现在位置:范文先生网>教案大全>数学教案>四年级数学教案>四年级下册数学的教案

四年级下册数学的教案

时间:2023-03-17 08:59:46 四年级数学教案 我要投稿

四年级下册数学的教案汇编15篇

  在教学工作者实际的教学活动中,就不得不需要编写教案,借助教案可以有效提升自己的教学能力。那么写教案需要注意哪些问题呢?以下是小编收集整理的四年级下册数学的教案,仅供参考,希望能够帮助到大家。

四年级下册数学的教案汇编15篇

四年级下册数学的教案1

  教学目标

  1、知识与技能:结合具体的情境,引导学生认识和理解加法结合律的含义。

  2、过程与方法:能用字母式子表示加法结合律,初步学会应用结合律进行一些简便运算。

  3、情感态度与价值观:体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。培养学生观察,比较,抽象,概括的初步思维能力。

  教学重点:认识和理解加法交换律和结合律的含义。

  教学难点:引导学生抽象概括加法结合律。

  教具学具:多媒体课件

  教学过程

  一、创设情境

  1、多媒体展示:李叔叔三天骑车的路程统计。

  (1)找出信息解决问题。问:你能解决李叔叔提出的问题吗?学生独立完成后交流。

  多媒体展示线段图:根据学生列出的不同算式,表示三天路程的线段先后出现。

  问:通过线段图的演示,你们发现什么?(不论哪两天的路程先相加,总长度不变。)

  我们来研究把三天所行路程依次连加的算式,可以怎样计算:

  比较88+104+96 88+104+96

  =192+96=88+200

  =288=288

  为什么要先算104+96呢?(后两个加数先相加,正好能凑成整百数。)

  出示(88+104)+96○88+(104+96),怎么填?

  (2)你能再举几个这样的例子吗?

  问:观察、比较这些算式,说一说你发现了什么秘密?(鼓励学生用自己的'话来说。)

  (3)揭示规律。

  三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这就是加法结合律。

  (4)用符号表示。(学生独立完成,集体核对。)

  (▲+)+●=____+(____+____)

  (a+b)+c=____+(____+____)

  (5)问:①用语言表达与用字母表示,哪一种更一目了然?

  ②这里的a、b、c可以表示哪些数?

  二、练习练习

  1、完成P18做一做2。

  2、根据运算定律,在下面里填上适当的数。

  287+129+118=287+(+118)(32+47)+65=32+(+)

  3、教材练习五

  三、小结

  1.今天我们发现了哪些数学规律?

  2.这些运算定律是怎样发现、归纳的?

  板书设计加法结合律

  88+104+96 88+104+96

  =192+96=88+(104+96)

  =288=88+200

  =288

  加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

四年级下册数学的教案2

  教学内容:

  苏教版五年级上册,第37--38页,例4、例5、例6。

  教学目标:

  1.在现实情境中通过观察、猜想、验证、比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质解决实际问题。

  2.经历从现象中发现问题、提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。

  3.在经历变与不变的过程中挖掘数学内涵,感悟数学思想,发展学生的数学思维。

  教学重点:

  理解小数的性质,并能应用性质解决实际问题。

  教学难点:

  感悟小数性质中不变与变化的数学辩证思想,发展学生思维。

  教学流程:

  一、情景导入。

  创设数学王国中数字“0”去做客的情景,发现数字“0”引起整数的变化。

  二、自主探究。

  1.以数字“0”前往小数家中做客的情景,引出问题:0.4是不是等于0.40.

  2.在独立验证的基础上,小组讨论交流,为什么0.4=0.40?

  3.借助:0.4=0.40=0.400,引导学生逐步概括出小数的性质。

  4.深入研究小数的性质:

  (1)从小数末尾添上“0”的情况去推断与思考去掉“0”的'情况。

  (2)在小数的末尾添上“0”或去掉“0”,小数的大小不变,但是小数的哪些方面发生了变化?让学生先讨论,在交流举例。

  (3)质疑:为什么在整数的末尾每添上一个“0”,整数就要扩大10倍,而在小数的末尾添上若干个“0”,小数的大小不变?

  5.添上两笔,让4、40、400三个数相等。

  6.探讨:从0.4到0.04,小数的大小有没有发生变化?从而让学生更深刻的理解“小数的末尾”这一关键词眼。

  三、练习应用。

  1.出示超市里某些食品的价格表,上面哪些小数里的“0”可以去掉?为什么?

  总结:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

  质疑:为什么有些小数能化简,但是价格表中仍然写成两位小数?

  2.把下面物品的价格写成用“元”作单位的两位小数。

  总结:利用小数的性质,可以把小数或者整数改写成指定位数的小数。

  3.初步感知小数改写的作用。

  四、课堂总结。

  通过这节课的学习,你有了哪些新的收获?

四年级下册数学的教案3

  教学目标:

  (一)利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。

  (二)通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

  (三)在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用

  教学重点、难点:

  教学重点:

  让学生掌握解决封闭图形植树问题的思想方法。

  教学难点:

  探索发现封闭图形情况下棵树与间隔数之间的关系。

  教学过程:

  (一)创设情景,引入问题

  1.问题一:(出示图片)正方形桂花树台一边也要摆花,量一下边长是9米,每一米摆一盆,请大家帮助算一算,要几盆花?

  反馈:谁来告诉大家要摆多少盆花?

  预设:生1:91+1=10盆;生2:91=9盆;生3:91-1=8盆

  师:这里都有91这是什么意思?+1就是求出了什么?不加的就是求出了什么?-1求出了什么?

  小结:同学们用以前学习的植树问题帮我解决了这个数学问题。

  2.问题二:如果桂花树的正方形木台四周都要摆上10盆花,共要多少盆花?

  [通过展示校园中鲜花盛开的美丽景色,创设情境,引出生活中的数学问题,激发学生探究欲望。]

  生1:40盆,

  生2:36盆,

  师:到底是36盆还是40盆,要知道哪个答案是对的,怎么办?

  (让学生互相争论)(听听学生的意见,如果学生说画最好,如果学生说其他,教师可以介入说:老师这儿有个建议。)

  小结:看来有些同学认为用画一画的方法比较好是吧,那就请同学们用自己认为好的方法来验证到底是需要多少盆?

