现在位置:范文先生网>教案大全>数学教案>小学数学教案

小学数学教案

时间:2023-06-29 08:18:49 数学教案 我要投稿

【精选】小学数学教案模板锦集8篇

  作为一名无私奉献的老师,很有必要精心设计一份教案,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写才好呢?以下是小编收集整理的小学数学教案8篇,仅供参考,希望能够帮助到大家。

【精选】小学数学教案模板锦集8篇

小学数学教案 篇1

  教学目标:

  1、根据统计结果回答问题、发现问题,进行简单的预测和较为合理的判断。

  2、让学生进行一些社会调查,体验实践性和现实性,激发学生的学习兴趣,培养学生的应用意识。

  教学重点:

  让学生选择记录方法作记录,并体会哪种记录方法既清楚又方便。

  教学难点:

  根据统计表提出问题并初步进行简单的预测。

  教学过程:

  一、情境引入

  教师谈话:同学们,新的学期已经开始了几天,我们的学习生活正逐渐步入正轨,今天,老师要请你们帮忙,为老师评选一名数学学习委员。

  教师出示评选条件

  1、数学成绩优秀。

  2、愿意为大家服务,乐意为数学老师服务。

  师:你想推荐谁当数学科代表?(学生自由发言并说出理由。)

  教师根据学生的回答,筛选出两位学生的名字写在黑板上,如

  教师:刚才我们通过筛选选出了两位合适的同学,那么,这两位同学哪个更合适呢?我们要从这两位同学中选一位,你有没有合适的方法?引入课题。

  二、出示学习目标

  1、学习用记录的.方法收集、整理数据。

  2、根据统计结果回答问题、发现问题,进行简单的预测和较为合理的判断。

  三、师生合探

  1、用我们上节课学习的举手统计的方法可行吗?为什么?

  2、我们如何 收集数据?

  生汇报(学生自由发言。)

  师小结:举手投票,存在很多人情因素,有时会出现其他同学不公平、不服气的情况,影响同学之间的和睦相处,那有没有更公平、公正的方法呢?出示小精灵的话:可以用投票的方式来决定谁能担数学学习委员。

  教师讲解投票的方法,拿出准备好的小纸张,从黑板上选一个你心目中的科代表的名字。

  学生动笔写,将写好的纸张折好,由小组长收上来。

  师:现在老师要从这些纸张里拿出一张,报出名字,同学们要想办法把它记在纸张上,老师报一个,你记一个,一直到把这些纸张记完。请小组讨论一下,你们准备用什么方法来统计数?(提示学生:纸张很多,报得又很快,必须抓紧时间统计,最好能分工合作。)

小学数学教案 篇2

  设计说明

  本节课是按照“图形间的规律—数字间的规律—数组中的规律—找规律解决问题”这一顺序进行复习的。同时在细节上又注意以下几点:

  1.知识点、习题的设计由浅入深,易于学生掌握。

  教学中,教师通过设计各种教学活动,对知识进行系统的复习,层次清晰,难易适度。关注一年级学生的实际接受能力,从而达到更好的复习效果。

  2.充分发挥学生的独立自主能力,培养他们归纳、总结的能力。

  课前准备

  教师准备 PPT课件

  学生准备 图形卡片

  教学过程

  ⊙导入新课

  师:这节课我们一起复习找规律的相关知识。(板书:找规律)请同学们回忆一下,这学期我们都学习了哪些有关找规律的知识呢?

  (图形的排列规律,数字和数组的排列规律)

  教师根据学生的回答板书。

  设计意图:通过学生对找规律相关知识的复习,引导学生回忆相关知识,为下面的复习作铺垫。

  ⊙复习整理

  师:同学们的记忆力真好,这节课我们就来复习这两方面的知识。

  1.复习图形的排列规律。

  (1)课件出示。

  (2)提问:这组图形是按照怎样的规律排列的呢?你能继续画下去吗?

