验,并尝试用它来计算小数加减法;让学生明确列竖式时应如何对齐数位,懂得道理何在;学会用自己的语言表述自主尝试的过程和结果。通过自主学习本单元的知识,使学生懂得应用旧知来学习新知是获取知识的一条重要途径。

  3.提倡解题策略的多样化。

  为了使因材施教、让每一个人都得到充分发展的理念落到实处,教学时应关注不同学生解答问题的不同思路,积极鼓励学生用自己的方式思考问题,提出自己的解法。如,教学例1中解答“第二轮动作完成后中国队领先多少分”的问题时,教师不宜作任何提示,而应让学生根据自身经验找到适当的解题方法。又如,教学例3、例4时,不必将教材中出现的各种解题思路率先呈现给学生,而是让学生在独立思考、自主解答的基础上,通过合作交流,领会多种不同的解题思路,感受解题策略的多样性和灵活性,达到提高数学思考能力和计算能力的目的。

  4.引导学生逐步形成从现实情境中发现并提出问题的良好习惯。

  数学课程目标之一,是培养学生解决问题的能力。培养学生解决问题能力的途径之一,就是使学生形成不断发现问题、提出问题的良好习惯。教学时,应引导学生充分利用教材提供的丰富素材,根据素材给出的若干信息去发现隐含在信息中的若干数学问题。如,例1显示的是父子二人观看女子双人跳水比赛的情境,当记分牌逐一显示中国和加拿大运动员第一轮及第二轮动作完成后的得分情况时,引导学生思考:“根据第一轮动作的得分情况,你能提出什么问题?第二轮呢?”又如,教学例4时,当学生看到表格呈现4位学生“50米跑的成绩”时,引导他们发问:“看到这张表格,你能提出什么数学问题?”这样经常性地引导学生对教学中的若干信息发问,天长日久,学生就能养成面对周围世界的诸多现象不断发问的良好习惯。

  5.这部分内容可用6课时进行教学。

  (三)具体内容的说明和教学建议

  1.主题图

  编写意图

  (1)选择对学生有感染力的体育运动为背景。

  呈现2004年雅典奥运会上中国跳水运动员劳丽诗、李婷在女子10米跳台双人跳水比赛中的完美的空中动作照片,以及该项目中金、银、铜牌得主的跳水成绩。通过观察照片,让学生回味雅典奥运会中我国运动员创造的辉煌成绩,使学生体会一种自豪、一种激励,体会人类运动技巧给世界带来的无限风光。

  (2)选择与小数计算紧密联系的运动项目为素材。

  奥运会中,许多项目的成绩是通过小数计算来决定的。教材选择女子10米跳台双人跳水这一项目,是因为这项比赛过程的成绩计算就是小数加减计算(两位小数)的内容,而我国奥运健儿在此项目中荣获金牌。这样选择,既让学生学习了小数加减法,又使爱国主义教育润物无声。

  教学建议

  (1)以人类崇尚的体育运动为背景,学习小数加减法。

  教学时,除显示主题图,还可充分利用现代信息技术手段显示雅典奥运会中我国运动员获其他项目金牌的图片,以及用小数记录他们获奖成绩的情境,由此引入小数加减法的学习。也可在此基础上,选用本校、本市学生运动会中的内容(图片、用小数记录的各项成绩)作为小数加减法的学习素材。

  (2)引导学生自主说出主题图下面表格的内容。

  教学主题图下的表格时,可让学生说一说:①表头分了哪三类?(国家、运动员、奖牌)②金、银、铜牌的得主各是哪几个国家的运动员?③从中你想了解什么问题?学生可能会提出:我国运动员的决赛成绩比加拿大的高多少分?比俄罗斯的高多少分?……根据学生的提问,引入小数加减法的学习。

  2.例1。

  编写意图

  (1)由本单元主题图创设的情境引入小数加减法的学习。

  通过父子二人观看2004年雅典奥运会中女子10米跳台双人决赛的全过程,自然而然地引入小数加减法。教材用表格呈现我国运动员和加拿大运动员在第一、第二轮动作后的得分情况,呈现父子二人在知道得分后兴高采烈的对话:“中国队领先3.6分”、“中国队两轮的总成绩是111.60分”、“现在领先12.6分”……父子二人的对话促使学生思考:“3.6分、111.60分、14.6分是怎么算出来的?”这样,为了解决这一个个的实际问题,小数加减运算便产生了。