  (二)多元表征,感知模型

  1.出示学习建议:

  (1)你可以自己最喜欢的方法来说明你的答案是怎么来的

  (2)你也可以利用老师提供的材料(材料1),画一画,圈一圈。并写出算式。(花盆可以用符号表示)

  (3)先独立思考,再在小组中说一说你的方法。

  [把学习的主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。]

  2.反馈:你是怎么想的?(先把学生的四种方法都出来,再讲评每一种方法)

  预设:

  生1:102=20,82=16 20+16=36;

  生2:94=36;

  生3、84+4=36;

  生4:104-4=36;

  师:你能解释一下是怎么想的吗?(听完学生说自己的思路如果他没画图的,问一下用同样的算法,但是画图的)

  [通过多媒体投影直观展示学生思维过程和解决方法,激发学生探究欲望。]

  回顾:刚才我们这四种方法解决了问题.(课件演示)

  [通过信息技术动态展示不同的`解题策略,引导学生从不同之中找到相同点,将各种算法统一起来,散而不乱,达到了多样化之后的优化,让学生经历多元表征,充分感知数学模型,实现了信息技术与教学内容的整合。]

  小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

  (三)探索规律,有效建模

  1.抛出问题:除了给桂花树正方形的台摆鲜花,在学校的其他的还有其他的一些地方也要摆一些鲜花,

  每边6盆,一共要多少盆? 每边4盆,一共要多少盆?

  2.反馈:你是怎么算的?(结合图说明算式的意思)

  预设:

  生1:63=18 46=24

  生2:63-3=15 46-6=18

  生3:63+3=15 46+6=30

  3.讨论:仔细观察这些算式,告诉我们这些封闭图形上每边摆花的盆数,求花盆总数可以怎么求呢?

  小结:我们从正方形,三角形,六边形等等作为研究的材料,发现了在这样的封图形上植树的棵数就是(每边盆数-1)边数=盆数

  4.

  展开:圆坛一周全长16米,如果沿着圆坛一圈每隔2米放一盆花,一共需要几盆花?

  学生自主探索。

  交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?(学生在电脑上进行多媒体演示并讲述想法)

  你还有什么新的发现?(引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)

  小结:花盆数=间隔数

  [让学生在电脑上直观操作,充分展示学生的思维过程,在思维碰撞中学生们认识到在圆坛上摆花的问题可以和线段上的植树问题联系起来,轻松地找到了新旧知识的结合点。]

  5.提升:在三角形、正方形、正六边形上摆花盆的总数与间隔数是不是也具有这样的关系呢?

  (1)学生探索

  (2)反馈

  (3)演示:将这些图形拉伸为圆,并转化为线段。

  小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

  [通过电脑动画的演示,学生可以直观地发现所有的封闭图形植树问题都可以转化为在圆上的植树问题,并且有和在线段上一端栽树的情况一样。这样,又一次沟通了各个封闭图形之间的联系,轻松突破的本课难点。]

  (四)拓展提升,实践应用

  1.学校为了美化校园环境,开展了摆花设计方案征集。有以下三种,请选择一种你最喜欢的图形,算一算如果每边放三盆花,一共可以摆放多少盆花?你还能设计出其他方案吗?

  2.小结

  通过今天这节课的学习,你有什么收获?

四年级下册数学的教案4

  【教学内容】

  人教课标版小学四年级下册第58、59页的内容:小数的性质

  【学情分析】

  小数的性质是义务教育课程标准实验教科书四年级下册第58、59页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。

  【教学目标】

  知识与技能:让学生在自主探究、合作交流中理解和掌握小数的`性质,知道化简小数和改写小数的方法。

  过程与方法:培养学生观察、比较、抽象和归纳概括的能力。

  情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。

  【教学重难点】

  重点:理解和掌握小数性质的含义。

  难点:小数基本性质归纳的过程。

  【教法与学法】

  1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

  2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。

  3、培养学生共同合作,相互交流的学习方法。

  【教学准备】

  教师:自作课件

  学生:收集的标签彩笔直尺和纸条

  【教学过程】

  一、创设情境,导入新课

  1、师:课前老师让同学们回忆生活,观察商品的标价签,并记录1—2种商品的价格,请谁来汇报一下?

  生:2、00元,师:是多少钱呢?生:2元。

  生:3、50元。师:是多少钱?生:3元5角

  师:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店三色标价是2、5元,右边一家则是2、50元,那你们去买的时候会选择哪一家呢?为什么?

  师:为什么2、5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

  板书课题:小数的性质

  设计意图:联系生活实际,达到知识的迁移。

  二、提出问题、探索新知

  1、出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0、1米,0、10米和0、100米长的纸条,各打上记号。各小组合作共同完成。

  老师巡视并引导学生观察米尺图

  2、各小组汇报:结合学生回答,教师板书:

  0、1米是1/10米,就是1分米

  0、10米是10/100米,就是10厘米

  0、100米就是100/1000米,就是100毫米

  因为1分米=10厘米=100毫米

  所以0、l米=0、10米=0、100米

  教师小结:这三个数量虽然各不相同,但表示大小相等、

  设计意图:学生根据小数的意义,从“0、l米、0、10米、0、100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。

  3、观察比较:教师指着“0、l米=0、10米=0、100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

  根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。

  教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简、小数中间的0不能去掉、

  师质疑:那整数有这个性质吗?

  学生分小组讨论,并举例证明得出结论。

  (师强调出小数与整数的区别)

  设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。

  4、练一练:

  (1)多媒体出示58页做一做:比较0、30与0、3的大小

  师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

  (2)师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作)

  (3)在两个大小一样的正方形里涂色比较。

  汇报结论:0、3=0、30

  师质疑:小数由0、3到0、30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0、3=0、30。)

  设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。

  5、小数性质应用、【继续演示课件“小数的性质”】

  (1)教学例3:把0、70和105、0900化简、

  思考:哪些“0”可以去掉,哪些“0”不能去掉?

  105、0900中“9”前面的“0”为什么不能去掉?

  (0、70=0、7;105、0900=105、09)

  教师强调:末尾和后面不同。

  (2)教学例4:不改变数的大小,把0、2、4、08、3改写成小数部分是三位的小数、学生独立完成,全班共同订正。

  (0、2=0、200;4、08=4、080;3=3、000)

  思考:“3”的后面不加小数点行吗?为什么?

  (3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)

  三、巩固深化,拓展思维

  1、完成59页的做一做。

  重点指导学生说一说为什么有些“0”不能去掉和

  说一说为什么有些数的末尾添上“0”,原数就发生了变化、

  2、挑战自我。

  (1)谁能只动三笔,让下面三个数之间划上等号?