  预设

  生1:这组图形是按照一个正方体,两个上下放的正方体,一个正方体,两个上下放的正方体……重复出现的规律排列的。

  生2:如果要继续画下去,应该接着先画出一个正方体,再画出两个上下放的正方体。

  (3)如果只出示

  这一组图形,你还能找到它们的排列规律吗?(引导学生说出不能找出规律,只有三组以上重复出现的一组图形才能确定排列规律)

  (4)提问:如果用数字表示出这组图形的'排列规律,该怎样表示呢?(学生独立完成)

  (5)巩固练习。

  □△△△□△△△□△△△ ____ ____ ____ ____

  (6)教师小结。

  图形、数字或其他事物以不同的颜色、形状及其他形式为一组重复排列,就称之为有规律的排列。

  数字和图形的排列规律是相对应的,图形的排列有什么规律,数字的排列就有相应的变化规律。

  2.数的排列规律。

  (1)课件出示。

  3 6 9 12 15 ____ ____

  (2)仔细观察,发现数的排列规律。

  (所给数是按照从小到大的顺序排列的,后一个数总是前一个数加3得到的)

  (3)根据发现的规律填出横线上的数。

  (4)教师说明:这组数中相邻两个数的差都是相同的,这样的一列数叫等差数列。

  提问:你能根据等差数列的特征,自己写出这样排列的一组数吗?

  (引导学生自己写出一组等差数列,并说明自己写出的数列的排列规律)

小学数学教案 篇3

  教学目标:

  通过复习能比较熟练地口算一位数除整百、几百几十的数,能比较熟练地笔算一位数除三位数。培养学生估算能力和估算意识,养成良好的检查习惯。

  复习过程:

  一、基本训练

  1、P15.1

  出示口算题,学生先独立口算,再指名口算,并选择几题要求说出口算依据。

  2、P15.2

  分组练习,组织比较。进一步掌握三位数除以一位数的计算方法。

  评讲,归纳计算的注意点。

  3、P15.3

  学生独立完成计算。

  组织评讲。

  总结归纳:你在计算中发现了什么?

  4、P15.4

  引导学生理解题目意思。

  学生独立完成。

  组织讨论:本题的数量关系是什么?

  二、课堂练习

  1、720是6的( )倍,它里面有( )个4。

  2、根据4606=784填写算式:76( )+( )=( )

  3、从300里连续减去6,减( )次正好是0。

  4、如果没有余数的'除法中,商除数+余数=128,被除数=( )。

  5、最大的一位数除三位数,余数最大是( )。

  6、408是4的( )倍。

  7、831是3的多少倍?9除927是多少?

  三、全课总结

  四、作业:P15.1~3

小学数学教案 篇4

  教学内容:

  15减几

  教学目标:

  1、掌握15减几的计算方法,能熟练地口算15减几的计算题。

  2、经历探究15减几计算方法的过程,感受退位减法计算方法的普遍适用性。

  3、在学习过程中获得成功体验,坚定学好数学的信心。

  教具准备:

  视频展示台、相关课件。

  教学过程:

  一、复习引入口算。

  12-4=

  11-6=

  13-5=

  12-7=

  11-3=

  14-8=

  学生口算出结果后,抽学生说一说13-5和12-8的具体计算过程。

  教师:我们在前面学习了11减几,13减几的基础上,这节课继续学习15减几。板书课题:15减几。

  二、进行新课

  校园一角有一块空地,学校决定给空地披上绿荫,因此全校同学响应号召,都去植树,瞧,这边有4个小朋友正在植树。(出示课件例2)

  4个小朋友有植15棵树的任务,大家一起来看看他们完成任务没有啊?学生观察图后回答。

  教师引导学生提出数学问题:还要植多少棵?同时教师鼓励学生列出算式:15-9=

  教师:同学们,开始我们学习了14减几,那么你们能不能用相同的方法来计算15-9?

  教师组织学生小组交流讨论,将交流的结果告诉大学,教师选取3种,板书:

  因为6+9=15,所以15-9=6。

  10-9=1,5+1=6

  15-5=10,10-4=6

  教师小结:同学们想出这多么的`方法来计算15-9,非常好。请你们用上面的方法完成15-7、15-8中的1道题,选择你自己喜欢的一题,把自己的算法在小组里交流。

  学生先独立计算,再把自己的算法在小组里交流,最后每组出1名代表将本组的算法讲给全班同学听。

  教师引导学生发现两道题的联系:两道题都能想一个加法算式来计算,由7+8=15,可以计算两道减法算式:15-7=8,15-8=7。

  教师让同桌的一个同学说一道加法算式,另一个同学说两道能用这个加法算式计算的减法算式。学生完成后,集体订正,并请学生说一说自己是怎么计算的?

  三、巩固练习

  指导学生按课堂活动的方式写出15减几的算式,完成课堂活动题。

  四、课堂小结

  这节课你学习了什么?学会了什么?有什么成功的发现?

