现在位置:范文先生网>教案大全>数学教案>数学小数的性质教案

数学小数的性质教案

时间:2023-03-04 12:12:33 数学教案 我要投稿

数学小数的性质教案

  作为一位杰出的老师,编写教案是必不可少的,教案是教材及大纲与课堂教学的纽带和桥梁。那么教案应该怎么写才合适呢?以下是小编为大家整理的数学小数的性质教案,希望能够帮助到大家。

数学小数的性质教案

数学小数的性质教案1

  [课程标准要求]

  课标对小数的性质这部分内容指出引导学生通过动手、观察、经历自主发现小数的性质的过程,并总结概括出小数的性质。自主发现是行为动词,动手、观察是行为条件,行为程度是指学生发现小数的性质,并总结概括出小数的性质。

  [学情分析]

  本课学习内容,看似容易,但理解起来有点难度。因此学生将在教师设计的量一量、说一说、比一比、涂一涂等活动中开展学习活动。通过合作交流、观察、总结发现小数的性质,并应用小数的性质化简和改写指定位数的小数。

  [学习目标]

  1、学生以小组合作为单位,通过动手操作、观察、比较、交流、归纳概述出小数的性质。

  2、运用小数的性质能正确地化简、改写小数。

  教学重点理解掌握小数的性质。

  教学难点

  探索发现并概括出小数性质的过程。

  [评价任务]

  通过练习和例3化简例4改写小数检验目标1、2的教学完成情况

  [资源与建议]

  1、教材分析:这部分内容是在学生学习了分数、小数的初步认识的基础上,进一步理解了小数的意义,认识了小数的计数单位,会熟练地读、写小数后教学的,本课的知识点不多,但学生理解起来有点难度,因此教材设计了让学生自主探究的学习内容,教材先通过例1和例2教学小数的性质,即让学生通过比较0.1米、0.10米、0.100米的大小,比较0.3和0.30的大小,引导学生归纳出小数的性质。然后,又安排例3和例4对小数的性质加以应用。运用一正一反两个例题,即一个是去掉小数末尾的“0‘把小数化简,一个是在小数末尾添上”0“把小数改写成指定位数的小数,来使学生学会小数性质的应用。学好这部分内容是为今后学习小数的四则运算打基础的。

  2、教具:课件

  学具:米尺,方格图,殊为顺序表

  授课对象:四四班学生

  授课地点:考务办公室

  3、本课的学习按以下流程进行

  4、本节课的重点是理解小数性质的含义,难点小数性质归纳的过程.突破方法:让学生在大量感性体验的基础上,自己试着归纳总结。

  [学习过程]

  一、创设情境,引导探索

  1、谈话激趣

  昨天因为买冰激淋的事难住了我女儿,大家来帮帮她好吗?同一种冰激凌金阳光超市标价2.5元,家家乐超市标价是2.50元。那家便宜些呢?2.5元是多少钱?2.50元呢?它们什么关系?(相等)(结合学生的回答板书)建议我女儿去那家买?(都行)通过比钱数我们知道了2.5等于2.50请观察这两个小数,2.5是怎样变成了2.50的?(在2.5的末尾添上0)

  3、为什么在2.5元的末尾添个0大小不变呢?究竟可以添几个零呢?是不是什么数末尾添零大小都不变呢?请看老师这里有一个小数0.1我在它的末尾添一个零,它的大小变吗?添两个零呢?(不变)我们想个什么办法验证一下?(加个单位)加个米好吗?

  二、合作探究,探索新知

  (一)学生量出0.1米0.10米0.100米纸条的长度,通过比较发现它们长度相等。

  下面我们以小组为单位来试一试,请看合作要求:

  出示例1比较0.1米0.10米0.100米的大小。

  要求:1、组长分工分别量出0.1米、 0.10米、0.100米纸条的长度。

  2、把量出的0.1米、 0.10米、0.100米纸条的长度放在一起比一比看你们有什么发现?

  (合作并比较)

  0.1米是多长?(1分米)你是怎么想的?0.10米呢?(10厘米)你是怎么想的?0.100米呢?(100毫米)你是怎么想的?

  汇报交流

  生:我量的是0.1米。0.1米是十分之一米,也就是1分米。我量出1分米长的纸条就是量出了0.1米长的纸条。

  生:我量的是0.10米。0.10米是10个百分之一米,也就是10厘米。我量出10厘米长的纸条就是量出了0.10米长的纸条.

  生:我量的是0.100米。0.100米是100个千分之一米,也就是100毫米。我量出100毫米长的纸条就是量出了0.100米长的纸条

  生:我们发现1分米、10厘米、和100毫米的纸条都一样长。

  师小结(看课件)因为1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。

  同学们我们通过小组合作量0.1米、 0.10米、0.100米的长,得出0.1米=0.10米=0.100米。如果老师再给你一组小数你也能想办法比较它们的大小吗?

  (二)学生通过在正方形纸上涂0.3和0.30比较发现它们大小相等。

  出示例2:比较0.3与0.30的大小

  师:你认为这两个数的大小怎样?(一样)想一下你可以用什么办法来比较这两个数的大小呢?老师给同学们准备了两个大小一样的正方形。请同桌两人合作利用它们试一试

  合作要求;

  1、两人分工分别在同样大小的正方形纸上涂出0.3和0.30。并互相说一说你是怎么想的?

  2、把涂出的0.3和0.30的正方形纸放在一起比一比看你们有什么发现?

  汇报:

  (1)我涂的是0.3,它是把1个正方形平均分成10份,我涂3份,0.3就是3个十分之一.

  (2)我涂的是0.30,它是把1个正方形平均分成100份,我涂30份,0.30就是30个百分之一.也就是3个十分之一.

  (3)我的发现是0.3等于0.30

  师:通过涂小数0.3和0.30涂出的什么相同?什么不同?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变。)从中你发现了什么?(0.3与0.30相等.)

  (三)引导观察,得出小数的性质

  指2.5元=2.50元;0.1米=0.10米=0.100米;0.3=0.30引导学生观察:我们来看这几组等式,从左往右观察2.50元同2.5元相比;0.10米同0.1米相比0.30同0.3相比。小数有什么变化?

  生:我发现小数的最后面加了0。生:小数后面多了一个0(哪儿多个0呢?)那小数大小呢?

  生:没有变化。0.100米同0.1米相比有什么变化?小数的大小呢?

  通过以上观察你发现了什么?也就是板书:小数的末尾依次添上”0“

  学生归纳:在小数的末尾添上”0“,小数的大小不变。

  从右往左观察,2.5元同2.50元相比;0.10米同0.100米相比;0.3同0.30相比;0.1米同0.100米比小数又有什么变化呢?

  生:小数后面依次少了一个0生:小数的末尾,板书:去掉”0“那小数的大小呢?生:没有变化。通过观察你又发现了什么?生:在小数的末尾去掉0,小数的大小不变

  师:综合刚才的观察,你发现了什么?

  师板书:小数的末尾添上0或去掉0,小数的大小不变。这就是小数的性质。

  生齐读一遍.板书课题:小数的性质

  (四)进一步探究,加深感知

  师:无论添0还是去0都是在哪儿添或去才能使小数的大小不变呢?(小数的末尾)在整数的末尾添0去0数的大小变吗?(变)现在你知道为什么在2.5元的末尾添一个0仍然和2.5元相等吗?(2.5是小数)在1的末尾添上0它的大小变不变呢?(变)为什么?(因为1是整数)整数有这个性质吗?(没有)在2.5这个小数5的前面添上0它的大小变吗?(变)为什么?(不是小数的末尾)哪儿才是小数的末尾?

  注意:小数的性质是在”小数“的”末尾“添上0或去掉0,小数的大小不变。你认为小数的性质里哪些词很重要?(末尾)

  齐读一边小数的性质.