  (2)以故事形式动态呈现小数加减法。

  与以往教材编写加减法的顺序不同,本例题是先学减法,再学加法,是以故事发展的先后顺序来编排的。由于要知道“第一轮动作后,中国队领先多少分?”所以本例先安排小数减法的学习。接着,要知道“中国队两轮的总成绩是多少?”所以再学习小数加法。这样安排,合乎情理,易于激发学生学习的热情和主动计算的兴趣。

  (3)给学生提供自主计算与交流的空间。

  两位小数的加减法如何笔算,教材没有给出详细过程,只有计算结果。如,竖式中的 “3.60、111.60”是怎样算出来的,教材没

  有任何说明。它留给学生自主学习的探索空间,它刻意让学生经历自主列竖式、自主计算的全过程,它迫使学生应用已有的知识经验来解决新问题,通过自主探索或合作交流弄清“小数点对齐”的道理,弄清“得数的末尾如何去0简写”的道理。学生有了这一自主探索的经历,就多了一次自主获取知识的体验。

  教学建议

  (1)让学生自主阅读,表述题意。

  本例题将故事、表格、数据、计算、思考融为一体,以学生喜爱的方式呈现出来。怎样让学生读懂这丰富的画面、理解其中的数学意义呢?一般的方法是让学生自主阅读。在自主阅读的基础上,再用自己的语言表述题意。如例1中上面一部内容,教学时应让学生有序的陈述自己理解的信息:①例题中的事情(父子二人观看2004年雅典奥运会跳水比赛);②表格的意思,特别说出我国和加拿大运动员在女子10米跳台双人决赛中第一轮得分的情况;③父子二人对话的内容。(父:中国队领先3.6分,子:差距还不到4分。)

  (2)设计让学生自主计算的教学过程,突出算理和算法。

  由于学生已有整数加减计算的基础,教学时,应充分利用学生已有的这一知识经验,设计好让学生自主提问、自主计算、合作交流的过程。

  ①先教学减法。出示例1中上面一部分内容时,不出现小数减法的竖式,而是让学生根据表中的两个数据发问:“中国队领先多少分?”或者根据父子二人的对话“中国队领先3.6分”提出问题:“这3.6分是怎么得来的?”为了解决这一问题,引入小数减法,同时让学生自主列竖式计算。学生计算后,应引导说一说:

  ●如何列竖式?(突出小数点对齐的道理。)

  ●如何计算?(突出退位的过程。)

  ●竖式中的结果3.60与图中父亲说的“3.6”有区别吗?(突出根据小数的基本性质将结果简化。)

  ②再教学加法,并体现解题策略的多样性。

  例1中下面一部分内容的情境是上面一部分的继续,是故事往下发展的一个过程。教学时,同样不要出现加、减法竖式,而是引导学生根据表中数据或父子二人对话的内容提出数学问题:“111.6分和12.6分是怎么得来的?”然后让学生独立列竖式计算。计算后,让学生说一说:

  ●怎样求中国队两轮的总成绩?(用加法笔算)计算的结果“111.60”还可以怎样写?为什么?

  ●要求中国队第二轮后领先多少分,怎么解答?

  学生中会有不同的解答方法。如:

  方法一:53.40 +58.20=111.60

  49.80 +49.20=99

  111.60 - 99=12.60

  方法二:53.40-49.80=3.6(利用前面的结果)

  58.20-49.20=9

  3.6+9=12.6

  应引导学生进行交流,体会解题策略的多样性和简洁性。显然,方法二从计算数据来看,更简单,且充分应用了已获取的相关条件(3?6)。

  ●对比两种解法的结果:12?60与12?6,突出小数的基本性质的应用。

  3.例2及“做一做”。

  编写意图

  (1)让学生在合作活动中总结小数加减计算的一般方法。

  小数加减计算应注意的问题不要求学生记忆,只要理解就行,教材组织学生应用交流的方式,共同总结出小数加减计算的一般方法。通过交流,理解小数点对齐就是使相同数位上的数相加减;理解如果得数的末尾有0,就应根据小数的基本性质将0去掉,使小数的书写简洁。

  (2)通过“做一做”的练习,使学生进一步体会小数加减法在生活中的广泛应用,进一步巩固小数加减法的计算,同时会用不同的方法,包括使用计算器进行小数加减法的计算和验算。