  6020 = 602 =60200

  (2)每人写几个和3、200相等的数、

  设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。

  四、全课小结

  1、这节课你有哪些收获?

  2、你对自己或同学有什么评价?

  五、布置作业、

  完成练习十1—3题。

  板书设计:

  小数的性质

  例1 1分米= 10厘米= 100毫米

  从右往左从左往右

  0、1米= 0、10米= 0、100米

  小数的末尾添上0或者去掉0,小数的大小不变。

  0、3= 0、30 =0、300

  例2化简小数。

  0、70= 0、7 105、0900=105、09

  例3不改变数的大小,把下面各数写成三位小数。

  0、2=0、200 4、08=4、080 3=3、000

四年级下册数学的教案5

  教学内容

  小数的意义

  教学目标

  1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。

  2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。

  3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。

  重点难点

  重点:体会十进制分数与小数的关系,初步理解小数的意义。

  难点:能够正确进行十进制分数与小数的互化。

  教具准备

  课件、正方形纸2张。

  教学过程

  一、情境导入。

  1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?

  生:好。

  2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)

  铅笔:0.1元一支圆珠笔:1.11元一支

  猪肉:9.5元一斤黄瓜:5.96元一千克

  教师:上面这些物品的价格有什么特点?

  学生:都不是整元数。(都是小数。)

  教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?

  学生依次读出:零点一、一点一一、九点五、五点九六。

  师:大家知道这些小数是几位小数吗?

  生:......

  2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

  生:身高体重跳高跳远

  小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。

  板书:小数的意义

  二、自主探究。

  1.一位小数的意义

  a.那么多的小数,我们今天就从0.1开始入手研究。

  b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.1表示什么意思?

  学习单元角米分米网格图

  c.生反馈0.1表示什么意思。

  d.思考:我们选用的图都不一样,为什么都可以表示0.1?

  你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10角,0.1元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成0.1元。

  生2:1米=10分米,0.1米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成0.1米。

  生:......

  2.两位小数的意义

  师:同学们真了不起,都善于思考问题,勇于探究,你们0.01又是什么意思呢?

  a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.01表示什么意思?

  学习单元分米厘米网格图

  b.生反馈0.01表示什么意思。

  c.思考:你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10分,0.01元就是把1元平均分成100份,它表示其中的'一份,所以1元的也可以写成0.01元。

  生2:1米=100米,0.01米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成0.01元。

  生:......

  3.三位小数的意义

  我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()

  小数我们写的完吗?其实呀,小数的位数越多就分的越细。

  大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?

  三、巩固练习

  教师:0.8可以表示成分数吗?可以表示成小数吗?

  学生:分别是和0.7。

  教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)

  同学们在小组内进行游戏交流,教师巡视指导。

  四、探究结果报告。

  教师:通过刚才游戏,你们发现了什么?(出示课件)

  师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

  1.像0.1、9.5这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)

  2.像1.11、5.96这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)

  3.像0.001、0.125这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)

  四、教师小结。

  小数中,每相邻两个计数单位间的进率都是10。

  五、课外拓展。

  分享最美数字0.618

四年级下册数学的教案6

  教学内容:人教版数学第八册第四单元“小数的性质”

  教学目标:

  1、初步理解小数的基本性质,并应用性质化简和改写小数。

  2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。

  3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。

  教学重点:

  让学生理解并掌握小数的性质。

  教学难点:

  能应用小数的性质解决实际问题

  教学过程:

  一、谈话导入、课前质疑

  1、师:今天老师给同学们准备了一个小魔术,我们来看看。

  这个数认识吗?几呀?出示数字卡片:1

  我能让这个数变大,看仔细哟。(添了一个0)

  这个1的末尾添了一个0,这个数发生了什么变化?

  老师还能把这个数变小,知道怎么变吗?就要把末尾的0(去掉),看着啊。

  看来,我把整数末尾的0 去掉,这个数就缩小。那100去掉末尾两个0,大小怎么变化的?(缩小了100倍,好极了)

  师:刚才我将这个整数的末尾添上0,这个整数就变大了,我又将这个整数的末尾去掉0,这个整数就变小了。

  2、师:接下来再变一个小数的魔术。这是几?(0.1)看着啊,老师还能把它变大。变大了吗?

  这可奇怪了,刚才整数的末尾添上0,这个数会变大,整数的末尾去掉0,这个数就会变小,那我在小数的末尾添上0或去掉0,小数的大小变不变呢?你认为呢?

  在小数的末尾添上或去掉0,小数的大小不变,这只是大家的猜想,这个猜想对不对呢?这就需要大家一起来验证一下。

  板书:猜想 验证

  二、探究新知、课中释疑

  1.探究0.1米,0.10米,0.100米的大小

  (1)有以有的'知识来解释一下这三个数的大小。

  请比较一下它们的大小。

  板书:1分米=10厘米=100毫米

  (2)导入例1:

  你能把它们都写成用米做单位的小数的形式吗?必须体现它们的原先单位。

  导:分米和米有什么关系?厘米、毫米呢?

  根据学生回答归纳演示:

  1分米是1/10米,写成0.1米

  10厘米是10个1/100米,写成0.10米

  100毫米是100个1/1000米,写成0.100米

  并板书:01米 0.10米 0.100米

  那0.1米、0.10米、0.100米之间大小有什么关系呢?

  学生很快回答后课件演示。并在他们之间加上等号。

  我们还可以用重合法比较一下。(课件演示)

  (3)指导看黑板:

  1分米 = 10厘米 = 100毫米

  0.1米 = 0.10米 = 0.100米

  提问:这说明了什么问题?

  请大家仔细观察这个等式,可以从左往右看,再从右往左看,什么变了?什么没变?在什么地方多(少)0?在这个小数的什么位置?多(少)0还可以怎么说?

  小数的末尾添上0大小不变,去掉0大小也不变。是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。

  2.教学例2。

  (1)比较1.30和1.30的大小。

  导:想想0.30表示什么意思?0.3呢?应该涂多少格?

  学生涂完色问:你为什么这样涂?之后演示涂色过程。

  (2)同桌商量比较,汇报结论。

  问:谁涂的面积大?1.30和.1.3的大小怎样?你是怎么知道的?

  直观比较法:看上去都一样大;

  理论推导法:1.30是130个1/100,也是13个1/10;1.3是13个1/10。

  课件演示重合图形。(在原板书下再板书:1.30=1.3)

  (3)观察思考

  观察板书1.30=1.3

  这个例子说明了什么?看来不仅仅是个特例,再次验证我们的猜测。

  3. 讨论归纳

  教师指着板书说:你能把上面的研究结论归纳成为一句话吗?4人小组之间讨论一下,想想该怎么说才比较完整?