  根据小数的性质小数的末尾是可以添上”0“或去掉”0“的,并且小数的大小不变。请同学们来看。

  练习

  不改变数的大小,下面数中的哪些”0“可以去掉,哪些”0“不能去掉?为什么?先来看3.90米,(3.90 500 20.20问为什么?)

  3.90米,0.30元,500米,1.80元

  0.70米,0.04元,600千克,20.20米

  三、联系生活,灵活运用

  1.教师结合板书内容讲解性质的运用。

  同学们像3.90米、0.30元等这些数根据小数的`性质去掉它们末尾的0,小数的大小不变。根据小数的性质去掉小数末尾的0也就是把小数进行了化简。你能化简下面小数吗?

  化简下面各小数:

  例3 0.70 105.0900

  小数里的其他零可以去掉吗?(不能)

  一般计算时,遇到小数末尾有0,都要化简。来看下面这些数化简后分别是多少?

  练习

  (2)同学们根据小数的性质去掉小数末尾的0就把小数进行了化简。有时根据需要,我们还要根据小数的性质在小数的末尾添上0;把小数改写成指定位数的小数。

  出示:例4不改变数的大小,把0.2、4.08改写成小数部分是三位的小数,怎样改写?

  把3改写成小数部分是三位的小数,怎样改写?(想一想超市里2元的商品标价时还怎么标:2.00元)

  提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上”0“。能不能在小数中间添零?不能,要使小数的大小不变只能在小数的末尾添”0“

  请把这几个数改写成三位小数。

  练习

  应用小数的性质我们可以化简一个小数还可以对一个小数进行改写。请同桌两人讨论一下应用小数的性质时,要注意什么?

  同桌讨论:应用小数的性质时,要注意什么?(无论添0还是去0都是在小数末尾)

  请看这三个数0.70 4.08 0.310 0.20去掉0,数的大小怎样?4.08去掉0,会怎么样?0.310可以添上0吗?

  四、全课总结

  今天我们学习了什么内容?什么是小数的性质?小数的性质有什么用?应用小数的性质时,要注意什么?2.5的末尾可以添上多少个”0“呢?

  五、看课本

  我们今天学的内容在课本第58、59页,请把课本看一下把该画的内容画下来。

  六、多层练习,巩固深化

  (一)我是小法官(打”√“,错的打”ד)

  1、把0.50 0.0600的小数点后面的”0“去掉,小数的大小不变。()

  2、在5.3的末尾添上三个”0“,它的大小不变。()

  3、一个数末尾添上”0“或者去掉”0“,大小不变。()

  (二)把相等的数连起来。

  2.70 4.400

  31.0100 0.005

  72.060 2.07

  0.0050 31.01

  4.40 72.60

  (三)给下面的物品加上标签(以元作单位,用两位小数表示)。

  水杯3元2角

  铅笔6角

  板书设计:

  小数的性质

  2.5元=2.50元

  1分米=10厘米=100毫米

  0.1米=0.10米=0.100米

  0.3=0.30

  小数的末尾添上”0“或去掉”0“,小数的大小不变。

数学小数的性质教案2

  小数的性质是小数四则运算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添上一个或几个“0”,或者把整数改写成小数的形式。在教学设计中,我采用让学生合作探究的形式,学生通过动手、动口、动脑,联系生活与实践来学习数学,经过教学实践,取得良好的效果。具体教学如下:

  一、创设开放式问题情境,激发兴趣,让学生成为发现者。

  教育心理学认为:学生的世界有一种强烈的要求——自己是探索者、发现者。为探究新知,我创设的认识冲突,目的在于迎合学生“好奇”、“好胜”的心理需求,把学生引入“未知—已知—未知—已知”的思维境界,所以在新课的导入,我联系生活实际,让学生感知小数的性质在生活中的运用。

  上课开始,我对学生说:“同学们,前几天,老师去超市买毛巾和手套。发现了一个奇怪的现象:第一个超市毛巾、手套的标价分别是6.5元、8元;第二个超市毛巾、手套的标价分别6.50元,8.00元,你能告诉老师该买哪个超市的毛巾和手套吗?既然两个超市的毛巾和手套价格一样,为什么写法却不一样呢?”通过这样设疑,让学生发现了问题,激发了学生强烈的研究兴趣。这样既培养了学生的创造性思维,又为他们创设了一个主动探索和追求成功的意境,体现数学自身的乐趣。

  二、开放合作式教学过程,主体主动参与,让学生成为研究者。

  开放式课堂教学的核心是使学生成为学习的主人,让他们主动参与到知识的'形成过程中去,自主合作学习,体验研究与成功的乐趣。为此,我设计三个层次:第一层次先请全班学生用手势比划一个新生婴儿的身长?再让学生猜一猜哪位医生说得对?

  第一位医生说:“婴儿身长0.5米。”

  第二位医生说:“婴儿身长0.50米。”

  第三位医生说:“婴儿身长0.500米。”

  最后让学生拿出示先准备的米尺小组合作讨论、验证。

  学生在上述讨论、观察、感知、验证的基础上,初步了解小数的数位增加了,但小数的大小却没有变。

  第二层次:每位学生出示先准备的两个大小一样的正方形,分别涂出它的0.3和0.30,从中你发现了什么?

  学生通过动手实践,发现了0.3=0.30,感受到了成功的喜悦后,我继续引导学生:0.3=0.30从左往右观察你发现了什么?从右往左观察你发现了什么?你能把这两个规律合成一句话吗?

  第三层次:为了使学生更好地理解,运用小数的性质,我设计了两个基础练习:一是有关小数性质概念的判断题;二是思考一些具体的数末尾的“0”能否去掉。

  这三个层次的教学,我为学生了一个思考与合作,交流与创新的空间,充分调动了学生的积极性,让学生感受到学习数学的乐趣。

  三、着眼知识的应用过程,完善知识的形成过程。

  学生经过实践得到了理论的认识,还必须回到实践中去。在发生、发展中认识真理,在应用过程中检验和发展真理。故此,我让学生带着思考题自学小数性质的作用,并解决课前提出的问题,完成知识的形成过程。

  四、组织形式多样的练习,让学生享受数学思维的快乐。

  围绕小数性质的内容,我组织多种形式的练习加强学生对小数性质的理解运用。最后,我让学生玩一个游戏:每位学生手中都发有一张卡片,卡片上写有不同位数的小数;老师宣读数,持有与宣读的数相等的卡片数的同学们互为朋友,一同去操场活动。

  通过离场的游戏,我让学生在积极思维的状态中,结束新课,让每一个学生学习到不同的数学,享受到不同的成功。

  这一节课,学生在一系列探究活动中,学习兴趣浓厚,参与面广,理解和掌握了小数的性质,并会应用小数的性质解决一些问题。让学生通过质疑、讨论、猜测、观察、实践等活动感受到知识的内在联系,经历了“做”数学的过程,体验了数学发现的乐趣和艰辛,获得了积极良好的情感体验,并获得从事数学探究活动的经验。

数学小数的性质教案3

  教学内容:

  四年级下册教材第38、39页的内容及练习十第1、2、3、4题。

  教学目的:

  1.引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

  2.培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力.

  3.培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点.

  教学重点:

  让学生理解并掌握小数的性质.

  教学难点:

  能应用小数的性质解决实际问题.

  教学步骤:

  一、创设情境,导入新课。

  创设情境:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店里一种雪糕标价是2.5元,右边一家则是2.50元,那你们去买的时候会选择哪一家呢?为什么?

  为什么2.5元末尾添个0价钱不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

  二、出示课题,提出目标。

  1.知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

  2.培养动手操作能力以及观察、比较、抽象和归纳概括的能力.

  3.培养初步的数学意识和数学思想,感悟到数学知识的内在联系.