  教学建议

  (1)引导学生逐步有序的总结出小数加减法要注意的问题。

  总结时,采用合作交流的方法,分两步进行:①先让学生根据例1中各竖式的计算过程和结果说一说计算时应注意什么。这时,学生总结是凌乱的,不完整的。②在学生自由总结的基础上,引导学生有序地回忆自己在进行小数计算时先干了什么(列竖式);列竖式时应注意什么(小数点对齐);对于计算的结果,当小数末尾有0时,是怎么处理的(去掉末尾的0)。这样,不但帮助学生总结了小数加减法的一般方法,而且使学生懂得总结、概括的一般方法。

  (2)提醒学生用不同的方法对计算结果进行验算。

  两位小数加减法,计算容易出错。为保证结果的准确性,应提醒学生用不同的方法检验。除根据算式中各部分之间的关系来检验,还应鼓励学生用计算器进行检验,帮助提高使用计算工具的能力。

  (3)“做一做”中的第1题是人人都必须完成的基本练习,应要求学生用一定的方法进行验算,能对自己的计算结果作出正确与否的评判。

  (4)“做一做”中的第2题突出计数器在小数计算中的工具性作用。学生作业时,可提出要求:先用笔算,再用计算器验算。

  4.关于练习十六中一些习题的说明和教学建议。

  第1题,是小数口算练习,它综合了两方面的知识:100以内加减法的口算和相同数位上的数才能相加减的算理。学生计算如果出错,主要原因有二:一是粗枝大叶、计算不专心造成的,如看错数据,手写的与口算的内容不一致等;二是由于100以内的口算不过关或算理不清楚造成的。这时,应及时帮助学生查找其中原因,及时纠正错误。

  第2、5题,是小数加减的笔算练习。应要求学生:(1)将笔算竖式尽可能写得漂亮些;(2)仔细计算;(3)自觉验算,知道如何判断自己计算的正误。

  第3、4题,是小数计算在实际生活中的应用。第3题可改成让学生自主提问的方式:看到表中的数据,你能提出什么数学问题?将小数的计算与实际生活联系起来,使学生感受到小数计算在日常生活中的应用。第4题通过计算电话费和上网费,使学生对复式统计表有进一步的认识。

  第6题,结合人民币、质量单位和长度单位进行小数计算。这样的计算在现实生活中用得极为普遍。学生计算时,应作如下提示:①想清楚不同计量单位之间的进率;②计算时,可先将复名数改写成小数,然后再计算;③用不同的方法进行检验。

  第7、8题,是与体育运动相关的练习。第7题通过购买足球和排球,使学生体会组合的思想方法,体会解题策略的多样性。第8题有着良好的教育功能,一方面使学生了解一些体育方面的信息:某些女子田径项目的中国纪录和世界纪录;另一方面通过计算这些女子田径项目的中国纪录和世界纪录的差距,体会我国要赶超世界一流水平,还须付出更大的努力。

  5.例3。

  编写意图

  (1)以学生的家庭生活(观看环城自行车赛)为背景学习小数加减混合运算。

  本例创设的学习情境类似例1,它来源于学生的家庭生活。通过观看环城自行车赛,了解自行车比赛的一些知识。知道在长达数天的比赛过程中,运动员和观众都会随时计算已完成的赛段里程和未完成的赛段里程,这就引入了小数的加减混合运算。这一情境的创设使学生体会小数加减混合运算是随比赛的进程而产生的,是因解决问题的需要而产生的。

  (2)鼓励学生用不同的思路解决问题。

  要解决“完成比赛,自行车运动员还要骑多少千米”的问题,教材呈现了三种不同的解题思路,尽管这三种思路的思维水平处于同一个层面,但它显现的意义是让学生体会生活中许多问题的解答往往都有多种思路,多条途径。当思维的角度不同时,就会产生不同的解答方法。

  (3)形成良好的家庭学习氛围。

  学习型家庭是学习型社会的基础。本例通过一家三口计算自行车运动员未完成的里程数,塑造了一个热爱学习的家庭榜样。通过本例的学习,使学生不但会进行小数加减混合运算,同时也让学生产生和爸爸妈妈共同学习的向上愿望,让每个家庭都有一个良好的学习氛围。

  教学建议

  (1)继续让学生自主阅读题意。

  与例1的学习类似,先让学生自读题意,再用自己的话表述出来。尽可能创设让学生表述的空间,如同桌互说、自愿上台说。通过这些活动,逐步培养学生的语言表达能力。

  (2)分步骤呈现例3。

  ①可利用课件或教学挂图先出示例3的上面一部分,即问题部分。在学生理解了题意后,让他们自主解答“完成比赛,自行车运动员还要骑多少千米?”