  教师提问几个小组代表让其归纳,不够完整可以由其他小组代表补充。得出小数的性质:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质.(课件展示)

  4、指导阅读。

  讲述:书上也证实了我们的研究,并把它称为“小数的性质”。齐读小数的性质。

  5、质疑问难:(判断)

  你们对这句话理解的够不够透彻呢?挑战一下你们。(以下题目陆续出现)

  (1)一个数的末尾添上“0”或去掉“0”,这个数的大小不变。

  举例说明后返回小数的性质,红字强调“小数”。

  (2)小数点的后面添上“0”或去掉“0”,小数的大小不变。

  举例说明后返回小数小性质,红字强调“末尾”。

  (3)10.50=10.5=10.500 判断后返回小数小性质强调“大小不变”。

  三、巩固运用、交流反思

  小数的性质有什么作用呢?

  强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.

  l.出示例3:把0.70和105.0900化简。

  思考:哪些“0”可以去掉,哪些“0”不能去掉?

  (1)提问:0.70你认为可以怎么化简才能大小不变?

  (2)学生自己完成。指名回答,让其说说这样做的根据是什么?

  (3)为什么105.0900的5左边的0不能去掉呢?(强调小数的性质中“小数的末尾的0”。)

  (4)练习:下面的数,哪些“0”可以去掉?哪些¨0“不能去掉?

  0.40 1.820 2.900 0.080 12.000

  回答后小数末尾的0红色闪现。

  问12应该去掉0后是多少?还可以怎样表示?

  强调:12去掉0后,小数部分没有数,可以把小数点也去掉。

  过渡:同样,应用小数的性质,我们还可以根据需要,把一个数改写成含有指定小数位数的小数

  2.出示例4:。

  不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。

  想想可以怎么做?

  (1)学生自己完成。

  (2)大家这样做的根据是什么?3能不能直接在后面添0?

  (3)练习:下列数如果末尾添”0“,哪些数的大小不变,哪些数的大小有变化?

  3.4 18 0.06 700 3.0 4.90

  整数和小数用不同的颜色区分。

  如果整数想改成大小不变的小数,必须先做什么?(先添上小数点,再添0)

  五、课堂小结

  1.这节课你学到了哪些知识?有哪些收获?

四年级下册数学的教案7

  教学内容:教材15页例4

  素质教育目标:

  1、使学生借助线段图能够理解简单应用题的数量关系,并会用两种方法解答这类应用题。

  2、进一步培养学生的分析问题能力和灵活解题的能力。

  3、渗透数形结合和事物相互联系的辩证唯物主义观点。

  教学重点:掌握三步应用题的解题方法。

  教学难点:分析并理解三步应用题的解题思路。

  教学过程:

  1、根据条件补充问题,使之成为一道三步计算的应用题。

  (1)、请说说解题的思路和相应的算式。

  (2)、这道题还可以怎样解答?

  2、教学例4:

  出示例题

  (1)指名读题,找出题中的已知条件和所求问题。

  (2)借助线段图分析数量关系。

  想一想:根据题里的条件,前面的线段图该怎样修改?所求问题在线段图上怎样表示?

  讨论题:

  (3)比较两种方法哪种比较简便。

  3、引导概括

  解答应用题不但方法可以不一样,而且计算的步骤也不相同。有的三步题可以用两步来解答。这样使计算变得比较简便。所以解题时应该注意选择合理、简便的方法进行解答。

  4、综合与应用:(课件)

  5、板书

  教学内容:教科书例5及第19页“做一做”,练习五第1、2题。

  一、素质教育目标

  (一)、知识教学点

  1.理解三步计算的应用题的数量关系:掌握解题思路。

  2.能分步解答较容易的三步计算应用题。

  (二)能力训练点

  1.培养学生类推能力、分析比较能力。

  2.培养学生理解应用题数量关系的能力。

  (三)德育渗透点

  渗透事物间相互联系的。

  (四)美育渗透点

  使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。

  二、学法引导

  指导学生运用已有经验,合作学习、讨论、试算,感知算理和计算方法。

  三、重点、难点

  教学重点:理解应用题的数量关系。

  教学难点:确定应用题的解题步骤。

  四、教具准备

  小黑板、投影片等。

  五、教学步骤

  (一)、铺垫孕伏

  1.练习:(出示口算卡片)

  56×2+5678×4—78

  168—17×4100—100÷5×3

  2.复习题:

  读题,分析解题思路。

  提示:要想求出“三、四年级一共栽树多少棵”,必须知道哪两个条件?四年级栽树棵数怎样求?为什么用“56×2”,你们是根据哪句话这样求的?

  学生独立解答、订正。

  (二)探索新知

  1.利用投影片改复习题为例5。(课件演示)

  (抓住复习和例5的'联系点,设计了复习题,为学习例5做好铺垫,有利于学生思维的发展。)

  2.读题,找出已知条件和所求问题。

  讨论:你认为这道题的关键句是哪一句?

  (教师在“五年级栽的比四年级总数少10棵”下面画出曲线。)

  3,怎样用线段图表示题中的数量关系呢?

  引导学生画线段图。

  4.根据线段图和题意,讨论思考:

  要想求出五年级栽树多少棵?必须

  先知道什么?你是根据什么这样说的?为什么?

  启发学生:“三、四年级一共栽树多少棵”能直接求出来吗?解答这道题,第一步求什么?第二步求什么?第三步求什么?

  (通过线段图,从直观到抽象,帮助学生理解算理。)

  5,通过交流汇报,确定解题思路,教师板书小标题,再让学生直接在书中填空,指定一名学生板演。

  形成板书:

  四年级栽树多少棵?

  56×2=112(棵)

  三、四年级一共栽树多少棵?

  56+112=168(棵)

  五年级栽树多少棵?

  168—10=158(棵)

  答:五年级栽树158棵。

  6.:

  引导学生回顾例5的解题过程,解答这类题时应注意什么?