  三、自学尝试,探究新知。

  1.出示尝试题

  (1)1、10、100这三个数相等吗?你能想办法使它们相等吗?

  (2)你能把1分米、10厘米、100毫米改用“米”作单位表示吗?

  (3)改写成用米作单位表示后,实际长度有没有变化?说明什么?

  (4)“0.1米= 0.10米=0.100米”这个等式从左往右看,小数末尾有什么变化?小数大小有什么变化?从右往左看又怎样呢?你发现了什么规律?

  2.学生自学课本38页后尝试练习并讨论。(5分钟后全班交流)。

  3.根据自学情况引导讲解。

  四、拓展练习,验证结论。

  为了验证我们的这个结论,我们再来做一个实验。

  1.出示做一做:比较0.30与0.3的大小

  你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

  2.想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作,想的办法越多越好)

  3.在两个大小一样的正方形里涂色比较。

  (1)左图把1个正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?

  (2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?

  (3)小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)

  概括总结:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质。

  过度:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简。

  五、应用新知,尝试练习。

  (1)出示例3:把0.70和105.0900化简.

  例4:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的`小数。

  (2)学生自学课本后讨论交流,尝试练习。

  (3)引导探究:哪些“0”可以去掉,哪些“0”不能去掉?

  105.0900中“9”前面的“0”为什么不能去掉?

  “3”的后面不加小数点行吗?为什么?

  (4)同桌讨论:应用小数的性质时,要注意什么?

  六、巩固新知,当堂检测。

  1.下面的数,哪些“0”可以去掉,哪些“0”不能去掉?

  3.90米0.30元500米1.80元0.70米0.04元600千克20.20米

  2.下面的数如果末尾添“0”,哪些数的大小不变,哪些数的大小有变化?

  3.418   0.06   700   3.0   908   104.03   150   10.01   42.00

  3.化简下面的小数.

  0.40   1.850   2.900   0.080   12.000

  4.不改变数的大小,把下面各小数改写成小数部分是三位的小数.

  0.9   30.04   5.4   8.18   14

  5.判断.

  5.00元=5元( ) 7元=0.7元( ) 8米=8.00米( )

  2.04吨=2.4吨( ) 4.5千克=4.500千克( ) 0.60升=0.6升( )

  6.用元作单位,把下面的价钱写成小数部分是两位的小数。

  3元2角、6角、8元、1元零3分

数学小数的性质教案4

  教学目标:

  1、初步理解小数的基本性质,并应用性质化简和改写小数。

  2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。

  3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。

  教学重点:让学生理解并掌握小数的性质。

  教学难点:能应用小数的性质解决实际问题.

  教学过程:

  (一)、创设情境,引导探索

  1师:夏天的天气非常炎热,孩子们你们爱吃雪糕吗?老师对学校附近雪糕的价格做了一个小调查,你们想了解一下吗?老师了解到校门口左边的商店雪糕的价格是0.5元,右边一家则是0.50元,那你们去买的时候会选择哪一家呢?为什么?

  师:为什么0.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来学习小数的性质。(板书课题:小数的性质)

  二、探究新知、课中释疑

  1.教学例1

  比较0.1m 0.10m 0.100m的大小

  师:想一想括号里填上什么单位,才能使等式成立?

  1( )=10( )=100( )

  生汇报(重点讲解:1分米=10厘米=100毫米)

  你能把它们改写成用米做单位的'小数的形式吗?

  根据学生回答归纳演示: 1分米是1/10米,写成0.1米

  10厘米是10个1/100米,写成0.10米

  100毫米是100个1/1000米,写成0.100米

  并板书:01米 0.10米 0.100米

  那0.1米、0.10米、0.100米之间大小有什么关系呢?

  3)指导看黑板:

  1分米 = 10厘米 = 100毫米

  0.1米 = 0.10米 = 0.100米

  4)观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

  5)根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”,小数的大小不变。

  是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。

  2.教学例2

  比较0.3和0.30的大小

  1)师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

  2)师:想一下你用什么办法来比较这两个数的大小呢?(利用学具,小组讨论合作)

  3)在两个大小一样的正方形里涂色比较。

  汇报结论:0.3=0.30

  4)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)

  5)师:同学们,你们真了不起,通过动手操作验证得出了这个性质,这就是我们今天学习的内容-小数的性质(课件出示)

  小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  6)认真读这句话,你认为那些字是非常关键或者必不可少的?为什么?

  生:末尾,因为中间的0是不能随意去掉的,去掉后就改变了小数的大小。

  3.小数的化简

  师:根据小数的性质,当遇到小数末尾有0时,一般可以去掉末尾的0,这就是小数的化简,你想试试看看吗?(课件出示例3)

  把0.70和105.0900化简.

  105.0900中“9”前面的“0”为什么不能去掉?

  (0.70=0.7;105.0900=105.09)

  教师强调:末尾和后面不同。

  师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)

  4.小数的应用

  1)师:利用小数的性质不仅可以化简小数,有时根据需要,可以在小数的末尾添上0;还可以在整数的个位右下角点上小数点,再添上0,把整数改写成小数的形式,这就是小数的改写,下面我们学习例4

  2)不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数.学生独立完成,全班共同订正。

  (0.2=0.200;4.08=4.080;3=3.000)

  思考:“3”的后面不加小数点行吗?为什么?

  3)师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)

  三、巩固深化,拓展思维

  师:同学们的表现真棒,为了加大难度,老师设计了闯关游戏,你们有信心接受老师的挑战吗?

  挑战一:判断

  挑战二:连线

  挑战三:智力大比拼

  四、课堂小结

  这节课你有哪些收获?

  五、布置作业.

  完成练习十1-3题。

  板书设计:

  小数的性质

  0.1米 = 0.10米 = 0.100米

  0.3= 0.30

  小数的性质:小数的末尾添上0或者去掉0,小数的大小不变 。

数学小数的性质教案5

  教学目标

  1、通过教学、实践使学生自己发现并掌握小数的性质。

  2、培养学生的抽象概括能力,动手能力。

  3、培养学生善于探索的精神。

  复习引入

  1、准备题(1)1元=()角=()分

  (2)在下面()里填适当的小数。

  3角=()元

  30分=()元

  100毫米=()米

  (3)0.4里面有()个0.1

  0.40里面有()个0.01

  2、引入:今天继续研究小数。

  体验发现

  1、课件出示例4:

  (1)读题

  (2)分组准备,讨论。

  (3)说出结果。0.3元=0.30元

  (4)为什么?

  学生阐明自己的观点。

  A、0.3元和0.30元都是3角,所以0.3元=0.30元。

  B、画图理解。

  C、从小数的意义解释。0.3是3个0.1,也就是30个0.01,0.30也是30个0.01,所以0.3=0.30。

  (5)这两个相等的小数,小数部分有什么不同?

  提问:小数部分末尾的0添上或去掉,什么变了,什么没变?

  (小数变了,小数的'大小没有变)。

  2、课本试一试:先看图填一填,再比较0.100米、0.10米和0.1米的大小。

  (1)学生自主填空。

  (2)交流自己的看法,并阐明观点。

  (3)汇报自己的结果。

  由1分米=10厘米=100毫米,得到0.1=0.10=0.100。

  (4)观察板书:

  你得到什么结论?学生自由发言。

  总结:小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。

  理解内涵

  1、课件出示例5:

  学生自主填空。

  提问:这些小数中,哪些0可以去掉?指名回答。

  (着力于对小数“末尾”的理解。)

  结论:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

  学生尝试做“练一练”第1题。独立完成,集体订正。

  2、试一试。

  不改变数的大小,把下面各数改写成三位小数。

  0.4=()3.16=()10=()

  学生自主改写。

  交流:(1)改写这三个数时应用了什么知识?

  (2)为什么给三个数添上的“0”的个数不同?