  ②在学生自主解答的基础上,再出示例3的下面一部分。先交流各自的解题方法,请不同解法的学生上台自己书写解题算式,自己向全体学生解说自己的想法。再组织学生认真观察三个不同的综合算式,从中发现算式483.4-(39.5+98.8)与算式483.4-39.5-98.8是相等的。

  (3)使学生懂得使用计算器进行稍复杂的小数加减混合计算。

  让学生用计算器对自己列的算式算一遍,一方面检验自己笔算的结果,另一方面熟练使用计算器的方法。

  6.关于练习十七中一些习题的教学说明和教学建议。

  第1题,是经常要进行的口算练习。练习时,既要引导学生用常规方法口算,更要引导学生注意方法的合理性和灵活性,使口算也能成为培养学生能力的一个载体。如,口算“7.1-3.5”时,可以这样口算: 7-3.5+0.1,也可以这样口算,“7.1-3-0.5”。它灵活应用了题中数据的特点,使口算不但算得正确,而且灵活。

  第2题,是小数加减混合运算的另一种表示方式,用这种方式呈现,一方面体现了加减混合运算的过程,避免了老面孔带来的单调感,可提高学生计算的乐趣;另一方面,这种方式还渗透了函数思想。如,当一个加数不变(5.47),另一个加数变化时,和也要发生变化;减数不变(9.86),被减数变化时,差也要发生变化。

  第5、6题,都是小数加减混合运算。呈现的方式和要求略有不同。第5题不带括号,只须按从左到右的顺序算;第6题中带有括号,须先算括号里面的,再算括号外面的,算完后还要验算。练习时,应提醒学生看清算式再计算。

  第3、4、7、8题,都是需要用小数加减混合运算来解决实际问题的练习。每题解答后,都应鼓励学生用计算器进行验算。

  第9题,是突出小数与十进分数之间的联系,要求学生先将分母为10,100的分数改写成小数,再进行计算。

  第10题,突出计算器的工具性作用,通过练习,使学生体会用计算器计算日常“流水”账,十分准确、方便、省时。

  第103页的思考题,可让多数学生参与练习。应引导学生先画示意图表示题意(如图),然后根据数据特点用简便方法计算。

  物体在下落前距地面的高度为:

  4.9+(4.9+9.8)+(4.9+9.8+9.8)+(4.9+9.8+9.8+9.8)

  =4×4.9+6×9.8(或8×9.8)(尽管这时学生还未学小数乘法,但用计算器可以计算。)

  =78.4(米)

  7.例4及“做一做”。

  编写意图

  (1)以校园体育运动为背景,学习加法运算定律在小数加法中的应用。

  学校体育运动是校园生活的一个重要组成部分。用数学来描述、记录运动员的成绩是学生熟知的。本例以某班四位同学参加4×50米接力赛为内容,以这四位同学50米跑的成绩为素材,引入加法运算定律在小数加法中的应用,显得十分自然。

  (2)在不同算法的`比较中体会运算定律在运算中的简化作用。

  教材采用对比的方式呈现小莉和小红两位同学不同的计算思路,通过对比,使学生看出两种算法的结果是一样的。从而直观感知加法的运算定律在小数运算中同样适用。并进一步体会用加法的运算定律进行计算确实方便又快捷,使学生在今后的小数加法运算中,能根据数据特点自觉地应用加法运算定律进行简算。

  教学建议

  (1)为了让学生理解加法运算定律在小数中仍然适用,除教材提供的例4外,还可以补充一些例子。如,计算3.56+1.60+2.44和1.60+(3.56+2.44)两个式子,说一说你发现了什么?通过让学生计算2~3组这样的式题,使学生体会加法的运算定律推广到小数后仍然适用。这个过程,使用了不完全归纳推理的方法,让学生感受了不完全归纳推理的合理性。