  抓住关键句理解数量关系,依据关键句确定数量关系,确定先算什么,再算什么,最后算什么,并分步解答。

  引导学生观察:在解题过程中,56这个已知条件用到了几次?分别是在求什么时候用的?通过讨论,使学生明确:解答应用题时,有的已知条件不止用一次,具体怎样用,要根据题目内容确定。

  7.反馈练习:教材第19页“做一做”第1题。

  同桌讨论,关键句是哪一句,再根据题意确定先求什么,再求什么,最后求确定2—3名学生汇报讨论结果。然后再让学生分步独立解答,集体订正。

  (三)、巩固发展1、“做一做”第2、3题。

  同桌每人选一题,互相说一下这道题的关键句是什么,应该先求什么,再求什么,最后求什么。然后独立完成。

  2、练习五第1题

  先画图表示数量关系。

  (四)、课堂

  回顾本课学习内容,指出这类应用题是三步计算应用题,还是两步

  计算的应用题

  板书课题:

  进一步明确:解答此类应用题,要抓住关键语句,明确数量关系,通过分析关键语句确定的数量关系,明确解题步骤。

  提示同学:有的已知条件在解题时不止用一次。

  六、布置作业

  练习五第2题

  七、板书设计

四年级下册数学的教案8

  教学目标:

  知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。

  过程与方法:培养学生观察、比较、抽象和归纳概括的能力。

  情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。

  教学重难点:

  重点:理解和掌握小数性质的含义。

  难点:小数基本性质归纳的过程。

  教学过程:

  一、 创设情境,引入新课

  师:同学们,认识这个数么?(出示卡片5)老师会变魔术,我能这个数变大,在它的末尾添上一个“0”,这个5发生了什么变化?

  生:扩大了10倍。

  师:我还能让它变大,现在又发生了什么变化?现在的数和“5”相比,末尾添了几个“0”,它的大小发生了什么变化?

  生:末尾添了2个“0”,扩大了100倍。

  师:那我们能让它变小么?

  生:把末尾的“0”去掉。

  师:现在去掉一个“0”,这个数发生了什么变化?再去掉一个“0”呢?

  生:略。

  师:看来在整数的末尾添上或去掉“0”,整数也随之扩大或缩小。那再看看这个数“0.5”,我在这个小数的末尾添上“0”这个数会变么?

  生:不会变。

  师:那我再添上一个“0”呢?

  生:还是不变。

  师:你是怎么知道的?

  生:略。

  师:所以你认为在小数的末尾添上“0”或去掉“0”小数的大小不变。(板书)这只是你的猜测,所以老师先在后面打上一个问号。刚刚某某同学说的只是一个个例,不具有普遍性,那如果要证明它具有普遍性,该怎么办呢?

  生:验证。

  二、讲授新课

  师:在这老师给你们几点建议。先写出一个小数,在它的末尾添上“0”或者去掉“0”。利用手中的学习材料研究,或者借助已有的知识进行说明,小组合作,证明猜想,并记录在乐学单上。可以证明一组或者几组。小组内交流研究方法后,全班汇报。这些清楚了么?现在我给大家一点时间,开始。

  (生动手操作)

  师:好了,同学们。我发现大家的智慧真了不起,在短短的时间内研究的都很不错。那我们接下来开始汇报,在汇报前老师还有一个要求,一个组在汇报的时候,其他小组认真倾听,听完之后看看你们组研究的方法与他们一不一样,再做补充,在汇报的时候要说明两件事,你们是怎么验证的?你么验证的结果是什么?哪个小组先来汇报?

  (生汇报)

  师:这位同学描述的非常完整,而且通过他们的操作我们更一目了然了,还有哪个小组也是用了正方形纸来验证的,说说你们验证的结论。

  生:略。

  师:有没有哪个小组是借用皮尺来验证的,谁来说一说?

  (生汇报)

  师:老师也准备了一把米尺,我把一米平均分成10份,取了其中2份,是2分米用小数表示也就是0.2米,把一米平均分成100份,取了其中20份,是20厘米用小数表示就是0.20米,再把一米平均分成1000份,取了其中200份,是200毫米用小数表示就是0.200米,它们都表示这段长度,所以0.2=0.20=0.200,结论是在0.2的末尾添上“0”小数的大小不变。

  师:有哪个小组是借用数位顺序表来验证的么?

  (生汇报)

  师:还有哪个小组也来说说你们组研究的结果。

  师:刚才我们借用了教具来验证我们的猜想,有没有哪位同学是借助已有知识来验证的?前面我们已经学过了小数的意义……

  生:略。

  师:我们再来看看开始是的卡片,整数5,5在什么位表示什么?在它的末尾添上一个“0”,5被挤到什么位,表示什么?再添上一个“0”5又被挤到什么位表示什么?5的`位置发生了变化么?由于5的位置发生了变化,那你们认为他的大小会怎么样?

  生:略。

  师:整数是这样,我们再看看小数,这是小数0.5,这时5在什么位表示什么?在0.5的末尾添上“0”,这时5在什么位表示什么?再添上一个“0”这时5在什么位表示什么?

  师:5的位置有没有发生变化,照这样看,无论在0.5的末尾添上多少个0,5的位置不变,小数的大小也不变。

  师:刚才我们举了那么多例子,都是在末尾添0的,从左往右看是单向思维,如果我们从右往左看,你们发现了什么?以这个为例谁来说一说。

  生:略。

  师:你们真棒,如果我们把从左往右和从右往左合成一句话,会是什么?

  生:略。

  师:在小数末尾添上0或去掉0小数的大小不变后面的问号是不是可以去掉了?我们发现的这个规律就是小数的性质,(板书)这是大家共同探究出来的,大家一起齐读一遍。

  三、巩固练习

  师:这是一张购物小票,老师圈出了几个数,你们认为这几个小数当中哪些0是可以去掉的?

  生:略。

  师:1.05中的0可以去掉么?

  生:不能,因为0不在末尾。

  师:那你们认为在小数性质这句话中,哪个词是最重要的?

  生:末尾。

  师:接下来,我们来看这题,你们知道什么是化简么?

  生:略。

  师:把末尾的0去掉,没有改变小数的大小,这样是不是更简单呢?那谁来回答这几题?

  生:略。

  师:其实在不改变小数大小的情况下,我们除了可以化简还可以改写。把小面小数改写成三位小数。

  生:略。

  师:今天我们学习了小数的性质,大家知道了什么?

  生:略

  师:老师根据本节课的内容设计了一幅思维导图,课后请同学们叶发挥自己的想象,根据本节课的内容设计一幅美观,内容详实的思维导图。

  师:好的同学们,今天这节课上到这,下课。

四年级下册数学的教案9

  教学目标:

  1、将十进制低级单位的数改写成高级单位的数,进一步体会小数的意义。

  2、会用小数表示一个物体的长度和质量等。

  教学重点:

  通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义。

  教学难点:

  会小数与十进分数的关系,理解小数的意义,

  教法学法:

  主动探究法、实验操作法,讲练结合法。小组合作交流法

  教学准备:

  学生、老师准备尺子。小黑板

  教学过程:

  一、检查预习

  1、你能说一说小数的读法和写法吗?