  (3)“10”是整数,怎样在小数的末尾添上“0”?

  给学生充分的交流时间,进一步体验小数性质的应用。

  3、练一练第2题。

  学生自主比较,得到结果,并运用学过的小数的意义和性质进行阐明。

  巩固练习

  练习六的1—5题。

  第1、2两题巩固并深化对小数性质的理解,突出去掉或添上“0”必须是小数末尾的0。

  第3、4、5题都是应用小数的性质改写小数,其中有去掉末尾“0”化简小数,也有在末尾添“0”增加小数部分的位数;有改写小数,还有改写商品的单价。

  这些练习题使学生在应用中掌握小数的性质。

  教学后记

  让学生自己发现,小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。发现小数的性质并对小数的性质作出抽象概括。

数学小数的性质教案6

  【教学内容】

  人教课标版小学四年级下册第58、59页的内容:小数的性质

  【学情分析】

  小数的性质是义务教育课程标准实验教科书四年级下册第58、59页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。

  【教学目标】

  知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。

  过程与方法:培养学生观察、比较、抽象和归纳概括的能力。

  情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。

  【教学重难点】

  重点:理解和掌握小数性质的含义。

  难点:小数基本性质归纳的过程。

  【教法与学法】

  1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

  2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。

  3、培养学生共同合作,相互交流的学习方法。

  【教学准备】

  教师:自作课件

  学生:收集的标签彩笔直尺和纸条

  【教学过程】

  一、创设情境,导入新课

  1、师:课前老师让同学们回忆生活,观察商品的标价签,并记录1—2种商品的价格,请谁来汇报一下?

  生:2、00元,师:是多少钱呢?生:2元。

  生:3、50元。师:是多少钱?生:3元5角

  师:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的`商店三色标价是2、5元,右边一家则是2、50元,那你们去买的时候会选择哪一家呢?为什么?

  师:为什么2、5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

  板书课题:小数的性质

  设计意图:联系生活实际,达到知识的迁移。

  二、提出问题、探索新知

  1、出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0、1米,0、10米和0、100米长的纸条,各打上记号。各小组合作共同完成。

  老师巡视并引导学生观察米尺图

  2、各小组汇报:结合学生回答,教师板书:

  0、1米是1/10米,就是1分米

  0、10米是10/100米,就是10厘米

  0、100米就是100/1000米,就是100毫米

  因为1分米=10厘米=100毫米

  所以0、l米=0、10米=0、100米

  教师小结:这三个数量虽然各不相同,但表示大小相等、

  设计意图:学生根据小数的意义,从“0、l米、0、10米、0、100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。

  3、观察比较:教师指着“0、l米=0、10米=0、100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

  根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。

  教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简、小数中间的0不能去掉、

  师质疑:那整数有这个性质吗?

  学生分小组讨论,并举例证明得出结论。

  (师强调出小数与整数的区别)

  设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。

  4、练一练:

  (1)多媒体出示58页做一做:比较0、30与0、3的大小

  师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

  (2)师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作)

  (3)在两个大小一样的正方形里涂色比较。

  汇报结论:0、3=0、30

  师质疑:小数由0、3到0、30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0、3=0、30。)

  设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。

  5、小数性质应用、【继续演示课件“小数的性质”】

  (1)教学例3:把0、70和105、0900化简、

  思考:哪些“0”可以去掉,哪些“0”不能去掉?

  105、0900中“9”前面的“0”为什么不能去掉?

  (0、70=0、7;105、0900=105、09)

  教师强调:末尾和后面不同。

  (2)教学例4:不改变数的大小,把0、2、4、08、3改写成小数部分是三位的小数、学生独立完成,全班共同订正。

  (0、2=0、200;4、08=4、080;3=3、000)

  思考:“3”的后面不加小数点行吗?为什么?

  (3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)

  三、巩固深化,拓展思维

  1、完成59页的做一做。

  重点指导学生说一说为什么有些“0”不能去掉和

  说一说为什么有些数的末尾添上“0”,原数就发生了变化、

  2、挑战自我。

  (1)谁能只动三笔,让下面三个数之间划上等号?

  6020 = 602 =60200

  (2)每人写几个和3、200相等的数、

  设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。

  四、全课小结

  1、这节课你有哪些收获?

  2、你对自己或同学有什么评价?

  五、布置作业、

  完成练习十1—3题。

  板书设计:

  小数的性质

  例1 1分米= 10厘米= 100毫米

  从右往左从左往右

  0、1米= 0、10米= 0、100米

  小数的末尾添上0或者去掉0,小数的大小不变。

  0、3= 0、30 =0、300

  例2化简小数。

  0、70= 0、7 105、0900=105、09

  例3不改变数的大小,把下面各数写成三位小数。

  0、2=0、200 4、08=4、080 3=3、000

数学小数的性质教案7

  教学目标:

  知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。

  过程与方法:培养学生观察、比较、抽象和归纳概括的能力。

  情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。

  教学重难点:

  重点:理解和掌握小数性质的含义。

  难点:小数基本性质归纳的过程。

  教学过程:

  一、 创设情境,引入新课

  师:同学们,认识这个数么?(出示卡片5)老师会变魔术,我能这个数变大,在它的末尾添上一个“0”,这个5发生了什么变化?

  生:扩大了10倍。

  师:我还能让它变大,现在又发生了什么变化?现在的数和“5”相比,末尾添了几个“0”,它的大小发生了什么变化?

  生:末尾添了2个“0”,扩大了100倍。

  师:那我们能让它变小么?

  生:把末尾的“0”去掉。

  师:现在去掉一个“0”,这个数发生了什么变化?再去掉一个“0”呢?

  生:略。

  师:看来在整数的末尾添上或去掉“0”,整数也随之扩大或缩小。那再看看这个数“0.5”,我在这个小数的末尾添上“0”这个数会变么?

  生:不会变。

  师:那我再添上一个“0”呢?

  生:还是不变。

  师:你是怎么知道的?

  生:略。

  师:所以你认为在小数的末尾添上“0”或去掉“0”小数的大小不变。(板书)这只是你的猜测,所以老师先在后面打上一个问号。刚刚某某同学说的只是一个个例,不具有普遍性,那如果要证明它具有普遍性,该怎么办呢?

  生:验证。

  二、讲授新课

  师:在这老师给你们几点建议。先写出一个小数,在它的末尾添上“0”或者去掉“0”。利用手中的学习材料研究,或者借助已有的知识进行说明,小组合作,证明猜想,并记录在乐学单上。可以证明一组或者几组。小组内交流研究方法后,全班汇报。这些清楚了么?现在我给大家一点时间,开始。

  (生动手操作)

  师:好了,同学们。我发现大家的智慧真了不起,在短短的时间内研究的都很不错。那我们接下来开始汇报,在汇报前老师还有一个要求,一个组在汇报的时候,其他小组认真倾听,听完之后看看你们组研究的方法与他们一不一样,再做补充,在汇报的时候要说明两件事,你们是怎么验证的?你么验证的结果是什么?哪个小组先来汇报?

  (生汇报)

  师:这位同学描述的非常完整,而且通过他们的操作我们更一目了然了,还有哪个小组也是用了正方形纸来验证的,说说你们验证的结论。

  生:略。

  师:有没有哪个小组是借用皮尺来验证的,谁来说一说?

  (生汇报)

  师:老师也准备了一把米尺,我把一米平均分成10份,取了其中2份,是2分米用小数表示也就是0.2米,把一米平均分成100份,取了其中20份,是20厘米用小数表示就是0.20米,再把一米平均分成1000份,取了其中200份,是200毫米用小数表示就是0.200米,它们都表示这段长度,所以0.2=0.20=0.200,结论是在0.2的末尾添上“0”小数的大小不变。

  师:有哪个小组是借用数位顺序表来验证的么?

