现在位置:范文先生网>教案大全>数学教案>六年级数学教案>六年级下册数学教案

六年级下册数学教案

时间:2024-09-09 06:21:37 六年级数学教案 我要投稿

人教版六年级下册数学教案 6篇

  在教学工作者实际的教学活动中,常常需要准备教案,教案是实施教学的主要依据,有着至关重要的作用。那么你有了解过教案吗?以下是小编为大家收集的人教版六年级下册数学教案 ,仅供参考,大家一起来看看吧。

人教版六年级下册数学教案 6篇

人教版六年级下册数学教案 1

  教学目标:

  1.使学生进一步理解比例的意义,懂得比例各部分名称。

  2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

  3.能运用比例的基本性质判断两个比能否组成比例。

  教学重点:

  比例的基本质性。

  教学难点:

  发现并概括出比例的基本质性。

  教具准备:

  多媒体课件

  教学过程:

  一、旧知铺垫

  1.什么叫做比例?

  2.应用比例的意义,判断下面的比能否组成比例。

  和

  和5:2

  1/2:1/3 和6 : 4

  和1:4

  二、探索新知

  1.比例各部分名称。

  (1)教师说明组成比例的四个数的名称。

  板书

  组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的.两项叫做比例的内项。

  例如: = 60:40

  内项: 6o

  外项: 40

  (2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

  如: : = 60:40

  外 内 内 外

  项 项 项 项

  2.比例的基本性质。

  你能发现比例的外项和内项有什么关系吗?

  (1) 学生独立探索其中的规律。

  (2) 与同学交流你的发现。

  (3) 汇报你的发现,全班交流。(师作适当的补充)

  在比例里,两个内项的积等于两个外项的积。

  板书

  两个外项的积是

  两个内项的积是

  外项的积等于内项的积。

  (4) 举例说明,检验发现。

  1

  两个外项的积是

  两个内项的积是

  外项的积等于内项的积。

  如果把比例改成分数形式呢?

  如: = 60/40

  3.

  等号两边的分子和分母分别交叉相乘,所得的积相等。

  (5) 学生归纳。

  在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

  4.填一填。

  (1)1/2:1/5 =1/4:1/10

  ( )( )=( )( )

人教版六年级下册数学教案 2

  教学目标

  1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

  2。初步学会用负数表示一些日常生活中的实际问题。

  3。能借助数轴初步理解正数、0和负数之间的关系。

  重点难点

  负数的意义和数轴的意义及画法。

  教学指导

  1。通过丰富多彩的生活情境,加深学生对负数的认识。

  负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

  2。把握好教学要求。

  对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的.在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

  3。培养学生多角度观察问题,解决问题的能力。

  教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

  课时安排

  共分3课时

  教学内容

  负数的初步认识

  (1)(教材第2页例1)。

  教学目标

  结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

  重点难点体会负数的重要性。

  教学准备多媒体课件。

  情景导入

  1。教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

  2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)

  3。引出课题并板书:负数的初步认识

  (1) 新课讲授教学教材第2页例1。

  (1)教师板书关键数据:0℃。

  (2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

  (3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。

  (4)刚刚同学回答得很对,读法也很正确。

  (5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢用手势告诉大家好吗

  学生讨论合作,交流反馈。

  (6)请同学们把图上其它各地的温度都写出来,并读一读。

  (7)教师展示学生不同的表示方法。

  (8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。

  课堂作业

  完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。

  答案:—18℃温度低。

  课堂小结

  通过这节课的学习,你有什么收获

  课后作业

  完成练习册中本课时的练习。

人教版六年级下册数学教案 3

  教学内容

  (1)负数的初步认识

  (2)(教材第3页例2)。

  教学目标

  通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

  重点难点

  体会引入负数的必要性,初步理解负数的含义。

  情景导入

  教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的组织学生讨论回忆上一课内容。

  师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)

  新课讲授

  1。教学例2。

  (1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(—)或(+)”这一栏的数各表示什么意义吗组织学生分组讨论、交流,然后指名汇报。

  (2)引导学生归纳总结:像20xx,500这样的数表示的是存入的钱数;而前面有“—”号的数,像—500,—132这样的数表示的是支出的钱数。

  (3)教师:上述数据中500和—500意义相同吗(500和—500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗说说你是怎么表示的师把学生的表示结果一一板书在黑板上。

  2。归纳正数和负数。

  (1)你能把黑板上板书的这些数进行分类吗小组讨论交流。

  (2)教师展示分类的结果,适时讲解。像+8,+4,+20xx,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像—8,—4,—500,—20这样的数,我

  们把它叫做负数。

  (3)那么0应该归为哪一类呢组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”

  归纳:0既不是正数也不是负数,它是正数和负数的分界点。

  (4)你在什么地方见过负数教师鼓励学生注意联系实际举出更多的例子。

  课堂作业

  完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案:

  4 +41 51负数有:—7?