  2、把下面的数改写成对应的小数或分数。

  二、展示交流。

  1、提出自己的疑问供小组成员讨论。

  2、每组根据任务大小派出若干名同学展示学案的活动一至活动六的内容,同学认真听,认真评,并提出置疑。

  3、教师精讲。

  三、探究新知

  1、说一说课本第6页上得每一个2分别表示什么?

  2、小数点后面的每一位都表示什么?

  3、自学提示。学生自学后独立完成括号内的题目。

  4、精讲例题。

  四、课堂总结

  今天你有什么收获?

  五、当堂训练。

  1、填空。

  4分米=( )米

  52厘米=( )米

  450克=( )千克

  69克=( )千克

  5元6角7分=( )元

  1米5分米 =( )米

  2、(1)0.4的计数单位是( ),它有( )个这样的单位。

  (2)0.36的.计数单位是( ),它有( )个这样的单位。

  (3)0.1米表示把1米平均分成( )份,有这样的( )份。0.4米里有( )个0.1米。

  (4)0.5元表示把1元平均分成( )份,有这样的( )份。

  六、作业布置。

  板书设计:

  小数的意义(四)

四年级下册数学的教案10

  教学目标:

  1、理解并掌握小数的性质,正确理解“小数末尾”的含义,并会用小数的性质将小数化简和把一个数改为指定小数位数的小数。

  2、在引导学生发现小数性质的过程中,培养学生的观察,概括和语言表达能力。

  3、在数学探究活动中树立学习数学的信心和兴趣。

  教学重点:小数的性质。

  教学难点:理解小数的性质。

  教具学具准备:课件、练习纸。

  教学过程:

  一、创设情境,激发兴趣

  师:同学们,今天我们请位老朋友和大家一起上课,看看他是谁?(出示孙悟空图片)孙悟空的兵器是什么?(金箍棒)我们知道孙悟空的金箍棒,能长能短,变化无穷,下面我们来让它变一变,金箍棒现在长度是1米,我在1的末尾添上1个0,变成10米,我来喊“金箍棒”,你们喊“变”,看它怎么变(动画演示金箍棒1米变成10米);在10的末尾添1个0,变成100米(动画演示金箍棒10米变成100米)。有意思吧!现在把100末尾的两个0去掉,变成1米(动画演示金箍棒100米变成1米);用小数来试一试,输入0.1米,在0.1的末尾添上1个0,变成0.10米(动画演示金箍棒0.1米变成0.10米),啊,怎么没反应。再在0.10的末尾添上2个0,变成0.100米(动画演示金箍棒0.10米变成0.100米),啊,还是没反应,这是怎么回事?谁想说说看。

  生1:法术失灵了。

  生2:0.1,0.10,0.100米这三个长度一样长。

  老师板书:0.1米,0.10米,0.100米

  二、主动探素,体会领悟

  1、初步感知小数的性质。

  师:如果你认为这三个长度相等,用你学过的知识解释一下,它们为什么相等,如果你对这三个长度相等有疑问,就把你想到的东西写下来。

  拿出老师提供的空白练习纸,把你的想法写下来。

  (1)学生动手写下来。

  (2)学生汇报。

  生1:因为0.1米=1/10米=1分米,0.10米=10/100米=10厘米,0.100米=100/1000米=100毫米,而1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。

  生2:因为0.1米里有1个1分米,0.10米里有10个1厘米,0.100米里有100个1毫米,而1个1分米、10个1厘米、100个1毫米相等,所以0.1米=0.10米=0.100米。

  老师适时板书:0.1米=0.10米=0.100米。

  (3)观察0.1=0.10=0.100初步认识小数的性质。

  师:0.1米=0.10米=0.100米,三个数的单位相同,也就是0.1=0.10=0.100(板书),看一看,你发现了什么?和你同桌说一说。

  生1:在小数的后面加上一个0或加上两个0,小数大小是一样。

  生2:在小数的末尾添上0,小数大小不变。

  生3:在小数的末尾去掉0,大小是一样的。

  2、深化认识小数的性质。

  (1)纯小数中比一比

  师:确实是这样的,是不是其它小数也有这样的'特点呢?这样吧,你在心中想一个这样的数,拿出1号练习纸,把你想的小数表示出来,比一比它们是否有这样的特点,当然你也可以用其它的办法比一比。

  练习纸:

  两个大小相等的正方形,一个平均分成10份,另一个平均分成100份。

  三个大小相等的正方体,分别平均分成10份、100份、1000份。

  生动手写小数,涂一涂,比一比,师适时板书。

  (2)混小数中比一比

  师:同学们,你们写的小数是不是也有这样的特点?下面看看大屏幕上的小数是不是有这样的特点?

  出示一组混小数,让学生写小数,比一比。

  师:大屏幕上的涂色部分应该用哪两个小数来表示?

  生:1.2和1.20

  师:它们相等吗?

  生:看涂色部分是一样大的。

  师动态演示两个阴影部分相等。师:你还能举出这样的例子吗?

  生举例:如1.5=1.50,2.6=2.60

  师:还能说吗?(能)这样的数说得完吗?(不能)能说这么多,你能说出这么多这样的小数,说明你发现了某种规律,这样吧,你把你的发现和你的同桌说一说。

  (3)小结小数的性质,揭示课题。

  生1:小数的后面无论添上几个0,它都不变。

  生2:小数的末尾添上0,去掉0,大小都不变。

  根据学生的汇报完善,归纳,总结出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  师:这就是我们今天来学习的内容:小数的性质(板书课题)

  3、探究小数性质的内涵

  师:下面请看到大屏幕,

  这是我们熟悉的数位顺序表,如果一个整数,在它的末尾添上0,那它表示的大小就不同了,如5,变成50,同样在整数的末尾去掉0,它表示的大小也不同了,如700;如果是一个小数,在它的末尾添上0,或去掉0,它的大小就不变,如0.3变成0.30,0.300,15.20xx变成15.2。(借助数位顺序表,动画演示添0,去0的过程)

  4、教学小数性质的应用

  (1)化简小数

  师:现在脑子里想一个数,想一想,哪些0可以去掉,哪些0不能去掉?