  (生汇报)

  师:还有哪个小组也来说说你们组研究的结果。

  师:刚才我们借用了教具来验证我们的猜想,有没有哪位同学是借助已有知识来验证的?前面我们已经学过了小数的意义……

  生:略。

  师:我们再来看看开始是的卡片,整数5,5在什么位表示什么?在它的末尾添上一个“0”,5被挤到什么位,表示什么?再添上一个“0”5又被挤到什么位表示什么?5的位置发生了变化么?由于5的位置发生了变化,那你们认为他的.大小会怎么样?

  生:略。

  师:整数是这样,我们再看看小数,这是小数0.5,这时5在什么位表示什么?在0.5的末尾添上“0”,这时5在什么位表示什么?再添上一个“0”这时5在什么位表示什么?

  师:5的位置有没有发生变化,照这样看,无论在0.5的末尾添上多少个0,5的位置不变,小数的大小也不变。

  师:刚才我们举了那么多例子,都是在末尾添0的,从左往右看是单向思维,如果我们从右往左看,你们发现了什么?以这个为例谁来说一说。

  生:略。

  师:你们真棒,如果我们把从左往右和从右往左合成一句话,会是什么?

  生:略。

  师:在小数末尾添上0或去掉0小数的大小不变后面的问号是不是可以去掉了?我们发现的这个规律就是小数的性质,(板书)这是大家共同探究出来的,大家一起齐读一遍。

  三、巩固练习

  师:这是一张购物小票,老师圈出了几个数,你们认为这几个小数当中哪些0是可以去掉的?

  生:略。

  师:1.05中的0可以去掉么?

  生:不能,因为0不在末尾。

  师:那你们认为在小数性质这句话中,哪个词是最重要的?

  生:末尾。

  师:接下来,我们来看这题,你们知道什么是化简么?

  生:略。

  师:把末尾的0去掉,没有改变小数的大小,这样是不是更简单呢?那谁来回答这几题?

  生:略。

  师:其实在不改变小数大小的情况下,我们除了可以化简还可以改写。把小面小数改写成三位小数。

  生:略。

  师:今天我们学习了小数的性质,大家知道了什么?

  生:略

  师:老师根据本节课的内容设计了一幅思维导图,课后请同学们叶发挥自己的想象,根据本节课的内容设计一幅美观,内容详实的思维导图。

  师:好的同学们,今天这节课上到这,下课。

数学小数的性质教案8

  教学目标

  1.使学生对数的整除的有关概念掌握得更加系统、牢固.

  2.进一步弄清各概念之间的联系与区别.

  3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.

  4.掌握分数、小数的基本性质.

  教学重点

  通过对主要概念进行整理和复习,深化理解,形成知识网络.

  教学难点

  弄清概念间的联系和区别,理解易混淆的概念.

  教学步骤

  一、铺垫孕伏.

  教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,

  在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)

  揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.

  二、探究新知.

  (一)建立知识网络.【演示课件“数的整除”】

  1.思考:哪个概念是最基本的概念?并说一说概念的内容.

  反馈练习:

  在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.

  教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?

  教师说明:能除尽的`不一定都能整除,但能整除的一定能除尽.

  2.说出与整除关系最密切的概念,并说一说概念的内容.

  反馈练习:下面的说法对不对,为什么?

  因为15÷5=3,所以15是倍数,5是约数. ( )

  因为4.6÷2=2.3,所以4.6是2的倍数,2是4.6的约数. ( )

  明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.

  3.教师提问:

  由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.

  根据一个数所含约数的个数的不同,还可以得到什么概念?

  互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?

  互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.

  4.讨论互质数与质数之间有什么区别?

  互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.

  5.教师提问:

  如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?

  只有什么数才能做质因数?

  什么叫做分解质因数?

  只有什么数才能分解质因数?

  6.教师提问:

  谁还记得,能被2、5、3整除的数各有什么特征?

  由一个数能不能被2整除,又可以得到什么概念?

  (二)比较方法.

  1.练习:求16和24的最大公约数和最小公倍数.

  2.思考:求最大公约数和最小公倍数有什么联系和区别?

  (三)分数、小数的基本性质.

  1.教师提问:

  分数的基本性质是什么?

  小数的基本性质是什么?

  2.练习.

  (1)想一想,小数点移动位置,小数大小会发生什么变化?

  (2)

  (3)下面这组数有什么特点?它们之间有什么规律?

  0.108 1.08 10.8 108 1080

  三、全课小结.

  这节课我们把数的整除的有关知识进行了整理和复习,进一步弄清了各概念之间的

  联系和区别,并且强化了对知识的运用.

  四、随堂练习

  1.判断下面的说法是不是正确,并说明理由.

  (1)一个数的约数都比这个数的倍数小.

  (2)1是所有自然数的公约数.

  (3)所有的自然数不是质数就是合数.

  (4)所有的自然数不是偶数就是奇数.

  (5)含有约数2的数一定是偶数.

  (6)所有的奇数都是质数,所有的偶数都是合数.

  (7)有公约数1的两个数叫做互质数.

  2.下面的数哪些含有约数2?哪些是3的倍数?哪些能同时被2、3整除?哪些能同时被2、5整除?哪些能同时被3、5整除?哪些能同时被2、3、5整除?

  18 30 45 70 75 84 124 140 420

  3.填空.

  在1到20中,奇数有( );偶数有( );质数有( );合数有( );

  既是质数又是偶数的数是( ).

  4.按要求写出两个互质的数.

  (1)两个数都是质数.

  (2)两个数都是合数.

  (3)一个数是质数,一个数是合数.

  5.说出下面每组数的最大公约数和最小公倍数.

  42和14 36和9

  13和5 6和11

  6.0.75=12÷( )=( ) :12=

  五、布置作业

  1.把下面各数分解质因数.

  24 45 65 84 102 475

  2.求下面每组数的最大公约数和最小公倍数.

  36和48 16、32和24 15、30和90

  六、板书设计

  数的整除分数、小数的基本性质

  数学教案-数的整除 分数、小数的基本性质

数学小数的性质教案9

  教学目标:

  【知识与技能】

  1.通过观察比较,知道小数部分的末尾添上0或去掉0,小数的大小不变。

  2.能运用小数的性质,对小数进行改写和化简。

  【过程与方法】

  1.通过先独立思考,再小组讨论的教学手段,让学生经历自主探索的过程。

  2.用图形面积相等和推算等方法比较小数0.3和0.30的大小,从而让学生自己发现得出小数的性质。

  3.引导学生初步领略解题过程中常用的转化的方法。

  【情感、态度与价值观】

  1.经历验证的过程,培养合理的思维。

  2.培养培养学生发散性思维能力。

  教学重点:

  小数性质的应用。

  教学难点:

  小数性质归纳的过程。

  教学用具准备:

  教具、学具、多媒体设备。

  教学过程设计:

  一、情景引入

  1.

  板书:三个1,判断相等吗?

  接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,问:这三个数相等吗?(不相等)

  你能想办法使它们相等吗?(添上长度单位米、分米、厘米或分米、厘米、毫米)

  1米=10分米=100厘米 1分米=10厘米=100毫米。

  2.(1)你能把它们改用米作单位表示吗?