  3正数有:+

  课堂小结

  通过这节课的学习,你有什么收获

  课后作业

  完成练习册中本课时的练习。

  第2课时负数的初步认识

  (2)正数:+8负数:—8

  +4 —4 +20xx —20xx +500 —500 +100 —100 +20 —20

  0既不是正数也不是负数。

  第3课时在数轴上表示正数、0和负数

  教学内容

  借助数轴理解正数和负数的意义(教材第5页例3)。

  教学目标

  1。借助数轴初步理解正数、0、负数。

  2。初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。

  重点难点

  认识数轴、0。

  情景导入

  教师用CAI课件演示教材第5页的主题图。

  教师:如何在一条直线上表示出他们运动后的情况呢

  新课讲授教学例3。

  (1)教师:怎样用数来表示这些学生和大树的相对位置关系呢组织学生在小组中议一议,然后汇报。

  (2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的.数。

  (3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (4)教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。

  (5)引导学生观察数轴:

  ①从0起往右依次是从0起往左依次是你发现什么规律

  ②在数轴上分别找到

  和对应的点。如果从起点分别到和处,应如何运动

  师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。

  课堂作业

  1。完成教材第5页的“做一做”。学生独立练习,指名汇报。

  2。完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、订正。

  答案:

  1。略

  2。第4题:点A表示的数是—7;点B表示的数是—4;点C表示的数是—1;点D表示的数是3;点E表示的数是6。

  课堂小结

  通过这节课的学习,你有什么收获

  课后作业

  完成练习册中本课时的练习。

  第3课时在数轴上表示正数、0和负数

  上面这样的直线叫做数轴。

人教版六年级下册数学教案 4

  教学目标

  1、使学生初步认识对称图形,明白对称的含义,能找出对称图形的对称轴。

  2、通过观察、思考和动手操作,培养学生多种能力,渗透美的教育。

  教学重点

  理解对称图形的概念及性质,会找对称轴。

  教学难点

  准确找全对称轴。

  教学准备

  1、教具:投影片、图片、剪刀、彩纸。

  2、学具:蝴蝶几何图片、剪刀、白纸。

  教学过程

  (一)导入新课

  你们看这些图形好看吗?观察这些图形有什么特点?

  (图形的左边和右边相同。)

  你能举出一些特点和上图一样的物体图形吗?(人体、昆虫、房屋、衣服……)

  这些图形从哪儿可以分为左边和右边?请同学到前边来指一指。(指出中间的那条线。)

  你怎么知道图形的左边和右边相同?(看出来的……)

  还有别的办法吗?用手中蝴蝶图形动手试一试,互相讨论。(对折,图形左右两边完全合在一起,也就是完全重合。)

  你能不能很快剪出一个图形,使左右两边能完全重合?可以讨论,也可以看一看其他同学是怎么剪的。(把纸对折起来,再剪。)

  (二)讲授新课

  1、对称图形的概念。

  (1)对称图形和对称轴的.定义。

  以剪出的图形为例,贴在黑板上。

  问:你们剪出的这些图形都有什么特点?

  (沿着一条直线对折,两侧的图形能够完全重合。)

  师:像这样的图形就是对称图形。(板书课题)

  折痕所在的这条直线叫做对称轴(画在图上)。

  问:现在谁能准确说出什么是对称图形?什么是对称轴。

  板书:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是对称图形,折痕所在的这条直线叫做对称轴。

  (2)加深理解概念。

  以小组为单位,说一说,你刚才剪的图形叫做什么图形?为什么?画出自己剪的图形的对称轴。注意对称轴是一条直线,两端可以无限的延长。

  (3)巩固概念。(投影)