  生汇报,如:109.900中末尾的2个0可以去掉。

  师:通过刚才的学习,我们可以把小数末尾的0去掉使小数更简洁,这个过程我们称为把小数化简(板书:化简),

  出示例3,化简小数:0.70 105.0900

  生独立完成,汇报,师讲评。

  0.70=0.7 105.0900=105.09

  (2)改写小数

  师:根据小数的性质我们可以去掉小数末尾“0”,也可以在小数末尾添上“0”,有时我们需要把一个数改写成指定小数位数的小数。(板书:改写)

  出示教学例4,不改变数的大小,把下面各数写成三位小数。

  0.2 4.08 3

  三、应用新知、解决问题。

  1、做一做

  (1)化简下面各数。

  0.40 1.850 2.900 0.080 12.000

  (2)不改变数的大小,把下面各数写成三位小数。

  0.9 30.04 5.4 8.18 14

  2、辨一辨:

  因为0.2=0.20,所以0.2和0.20没有区别。

  3、填一填

  把0.9改写成计数单位是千分之一的数是(),把800个0.001化简是()。

  四、总结交流

  通过本节课的学习,你有什么收获?

  板书设计:

  小数的性质

  小数的末尾添上“0”或去掉“0”,小数的大小不变。

  1分米10厘米100毫米

  0.1米=0.10米=0.100米

  0.1=0.10=0.100

  0.3=0.30

  1.2=1.20

四年级下册数学的教案11

  教学目标:

  1.进一步巩固画图整理信息的方法,能借助所画的线段图和示意图分析数量关系,确定解决问题的思路。

  2.进一步体会用画图的策略整理信息的价值,懂得画图整理信息是解决问题的一种常用策略,培养运用这一策略分析问题和解决问题的意识。

  3.进一步积累解决问题的经验,强化解决问题的策略意识,获得解决问题的成功体验,增强学好数学的自信心。

  教学难点让学生体会用画图的策略解决问题的价值,逐步形成解决问题的策略。

  教学准备:

  教学过程:

  一、知识再现

  1.提出问题:

  (1)同学们,上节课我们又掌握了一种解决问题的策略,它是什么呢?

  (2)我们通过画什么样的图来分析问题?

  (3)运用画图的策略来解决问题有什么好处呢?

  2.今天这节课,我们要一起完成一些练习,通过这些练习同学们将再次感受画图这一策略的价值。(板书课题)

  二、基本练习 画线段图解决问题。

  1.完成教材第52页“练习八”第4题。

  让学生独立画出线段图。

  2.完成教材第53页“练习八”第10题。

  让学生根据题目中的信息将教材上的线段图补充完整。

  这里比较困难的是弄清楚线段图中,王晓星比张宁多出的那一段表示的是不是8张。

  教师可以进行启发:如果多出的这一段是8张,那王晓星就要把这一段都给张宁;这一段都给张宁后,两条线段会一样长吗?

  引导学生发现:只能把王晓星比张宁多出的那一段的.一半给张宁,这样两条线段才会一样长。因此多出的那一段要平均分成两份,其中的一份才是8张。

  让学生独立解答,组织汇报。

  3.完成教材第54页“练习八”第11题。

  组织练习时,先让学生独立思考,再交流补充线段图的方法,最后让学生独立解答。

  三、综合练习

  用画示意图的策略解决问题。

  1.完成教材第53页“练习八”第8题。

  这道题画示意图时,引导学生可以用一个小圆点表示一个人,画出下面这样的示意图:

  然后组织学生进行观察,计算出每个方阵需要两种颜色的运动服各多少套,再算出一共要准备多少套。

  2.完成教材第54页“练习八”第13题。

  让学生在图上画一画,将长方形扩大成正方形。

  3.完成教材第52~54页“练习八”其余习题。

  学生独立完成。

  四、反思总结 通过本课的学习,你有什么收获? 还有哪些疑问?

  五、课堂作业 《补》

四年级下册数学的教案12

  教学目标

  1、学生经历探索接近整百或整十数的三位数乘两位数的估算方法,能正确进行估算。

  2、学生充分体会估算在解决问题中的应用,发展学生的估算意识,提高他们的估算能力

  教学重难点:估算的.正确率

  课前准备

  电脑课件、学具卡片

  教学活动

  一、基本训练

  1、口算练习

  一、创设情境,提出问题

  出示挂图,提问:从图上知道些什么,要求“一幢楼一年的保洁费用”算式怎么列?

  学生回答,板书:48×112=

  二、自主探索,解决问题

  提问:48×112大约等于多少呢,你能估算出它的结果吗?

  学生思考后,讲述:现在请同学们把你估算的方法和结果跟同组同学交流一下。

  学生小组交流后全班交流。

  通过交流,使学生明白:这里的估算,可以把接近整十或整百的数分别看作整十数和整百数,估算出积大约是多少。

  提问:估计的结果怎样呢,请同学们用计算器算出它的结果,看看自己估计的怎样?

  师:估算时,我们一般把接近整十或整百的数分别看作整十和整百数,估算出积大约是多少?

  三、巩固提高

  完成“想想做做”的题目

  第1题

  要求学生一组一组完成后指名学生回答。

  比较:比比每组题,你有什么发现?

  第2题

  指名学生回答,并让学生说说估算的方法。

  第3题

  先让学生连线,再指名说说自己的想法。

  第4—6题

  这3题都要引导学生用估算的方法解决,并让学生说说想的过程。

  第7题

  先让学生估计哪一个的面积大一些,再通过笔算得出正确的结果。

  四、课堂练习

  第4—7题。

  板书设计

  三位数乘两位数的估算

  48×112=5376(元)

  48×100=4800,费用比4800元多一些

  50×110=5500,估计费用在5500元左右

四年级下册数学的教案13

  设计说明

  《数学课程标准》中指出:数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。针对本节课的教学内容和知识特点,我设计了以知识为明线,以数学思想为暗线的教学过程:

  1.在分类中感知小数。

  分类是一种重要的数学思想,学习数学的过程中经常会遇到分类问题。上课伊始,通过播放教师测量情境,让学生感知小数产生的必要性。然后我出示一组小数,让学生根据自己的认知给这些小数分类,充分调动学生的已有认知,并检测学生对小数的认知程度。

  2.在数形结合中自主探究小数。

  《数学课程标准》中指出:自主探究是获取数学知识的重要学习方式。因此,在教学中引导学生借助数形结合思想自主探究小数的意义,在汇报交流中逐渐明晰小数与十进分数之间的关系。这样设计教学,使学生真正成为课堂学习的主人。