  0.1米= 0.10米 = 0.100米

  (2) 改写成用米作单位表示后,实际长度有没有变化?(没有变化)说明什么?(三个数量相等)

  3.引入新授:0添在一个数的哪里可以不改变数的大小呢?这节课我们就来研究这一方面的知识。

  [灵活运用学生学过的知识,从中找到三个相等的数量,发现问题,从而揭示课题]

  二、探究新知

  1. 出示例1:比较0.30与0.3的大小。

  (1)你认为这两个数的大小怎样?(让学生先猜一猜)

  (2)可以用什么办法来证明?(给学生独立思考的时间,可以进行小组讨论合作,老师提供两个大小一样的正方形,数射线)

  学生汇报:

  0.3就是

  , 把这个正方形看作整数1,这个正方形平均分成了10份,取这样的三份,就是

  , 0.30就是

  ,把另一个正方形平均分成了100份,取这样的30份,就是

  ,从图形上发现

  =

  ,所以 0.3=0.30。

  推算10个0.01是0.1

  30个0.01是0.3

  所以0.3=0.30

  把0.3和0.30标在数射线上,发现0.3=0.30。

  (3)从比较中中发现了什么?

  (小数部分的末尾(后面)添零,它的大小不变。小数部分的末尾(后面)去掉零,它的大小不变。)

  末尾和后面哪个更好?

  (4)这就是今天我们要学习的小数的性质。(出示课题:小数的.性质)

  板书:小数部分的末尾添上0或去掉0,小数的大小不变。

  2. 利用小数的性质举例。

  [通过先独立思考,再小组讨论的教学手段,用图形面积相等和推算等方法比较小数0.3和0.30的大小,从而让学生自己发现得出小数的性质。]

  三、巩固练习

  1. 根据小数的性质,遇到小数末尾有0的时候,一般可以去掉末尾的0,这过程就是把小数化简。

  利用小数的性质化简下面各小数:

  6.0=( ) 3.500= ( ) 3.340=( )

  这样做的根据是什么?(把小数末尾的0去掉,小数的大小不变)

  2. 判断:不改变小数大小,下面哪些0可以去掉,哪些0不可以去掉?

  0.730 36.070 108.800 10.0

  3. 有时根据需要,利用小数的性质来改写小数。

  不改变大小,把下面各数改写成三位小数

  8.01= 9.8= 6=

  改写小数时你想提醒同学们需要注意什么?

  (1)不改变原数的大小;

  (2)只能在小数的末尾添上0;

  (3)把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添0。

  4. 当小数部分的位数不同时,可以怎么比较小数的大小?

  比较3.14与3.141

  (把3.14改写成3.140,就可以从高位起依次比较每个数位上的数字。01 所以3.143.141)

  比较下面每组中两个小数的大小:

  5.28( )5.2 0.61( )0.612 6.37( )6.375

  [通过一系列练习,使学生明确了小数性质的两大运用:把小数改写和化简。]

  四、课堂小结

  今天我们学习了什么?

  生活中你有没有用到过小数的性质?(价格标签)

数学小数的性质教案10

  学生填完结果并订正

  第二教时

  2、师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作,想的办法越多越好,老师提供两个大小一样的正方形,一张数位顺序表)

  3、生1:在两个大小一样的正方形里涂色比较。

  (2)连线。把相等的数用直线连起来。

  第五教时

  第六教时

  反馈:

  第九教时

  第十教时

  第十二教时

  教学内容:教科书P78~79的内容。

  教学目标:

  1、使学生通过整理和复习,弄清本单元学习了哪些知识,更牢固地掌握小数的意义和性质。

  教学目的:

  教学重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点、数大小变化的规律。

  教学难点:用“四舍五入”法按要求求出小数近似数。

  教学过程:

  一、揭示课题

  这节课我们来复习小数的意义和性质。通过复习进一步理解小数的.意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

  二、复习小数的意义

  1、做整理和复习第1题(

  (1)学生在书上填写,集体订正。说一说这些小数的意义。

  (2)说一说小数的意义是什么?

  问:一位小数、两位小数、三位小数……各表示几分之几的数?

  2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

  (2)填空。

  0.1里面有( )个0.01。 10个0.001是( )。

  10个0.1是( )。 0.1里有( )个0.01。

  三、复习小数的性质和小数的大小比较

  1、练习。

  (1)把下面小数化简。

  4.700 16.0100 8.7100 14.00

  (2)不改变数的大小,把下面的数写成两位小数。

  4.2 13.1 21

  ①学生做,指名板演,集体订正。

  ②问:做题时是根据什么来做的?什么

  (3)、做整理和复习第2题。

  0.1 0.012 0.102 0.12 0.021

  (2)按要求从小到大排列。

  四、复习小数点位置移动引起小数大小变化的规律

  1、做整理和复习第3题。

  (1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

  问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

  (2)学生练习,指名回答。

  2、练习。

  (1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

  (2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

  五、复习求小数的近似数和整数的改写

  1、把下面小数精确到百分位。

  0.834 2.786 3.895

  (1)学生做,指名板演。

  (2)让学生说一说怎样求一个小数的近似数。

  2、(1)把下面各数改写成“万”作单位的数。

  486700 521000

  (2)把下面各数改写成“亿”作单位的数。

  460000000 7189600000

  学生在练习本上做,指名板演,说一说怎样把一个较大数改写

  成“万”或“亿”作单位的数。

  3、把下面各数改写成“万”作单位的数,并保留一位小数。

  67100 209500

  (1)学生在练习本上做,指名板演。

  (2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

  (3)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

  (4学生练习,集体订正。

  (5)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

  了。

  六、全课总结

  这节课复习了什么内容?

  怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

  【作业设计】

  1、0.45表示( )。

  2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

  3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是(

  )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

  4、在○里填“>”、“<”或“=”。

  16.36○16.63 0.36万○3600

  0.97○1.01 0.23亿○2100万

  5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

  10000千克稻谷可出大米多少千克?

数学小数的性质教案11

  教学内容:

  人教版四年级下册数学课本58页例1和做一做,59页例2,例3和做一做以及64页练习十的第

  1.使学生理解什么是小数的性质,1,2,3题。

  教学目标:

  学会运用小数的性质把一些小数化简或进行改写;

  2.培养学生自主提出问题、自主解决问题的能力以及合作精神、实践能力和创新意识;

  3.激发学生对数学的兴趣,引导学生体会数学与生活的联系。

  教学重点:

  掌握小数性质的含义。

  教学难点:

  小数性质归纳的过程。

  教学过程:

  一、导入主题

  1、学校门口的两家文具店,左边一家的三角板套装售价是2.8元,右边一家的三角板套装售价是2.80元,同学们,你们觉得他们的价格比较起来怎么样?你们是怎么样比较的?

  2、为什么2.8元末尾添个0大小不变呢?这是怎么回事呢?这节课我们就来研究这一方面的知识。(板书:小数的性质)

  二、探索性质

  1、教学例1。

  (1)投影出示例1,让学生读题,明确要求。

  (2)启发学生根据小数的意义把0.1米、0.10米、0.100米所表示的长度在米尺上标出来(教师投影米尺图),并用整数表示。如果学生有困难,教师以0.1米为例示范:

  0.1米表示1/10米,也就是1/10米,即1分米,如图:

  关于0.10米、0.100米,让学生独立或讨论完成。

  (3)反馈学生完成情况,并把形成的一致意见投影出示:

  0.10表示10/100米,也就是10/100米,即10厘米,如图:

  0.100米表示100/1000米,也就是100/1000米,即100豪米,如图:

  (4)教师肯定学生的学习活动,并把三幅米尺图投影重叠两次,让学生观察后问:你认为0.1米、0.10米、0.100米的大小关系是怎样的?请把道理讲出来。(组织学生分组讨论)

  教师板书:因为1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米

  (5)引导学生观察等式0.1米=0.10米=0.100米,问:比较这三个小数,你发现了什么?启发学生从左往右、再从右往左观察,初步得出结论:小数的末尾添上0或者去掉0小数的大小不变。(板书)

  2、验证性质

  (1)同学们自己完成58页“做一做”。

  (2)让学生从直观图上比较0.3和0.30的`大小。

  (3)0.3=0.30这个结果说明了什么?