  ①判断下面的图形是不是对称图形?为什么?用小棒摆出对称轴。

  生:天安门、奖杯、汽车图是对称图形,金鱼图不是对称图形,无论怎样折,两侧都不能完全重合,因此也就没有对称轴。

  ②拿出从方格纸上剪下来的几何图形,折一折,看一看哪些是对称图形,画出它们的对称轴。个人完成后,按顺序摆放在桌子上,同桌互查,再指名按顺序说。

  投影出示,折一折,说明是否是对称图形,并在xx里写明有几条对称轴。

  生边回答老师边填在投影片上,并用小棒摆出对称轴。

  回答:

  1°任意三角形不是对称图形。

  2°等腰三角形是对称图形,有一条对称轴。

  3°任意梯形不是对称图形。

  4°正方形是对称图形,有四条对称轴。(学生再折一折,老师示范。)

  5°平行四边形不是对称图形。(再折一折,沿任何一条直线折都不重合。)

  6°长方形是对称图形。有两条对称轴。(有四条对不对,折一折。)

  7°圆是对称图形。有无数条对称轴。(在你那个圆上至少画出三条对称轴。)

  8°等腰梯形是对称图形,有一条对称轴。

  ③小结。

  问:决定一个图形是不是对称图形,具备什么条件?有几条对称轴由谁来决定?

  ④练一练

  打开书第125页“做一做”,读题后做在书上,一名学生做在投影片上,投影订正。

  第2个图和第4个图较难,要引导学生用对折的思想思考,关键找准第一条对称轴,其它就好找了。

  2、对称图形的性质。

  (1)结合实例思考:对称图形在沿着对称轴折叠时,为什么两侧的图形能够完全重合?投影对称图形,边观察边思考边讨论。

  (2)测量并归纳性质。

  打开书第125页,看下半部分的对称图形,用尺子量一量图中的A,B,C,D点到对称轴的距离分别是多少厘米?(保留一位小数)

  认真度量,结果填在书上,你发现什么?

  投影订正。填后的结果:

  A点到对称轴的距离是0。6厘米。

  B点到对称轴的距离是1。2厘米。

  C点到对称轴的距离是0。6厘米。

  D点到对称轴的距离是1。2厘米。

  问:根据测量的结果你发现什么?

  (A,D两点及B,C两点都分别在对称轴两侧。A,D两点到对称轴的距离相等,都是0。6厘米;B,C两点到对称轴的距离也相等,都是1。2厘米。)

  问:根据度量结果,你们能总结出对称图形的性质吗?

  板书:在对称图形中,对称轴两侧相对的点到对称轴的距离相等。

  (3)验证性质。

  量一量五角星对称轴两侧到相对应的点到对称轴的距离是否相等。

  看126页上面三幅图,同桌指着图形说出谁和谁是相对的点,相对点到对称轴的距离是多少。反过来,如果图形两侧相对应的两点到图形中线距离都相等,那么这个图形就是对称图形,中线就是对称轴。

  (三)课堂总结

  今天这节课我们学习了什么?什么样的图形叫对称图形?什么是对称轴?对称图形具有什么性质?为什么有很多建筑、生活用品都是对称图形?

  (四)巩固练习

  1、第127页1题,画出对称轴。

  2、在你周围的物体上找出三个对称图形。

  3、让学生把一张纸对折,用笔画出图形一半,然后剪出来,打开看一看是什么图形。也可按第127页第3题先画、再剪。

  4、你能否应用对称图特点,剪出美丽的窗花或五角星。

人教版六年级下册数学教案 5

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的`顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

人教版六年级下册数学教案 6

  教学目标:

  1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

  2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

  3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

  教学重点:

  初步认识正数和负数以及读法和写法。

  教学难点:

  理解0既不是正数,也不是负数。

  教学具准备:

  多媒体课件、温度计、练习纸、卡片等。

  教学过程:

  一、游戏导入(感受生活中的相反现象)

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)

  ②向前走200米(向后走200米)

  ③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。

  ②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。

  ④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  二、教学例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

  (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

  (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的`气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

  ① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  负号能不能省略不写?为什么?

  ② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

  3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

  2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

  你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

  吐鲁番盆地的海拔可以记作:-155米。(板书)

  (2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

  四、小组讨论,归纳正数和负数。

【六年级下册数学教案 】相关文章:

六年级下册的数学教案07-16

六年级下册数学教案05-06

六年级下册数学教案(精选)08-27

六年级下册人教版数学教案11-08

六年级下册数学教案01-19

【精选】六年级下册数学教案06-15

六年级下册数学教案【推荐】02-13

六年级下册数学教案(优秀)08-27

六年级下册数学教案(热)06-25

六年级下册的数学教案精选[15篇]07-17