  (2)尊重学生的个性差异,鼓励学生用不同的方法进行计算。

  关于本例的计算,学生中有多种不同的方法。教学时,应给学生一定的独立计算时间,让学生能充分展示个性化的计算思路。如,有的学生根据4个加数中的整数部分相同的特点,这样计算:

  8.42+8.46+8.54+8.58

  =8×4+(0.42+0.58)+(0.46+0.54)

  =32+1+1

  =34

  上述算法中,既有加法的运算定律的应用,也有根据数据特点将加法转换成乘法,使计算更加简便。教师对这些能综合应用所学知识进行简算的学生要给予鼓励和适当的评价,使计算不仅仅是一种技能,而是上升为一种技巧。

  (3)“做一做”中第1题的填空是让学生进一步熟悉加法运算定律的练习。练习时,应关注学习有困难的学生,使他们通过这组填空题的练习,真正掌握加法运算定律的内涵。

  第2题中的简算有的要用到加法的运算定律,有的要用到减法的运算性质,如计算5.17-1.8-3.2,就要用到减法的运算性质。练习时,须提醒学生认真审题,思考清楚了再下笔。

  8.关于练习十八中一些习题的说明和教学建议。

  第2题,是应用加法运算定律进行简算的练习。练习时,应让学生写出简算步骤,并说明理由。如,计算“1.29+3.7+0.71+6.3”,其过程如下:

  1.29+3.7+0.71+6.3

  =(1.29+0.71)+(3.7+6.3)(加法交换律和结合律)

  =2+10

  =12

  第3题,是培养学生自觉应用运算定律或运算性质进行简算的练习。练习时,要求学生按序如下操作:①认真审题,根据题中数据特点作出判断,看看能否简算;②若能简算,则想清楚是利用加法的运算定律还是利用减法的运算性质进行简算;③写出简算过程。

  第4、5题,是加法运算定律在解决实际问题中的应用。

  第4题的练习背景和计算方法是例题4的继续。练习时应注意两点:①表中最后一栏“可能的总成绩”表示的意思应让学生自己解释。在明确所求问题的情况下再进行计算;②由于本题中所有小数的整数部分都相同,可提示学生根据数据特点综合应用多种方法进行简算。

  第5题,练习的素材来自生活中常用的购物发票。通过模拟售货员计算购物的总价和交易找零的余款,使学生学会看懂发票的内容,理解发票的作用,提高生活适应能力。练习时,先让学生想一想发票中的方框里要填什么,怎样列式,然后再动手做。做完后再用计算器检验。

  第7、8题,是培养学生“能从现实生活中发现并提出简单的数学问题”的练习。第7题以我国20年来(1978~1998年)城镇及农村人均居住面积的变化为素材,引发学生提出相关的数学问题。在解决这些简单的问题中,教师一方面应引导学生充分应用已有知识进行计算,体现算法的多样化,另一方面又应为后续学习小数的乘除法做好准备。如,当学生提出的问题是“1998年城镇人均居住面积是1978年的几倍”时,学生的解法可能有如下几种:

  (1)9.3÷3.6≈2.5(多数学生不会笔算,只能用计算器算。)

  (2)3.6+3.6=7.2(1998年城镇人均居住面积大约是1978的2倍多一些)

  (3)9.3-(3.6+3.6)=2.1(大约是2.5倍)

  对于上述第(1)种解法,可引导学生思考:除数是小数的除法能否变成除数是整数的除法进行计算呢?给学生充分的时间和空间进行合作探讨,为后续学习做好铺垫。

  第8题,开阔了学生的视野,使学生通过计算了解到关于世界人口情况方面的信息。练习时,可充分利用丰富的网上资源,让学生知道地球最多能养活多少人口,从而体会控制人口增长是人类生存的一个重大策略。

  第9题,是例1的继续。通过计算三个国家运动员5轮跳水的总成绩,进一步促进学生养成简算的良好习惯,使学生进一步体会运算定律在解决实际问题中确实有着广泛的作用。练习时,可采用比赛的方式,看看谁算得又对又快,真正掌握“对、快”的一般方法。

  (四)参考教案

  课题:整数运算定律推广到小数

  教学内容:教科书104页例4及“做一做”、练习十八第1~3题、第7题。

  教学目标:

  1.通过有限个例证使学生理解整数的运算定律在小数运算中同样适用。

  2.能根据数据特点正确应用加法的运算定律进行简便运算。

  教具、学具准备:把练习十八第4题制成课件。

  教学过程:

  一、情境导入

  课件显示育才小学春季运动会的场景,伴随声音响起:下一个项目是四年级组男子4×50米接力赛,请四年级各班做好准备。画面分别出示四年级4个班运动员50米成绩的情况表:(练习十八第4题,将(1)班与(4)班的成绩对换了。)

  提问:根据这张表提供的信息,请你猜一猜,哪个班可能得冠军?四(1)班可能得第几呢?