  三、运用性质

  1、教学例2

  (1)教师对学生说明:像把0.70=0.7,去掉小数点末尾的“0”,就可以把小数化简。(板书:化简)

  (2)学生自己完成105.0900=

  (3)学生讨论交流105.0900里的其他的0可以去掉吗?为什么?

  (4)全班交流、强调小数的性质中说的是“小数的末尾的0”。

  (5)完成59页做一做第1题。

  A、学生自己完成。

  B、全班订正答案。

  2、教学例3:

  (1)教师说明:利用小数的性质,根据需要可以"把一个数改写成具有指定小数位数的小数。(板书"改写")

  (2)学生自己完成。

  (3)大家这样做的根据是什么?

  (4)说明任何整数都可以看作小数部分是0的小数。强调把一个整数改写成具有指定小数位数的小数时,不要忘记在个位的右下面点上小数点。

  (5)完成59页做一做第2题。

  A、学生自己完成。

  B、全班订正答案。

  3、在应用小数的性质时,要注意什么问题?

  (1)讨论下面的3个问题:

  A、0.70,去掉0,小数的大小变不变?

  B、4.08去掉0,会怎么样?

  C 、0.31的末尾可以添上0吗?

  (2)全班齐读小数的性质,强调性质中的“在小数的末尾添上0或者去掉0”.

  四、看书质疑。

  学生自己看课本58.59页,提出质疑,大家交流解决。

  五、巩固练习

  1、下面的说法哪个正确,不正确的请举出反例。

  (1)小数点后面添上0或去掉0,小数的大小不变。

  (2)小数的末尾添上0或去掉0,小数的大小不变。

  (3)一个数的末尾添上0或去掉0,这个数的大小不变。

  练后问:你认为在小数性质的表述语中,哪几个词语最重要?(教师在"小数"、"末尾"的下面加上着重号)

  2、做64页练习十第1、2、3题。

  第1题让学生练习后说说哪些位置上的0不能去掉。((1)整数中的0不论何处都不能去掉;(2)小数非末尾的0不能去掉)

  六、全课总结

  1、这节课你有哪些收获?

  2、评价你自己或是某位同学本节课的学习积极性。

数学小数的性质教案12

  教学内容

  教科书第80~81页,练习十六的习题.

  教学目的

  1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别.掌握能被2、5、3整除的数的特征.会分解质因数.会求最大公约数和最小公倍数.

  2.使学生在理解的基础上掌握分数、小数的基本性质.

  教学过程

  一、数的整除

  1.整除的意义.

  教师:想一想,什么叫做整除?指名回答.

  教师进一步强调:整除中说的数是什么数?(整数.)

  商是什么数?(整数.)有没有余数?(没有余数.)

  教师:什么叫做除尽?(两数相除,余数是0.)

  整除和除尽有什么联系和区别?指名回答.教师根据学生的回答,整理出下表:

  被除数 除数 商 余数

  整除 整数 不等于O的整数 整数 O

  除尽 数 不等于O的数 数 O

  教师:可以看出整除是除尽的一种特殊情况.

  2.能被2、5、3整除的数的特征.

  教师:我们已经学过能被2、5、3整除的数的特征,同学们还记得吗?指名说一说.然后提问:

  能被2、5整除的数,在判别方法上有什么共同的地方?(都根据个位数进行判别.)

  能被3整除的数,在判别方法上与能被2、5整除的数有什么不同?气根据各个数位上的数之和进行判别.)

  教师:什么叫做奇数?什么叫做偶数?

  根据什么来判断一个数是奇数还是偶数?

  3.约数和倍数.

  教师:根据整除的概念可以得到约数和倍数的概念.什么叫做约数?什么叫做倍数?指名说一说.(如果a能被b整除,a就叫做b的倍数,b就叫做a的约数.)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:

  能说6是约数,15是倍数吗?应该怎么说?

  教师说明:在研究约数和倍数时,我们所说的数一般只指自然数,不包括0.

  教师:一个数的约数的个数是怎样的?(有限的.)

  其中最小的`约数是什么数?最大的约数是什么数?(1,这个数本身.)

  一个数的倍数的个数是怎样的?(无限的.)

  其中最小的倍数是什么数?(这个数本身.)

  做练习十六的第2题.让学生直接做在书上.教师可以说明做的方法:在含有约数2的数下面写2,在3的倍数下面写3,在能被5整除的数下面写5,然后再进行判断.集体订正.

  4.质数和合数.教师指名说一说质数、合数的概念.可有意识地让学习有困难的学生说,其他同学进行补充.

  教师:怎样判断一个数是质数还是合数?(检查这个数有约数的个数,或查质数表.)指名说一说30以内有哪些质数.

  让学生进行判断:一个自然数如果不是质数,那么一定是合数.学生判断后,教师说明:1既不是质数,也不是合数.

  5.分解质因数.

  指名说一说质因数、分解质因数的含义.

  做练习十六的第5题.学生独立解答,教师巡视,集体订正.

  6.公约数、最大公约数和公倍数、最小公倍数.

  (1)复习概念.

  教师:什么叫做公约数?什么叫做最大公约数?(几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.)怎样求几个数的最大公约数?让学生举例说明.

  什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?让学生举例说明.

  教师:什么样的数叫做互质数?(公约数只有1的两个数叫做互质数.)

  质数和互质数有什么区别?(质数是一个数,只有1和它本身两个约数;互质数是两个数,只有公约数1.)

  两个不同的质数一定互质吗?(两个不同的质数一定互质.)

  互质的两个数一定都是质数吗?(不一定,如4和9互质,4、9都是合数.)

  (2)课堂练习.

  做练习十六的第1题.先让学生独立判断,集体订正时,让学生说一说判断的理由.

  做练习十六的第4题.学生独立解答,教师巡视,集体订正.教师根据前面的教学,整理出教科书第80页的概念联系图.也可以把该图变化成如下形式.

数学小数的性质教案13

  设计说明

  快乐教育理论认为人类的需要得到满足就是快乐。而快乐常常与兴趣联系在一起,兴趣使人产生钻研、探索、创新的愿望,从而激发快乐。基于此,本节课的教学设计突出以下几点:

  1.创设情境,激发兴趣。

  通过创设一个完整的故事情境,激发学生的学习兴趣,继而引出本节课所要探究的问题——小数的末尾添上“0”或去掉“0”,大小有变化吗?鼓励学生大胆猜想,并用多种方法进行验证,引导学生自主探究,培养学生发现问题、分析问题、解决问题的能力。

  2.关注学生个体,自主获取新知。

  《新课程标准》强调:学生是学习的主体。本节课的教学充分发挥学生的主体作用,让学生通过对比,自己得出0.1 m=0.10 m=0.100 m,并通过观察归纳出小数的.性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。引导学生自学例3、例4,养成自主学习的良好习惯。

  3.巩固应用,练习形式多样。

  练习是巩固新知、形成能力、发展思维的重要手段。基于以上认识,本节课的练习题设置形式多样,梯度合理,既有基础练习,又有生活中的运用,使学生在轻松愉快的氛围中既巩固了基础知识,又深化了所学知识。

  课前准备

  教师准备 多媒体课件 正方形纸片 数位顺序表

  学生准备 水彩笔 米尺

  教学过程

  ⊙创设情境,课前质疑

  师:小明的爸爸最近开了一家文化用品商店,想请大家帮忙设计价签,大家愿意帮这个忙吗?(出示中性笔和笔袋)每支中性笔2元5角,每个笔袋8元,价签该怎么写呢?(出示几种写法:2.5元、2.50元、8元、8.00元,引起争论)

  师:我们在商店里看到的价签一般是这样的:2.50元,8.00元。2.5元和2.50元都表示2元5角吗?8元和8.00元相等吗?