  3.找准起点,促进知识的迁移。

  小数的意义借助分数来掌握,必须经历感悟十进分数与小数之间联系的过程。教学中要引导学生具体分析一位小数的意义,然后运用迁移的方法去理解两位、三位小数的意义,发展学生的类比、推理能力,感悟知识间的内在联系,感受迁移在数学学习中的价值。

  课前准备

  教师准备 多媒体课件

  学生准备 米尺

  教学过程

  ⊙在分类中感知小数

  1.在分类中感知小数。

  师:谁能说一说你们都收集到了哪些生活中常用的小数?(让学生自由说一说)

  老师也收集了一些小数,你能把这些小数分一分类吗?(学生在分类的过程中理解一位小数、两位小数……)

  2.导入新课。

  师:展示学生分类的情况,这节课就让我们根据同学们这种分类来探究小数的意义。(揭示课题)

  设计意图:创设贴近学生生活实际的生活情境,引出学习对象,激发学生的学习兴趣;给生活中的小数分类,激活了学生的生活经验,促进学生知识的迁移。

  ⊙探究新知

  1.了解小数的'产生。

  (1)引导学生动手量课桌、黑板等物体的边长。(组织学生动手测量,并记录测量结果,然后分组汇报)

  (2)刚才同学们都很认真地进行了测量。如果在记录测量结果时,要求用“米”作单位,不够1米怎么办?

  (学生可能感到很困惑,有的学生可能会想到用分数表示)

  (3)教师小结:在测量和计算时,往往得不到整数的结果,这时常用小数来表示。因为日常生活和生产的需要产生了小数。

  2.教学小数的意义。

  (1)认识一位小数。

  ①课件出示米尺图。

  把1米平均分成10份,指一指每一份所对应的位置。

  ②根据分数的意义,1分米=米,米也可以用0.1米表示。(板书:1分米 米 0.1米)

  ③启发学生:(指3分米处)把1米平均分成10份, 3份是多少分米?用分数表示是多少米?用小数表示是多少米?(引导学生说出:3分米 米 0.3米)

  ④(指7分米处)你们能说一说这里用整数、分数、小数分别怎么表示吗?(引导学生说出:7分米 米

  0.7米)

  ⑤从前面的学习过程中,你发现分数与小数的联系了吗?(引导学生进行小组讨论、交流,然后指名汇报)

  预设

  生1:我发现分母是10的分数,可以写成一位小数的形式。

  生2:我发现一位小数表示的是十分之几。

  ⑥教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。

  (2)认识两位小数。

  ①你能猜一猜两位小数与什么样的分数有关系吗?[课件出示:把1米平均分成100份,每份长( )厘米,用分数表示是( )米,用小数表示是( )米;这样的3份是( )厘米,用分数表示是( )米,用小数表示是( )米;这样的7份是( )厘米,用分数表示是( )米,用小数表示是( )米]

  ②引导学生观察米尺,结合教师出示的习题进行分组讨论。(指名回答,并板书:1厘米 米 0.01米3厘米 米 0.03米 7厘米 米 0.07米)

  (3)认识三位小数。

  师:把1米平均分成1000份,每份长多少?

四年级下册数学的教案14

  学习目标:

  1.体会小数所表示的意思,理解小数的意义。

  2.理解和掌握小数意义。

  教学重点:

  通过练习,体会小数的意义,知道小数所表示的含义。

  教学难点:

  通过练习,体会小数的`意义,知道小数所表示的含义。

  教学准备:

  学生、老师准备计数器、小黑板

  教学方法:

  小组合作学习交流法

  教学过程:

  一、情景导入,呈现目标

  1.你的身高是多少?你会用小数来描述吗?

  2.你都在哪里见过小数?说一说,并写出几个你见过的小数来。

  二、探究新知(自学后完成下面问题)

  1.把1元平均分成十份,其中一份用分数表示是( )元,用小数表示是( )元。十分之三表示其中( )份,用小数( )表示。

  2.把1元平均分成100份,其中的一份用分数表示是( )元,其中的37份用分数( )表示,用小数( )表示。

  3. 1.11表示( )元( )角( )分。

  三、合作探究,当堂训练

  1. 用数表示下面各图中得涂色部分?(课本第2页第2题)

  2. 想一想填一填?(学生独立完成)

  3. 自己画一方格纸,并画出0.1、0.5、0.6?

  4.找一找生活中的小数,小组交流,选代表汇报。

  四、精讲点拨(根据学生出现的问题进行精讲。)

  五、学习收获,自我总结

  1.小组评价:你认为第几小组表现最棒,为什么?

  2.自我总结:通过今天的学习,我学会了 ,以后我会在______________ 方面更加努力的。

  板书设计:

  小数的意义

四年级下册数学的教案15

  教学内容:P4/例1、例2(只含有同一级运算的混合运算)

  教学目标:●使学生进一步掌握含有同一级运算的运算顺序。●让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。●使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

  教学过程:

  一、主题图引入

  观察主题图,根据条件提出问题。

  (1)说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?

  组织学生提问并对简单地问题直接解答。

  (2)根据图中提出的信息,你能提出哪些问题,怎样解决?

  通过补充条件,继续提问。

  1、滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?

  2、“冰雪天地”3天接待987人。照这样计算,6天预计接待多少人?等等。

  先小组交流,再全班交流。

  提示学生可以自己进行条件的补充。

  二、新授

  1、小组4人对黑板上的.题目进行分配解答。

  引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。

  2、小组内互相说说你是怎样解答的?

  教师巡视并对学生的叙述进行指导。

  3、全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。

  (1)71-44+85

  =27+85

  =113(人)

  71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。

  (2)987÷3×6 6÷3×987

  =329×6 =2×987

  =1974(人)=1974(人)

  第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)

  第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。

  引导学生进一步理解“照这样计算”的意思。

  强调:可用线段图帮助理解。

  教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。

  4、巩固练习

  (1)根据老师提供的情景编题。A加减混合。乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率

  先个人编题,再两人交换。

  小组合作,减少重复练习。

【四年级下册数学的教案】相关文章:

数学下册教案03-16

数学四年级下册教案01-15

四年级下册数学的教案02-25

四年级苏教版数学下册教案02-20

四年级人教版数学下册教案02-20

四年级数学下册教案03-02

四年级数学下册教案02-26

四年级数学下册数学教案03-06

数学下册教案 15篇03-16

数学下册教案 (15篇)03-16