  二、经历用加法运算定律进行简算的过程,理解加法运算定律在小数运算中仍然适用

  1.在交流中感受算法的多样化。

  师:“请你用自己的方法先算一算四(1)班的总成绩,看谁算得又对又快。”

  每个学生自主计算,教师巡视,及时发现学生中的不同算法。在多数学生都完成的情况下,请不同算法的学生上台写出自己的计算过程(或用实物投影仪展示不同算法的计算过程),并说明理由。学生的算法可能有以下三种:

  ①8.48+8.54+8.52+8.46

  =17.02+8.52+8.46

  =25.54+8.46

  =34(秒)

  ②8.48+8.54+8.52+8.46

  =(8.48+8.52)+(8.54+8.46)

  =17+17

  =34(秒)

  ③8.48+8.54+8.52+8.46

  =8×4+(0.48+0.52)+(0.54+0.46)

  =32+1+1

  =34(秒)

  2.在对比中感知较优的算法。

  师:上述三种算法中,你认为哪一种较优?为什么?

  引导学生先自己思考,自言自语或轻声说出较优算法的理由,然后在班上交流。让多数学生在交流中感受较优算法的依据有二:①应用了加法的运算定律;②根据数据特点将加法变成乘法。

  3.推出加法运算定律在小数运算中同样适用。

  师:你能用简便方法算出四(2)、四(3)、四(4)班的总成绩吗?算完后,用计算器验证你的结果,并预测冠军是哪个班,四(1)班可能得第几。

  (1)要求每位学生先用较优的方法写出简算过程,并说明理由。然后集体反馈:

  四(2)班:

  8.40+8.56+8.61+8.39

  =8.40+8.56+(8.61+8.39)或=8×4+0.40+0.56+(0.61+0.39)

  =8.40+8.56+17 =32+0.40+0.56+1

  =33.96 =33.96

  四(3)班、四(4)班成绩分别是34?06秒、34?17秒(过程略)。

  (2)全班学生用计算器验证上述结果。验证后将4个小数排队:

  33.96<34<34.06<34.17,估测出冠军可能是四(2)班,四(1)班可能是第二名。

  (3)师:“通过上面4次简便计算,你认为加法运算定律在小数运算中适用吗?你能否再举1~2个例子说明。”

  学生举例说明。请1~2名同学将所举例子写在黑板上,全班交流、评判。通过多个有限的简算实例,帮助学生合情推出“加法运算定律在小数运算中仍然适用”。

  (4)小结:请学生翻开教科书104页,说明例4就是今天学习的内容。然后引导小结,请学生默读并理解例4下面的一段话:“整数的运算定律在小数运算中同样适用。”

  三、用加法运算定律进行简算

  1. 基本练习。

  自主完成“做一做”第1、2题,要求学生在每一题的后面写上简算的理由,做完后及时反馈。

  2.综合练习。

  (1)用竞赛的方法完成练习十八第1题。对于口算错误较多的学生,应帮助其分析原因,及时更正。

  (2)自主完成练习十八第2、3题(第3题也可以在课外做)。提醒学生看清题目,弄清楚哪两个数合并能凑整,再应用运算定律进行简算。

  (3)自主完成练习十八第7题。本题有两种不同的解题方案,一般学生只需做一种,对学有余力的学生可要求他们写出两种不同的解题方法。

  3.提高练习。

  计算:1+1.2+1.4+1.6+1.8+…+9.6+9.8+10

【小数数学教案】相关文章:

《小数乘小数》数学教案01-05

《小数乘小数》数学教案5篇03-29

认识小数的数学教案02-08

数学教案:小数的意义02-05

数学教案:小数乘法02-20

小数数学教案03-01

小数的性质及比较大小数学教案(精选13篇)03-22

小数混合运算数学教案02-07

数学教案:小数的意义15篇02-05

数学教案:小数的意义(15篇)02-05