  生:2.5元和2.50元都表示2元5角,8元和8.00元相等。

  师:为什么会相等呢?上完今天这节课你就明白了。(板书课题:小数的性质)

  设计意图:给学生提供熟悉的生活情境,使学生产生亲切感,为构建新的认知结构打开切入口,同时引导学生针对生活化的问题情境做出数学猜想,以此猜想引领全课。

  ⊙探究新知

  1.探究小数的性质。

  (1)在括号里填上合适的单位名称,使等式成立。

  1( )=10( )=100( )

  ①学生先在小组内讨论、交流,然后教师指名汇报。

  预设

  生1:1元=10角=100分。

  生2:1 m=10 dm=100 cm。

  生3:1 dm=10 cm=100 mm。

  ②出示课件,一边讲解一边动画演示。

  因为1 dm=10 cm=100 mm,所以0.1 m=0.10 m=0.100 m。(板书:0.1 m=0.10 m=0.100 m)

  (2)提问:根据0.1 m=0.10 m=0.100 m,你发现了什么?通过小组活动进行探究。(出示课堂活动卡)

数学小数的性质教案14

  课题:比大小(二)

  内容:小数的性质

  课时:1

  教学准备:

  教学目标:1、通过“在方格纸上涂一涂,比较两个小数的大小”的活动,经历用几何模型研究小数的过程。

  2、用直观的方式体会小数的.末尾添上0或去掉0,小数的大小不变的规律。

  3、在寻找小数大小的比较方法中,培养数感,获取数学学习方法。

  基本教学过程:

  一、 一、创设问题情境

  1、比较大小。1.26( )2.03 0.23( )0.31

  2、0.2( )0.20

  二、自主探究,创建数学模型

  1、思考一下,0.2和0.20谁大?你是怎样想的?

  2、我们一起验证一下,在图上涂一涂,再来比一比。学生在书上涂一涂,比一比,再说一说。

  3、0.2和0.20怎么会相等呢?这是不是一种巧合?

  4、在下面两幅图中涂出相等的两部分,并写出相应的分数和小数。

  在小组内交流你的涂法和想法。你发现了什么?

  三、巩固与应用

  1、第10页试一试1、2。

  2、第11页练一练1。

  3、第2、3题。

  4、阅读。《你知道吗?》

  四、总结。

  这节课你发现了什么?

  教学反思:学生通过图一图、比一比,发现小数的末尾添上0或去掉0,小数的大小不变这一规律。并能熟练的应用这一规律。

数学小数的性质教案15

  教学目标:

  1、知识目标:引导学生初步理解小数的性质;能运用小数的性质正确地化简小数和改写小数。

  2、能力目标:激发学生积极主动的探究精神,培养学生归纳、分析的能力。

  3、情感目标:培养学生爱学数学的情感。

  教学重点:

  理解小数的末尾添上“0”或去掉“0”,小数的大小不变的道理。并正确运用这一性质解决相关问题。

  教学难点

  掌握在小数部分什么位置添“0”去“0”,小数大小不变。

  教具准备:

  学习纸“小魔术”纸卡多媒体课件

  课时:1课时

  教学过程:

  一、情景导入(小魔术)

  1、师:同学们,第一次给你们上课,作为礼节,我给大家表演个魔术——数字的变化。看这是数字1?等会你们一起小声喊:1,2,3,大,老师就可以把这个数变大了。信不信?

  生:1,2,3,大。

  师:把1变成10,10和1比扩大了10倍,……

  2、老师还有一个数0.1,我们再来试一试。

  引起学生的冲突:到底变大了吗?

  (设汁意图:是把枯燥的数学知识贯穿在小学生喜闻乐道的游戏中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。)

  这节课,我们就来研究小数末尾“0”对小数的大小的影响。也就是我们今天要学习内容——小数的性质。

  二、探求新知

  (一)教学例1

  1、师:0.1米、0.10米、0.100米,他们到底会不会相等呢?

  师:请拿出你的学习纸把第一题完成。

  汇报:请学生上台展示。填空、比较发现一样,从而得出0.1米=0.10米=0.100米。

  教学中让学生说说你是怎样找出0.1米、0.10米、0.100米。

  (0.1米是一位小数,它的计数单位是1/10,有1个1/10,也就是说0.1米=1/10米,把1米平均分成10分,1份就是1分米。所以0.1米=1分米。

  0.10米是两位小数,它的计数单位是1/100,有10个1/100,也就是说0.10米=10/100米,把1米平均分成100分,1份就是1厘米,10份是10厘米。所以0.10米=10厘米。

  0.100米是三位小数,它的计数单位是1/1000,有100个1/1000,也就是说0.100米=100/1000米,把1米平均分成1000分,1份是1毫米,100份就是100毫米。所以0.100米=100毫米。)

  因为1分米=10厘米=100毫米所以0.1米=0.10米=0.100米

  师:0.1米=0.10米=0.100米(板书)这三个长度是一样的,都是以“米”为单位,我们就可以把数抽象出来0.1=0.10=0.100。

  (设计意图:这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识)。

  仔细观察这组小数,你有什么发现?

  生:小数的末尾添上“0”,小数的大小不变。

  师:同学们的眼光真锐利。小数的末尾添上“0”,小数的大小不变。我现在有个疑问,其它的小数也有这样的特点吗?

  师:现在请同学们翻开学习纸,根据方格图,自己想一组小数把它表示出来。

  学生操作,交流汇报。

  课件展示。

  (教师在学习研究中要加强指导)

  2、师:现在请同学们观察上面的题目中的小数,你能说出几组和它们类似的小数吗?

  学生说说。

  师:能说出这么多组,你们一定发现了什么规律吧?(交流,汇报)

  总结:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  (设计意图:这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。)

  3、联系生活,再现新知:还有同学们在商场看到货物的标价如:这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。

  (二)小数性质的应用

  1、教学例2

  师:现在我们认识了小数的性质,那么应用小数的性质,我们可以根据需要对小数进行改写。

  电脑演示:化简下面的小数。0.70=105.0900=

  教学0.70=0.7

  问:①你是怎样化简的?(根据小数的性质,去掉小数末尾的“0”就可以把小数化简)

  ②0.70与0.7它们的大小不变,但意义相同吗?

  (不同,0.70表示70个1/100,0.7表示7个1/10)

  教学105、0900=105.09

  问:小数里的其他“0”可以去掉吗?为什么?(不可以,大小改变。师要强调末尾)

  2、教学例3

  电脑演示:不改变数的大小,把下面各数写成三位小数。

  0.2=4.08=3=

  师:你是如何把它改写成三位小数的?(根据小数的性质,在小数的末尾添上“0”小数的大小不变)

  师:3如何改写成三位小数?这个小数点不点的话可以吗?

  注意:

  A、在小数的末尾添“0”。

  B、当这个数是整数时,在整数个位的.右下角点上小数点,再添“0”。

  师:应用小数性质时,应注意什么?(小数、末尾)

  三、巩固练习

  课本59页的做一做。

  2、开火车的形式回答59页的做一做。

  问:你是怎样化简和改写这些数的?

  四、全课小节

  1、这节课你学到了什么?

  小数的末尾添上“0”或去掉“0”,小数的大小不变。

  2、我们是怎样探索小数的性质的?

  在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。

  板书:小数的性质

  小数末尾“0”对小数的大小的影响

  小数的末尾添上“0”或去掉“0”,小数的大小不变。

  0.1米=0.10米=0.100米

  0.1=0.10=0.100

【数学小数的性质教案】相关文章:

数学小数的性质教案15篇03-04

数学小数的性质教案(15篇)03-04

数学小数的意义和性质教案11-11

数学小数的性质教案(集合15篇)03-04

小数的性质及比较大小数学教案(精选13篇)03-22

小数性质数学教学反思01-03

四年级数学小数的性质教案09-25

《小数的性质》教学反思03-11

《小数的性质》教学反思01-15