小学数学教案 篇5

  教学目标:

  1、通过比较分数的大小,加深对分数意义的理解。

  2、能比较分母相同的或分子是1的两个分数的大小。

  3、培养学生动手操作,观察比较和初步对比、总结的能力。

  4、在引导学生探索知识的过程中,培养学生良好的学习习惯。

  教学重点、难点

  掌握比较分数的大小的方法,能正确比较分母相同或分子是1的两个分数的大小。

  教具准备

  1、投影仪及相应的投影片

  2、完全相同的正方形纸若干张,水彩笔

  教学过程

  (一)复习导入

  1、创设情境,复习旧知

  在前面我们已经认识了几分之几的分数,同学们能够通过折纸的方法表示出一些你喜欢的分数吗?

  (1)学生用纸折分数

  (2)小组交流自己是怎么做的,表示出了那些分数。

  (3)全班交流汇报展示的过程,有针对性的张贴并板书四组分数:(3/4,1/4)、

  (1/4,1/2)、(3/8,1/8)、(1/8,1/6)。

  2、观察分数,组织分类。

  刚才老师把同学们展示的分数张贴了四组,请同学们仔细观察一下这四组分数,你能给它分一下类吗?

  (1)学生独立观察每组分数的特点

  (2)小组讨论交流如何分类

  (3)全班交流:小组选代表陈述分类的思维过程。

  (4)教师小结:我们把分数分成了两类:一类是分母相同,分子不同,像3/4和1/4、3/8和1/8,一类是分子都是1,而分母不同,像1/4和1/2、1/8和1/6

  3、引导质疑,引入课题

  对于刚才我们分出的这两类分数,大家想研究它们哪方面的问题?

  (1)生充分说出自己的想法:

  生1:我想知道两个分数哪一个大,哪一个小?

  生2:我想知道两个分数的和是多少

  生3:…

  (2)有选择的解决问题

  同学们提出的问题可真多,下面我们就来解决比较一下两个分数,哪个大哪个小这一问题,好吗?(板书课题:比大小)

  (二)探究新知:

  1、比较分母相同的分数的大小。

  (1)质疑:

  “3/4和1/4谁大?你是怎么想的,四人一组拿出手中另一张正方形纸分一分,涂一涂,发挥集体的力量,看能不能得到答案”

  (2)四人一组合作学习,分一分,涂一涂,比一比,说一说。

  (3)交流汇报。

  ①出示图(见课本61页右上图)。

  ②小组选代表说出比的思维过程

  (3)教师小结:

  把两张完全相同的正方形纸平均分成四份,表示其中的3份,也就是三个1/4,而另一张纸表示其中的一份,也就是一个1/4,3个1/4比一个1/4大,所以3/4>1/4。

  (4)用同样的方法比较3/8和1/8的大小。

  ①出示图(见课本61页中间左边图)。

  ②学生争当“小老师”自行讲解比的过程。

  2、比较分子是1的分数的大小。

  (1)质疑:

  “1/4和1/2谁大呢?大家是怎么想的,用刚才比较的方法,四人一组想一想”。

  (2)四人一组合作学习,分一分、涂一涂、比一比、说一说。

  (3)交流汇报。

  ①出示图(见课本61页右上图)。

  ②小组选代表说出自己小组比较的思维过程。(师适当引导并小评)

  (4)教师小结:

  把两张完全相同的正方形纸,一张平均分成4份,表示其中的一份,就是1/4;而一张纸平均分成2份,表示其中的1份,也就是1/2。4份中的一份,比2份中的一分少,也就是平均分的份数越多,每一份反而越少,所以1/4<1/2。

  (5)用同样的方法比较1/8和1/6的大小。

  ①出示图(见课本61页中间右图)。

  ②学生自告奋勇讲解比较的过程。(师适当引导并鼓励)

  ③根据分类总结比较大小的策略。

  (1 )学生独立思考比较大小的`方法。

  (2 )小组交流如何用简洁的语言描述比较大小的方法。

  (3 )全班交流,归纳总结:分母相同看分子,分子大的分数大,分子小的分数小;分子是1的分数比大小,分母越大分数反而越小。

  (4 )拓展延伸

  为什么?说明:分母相同,表示把一个整体平均分成的份数相同,那么每一份的大小就相同,分子大的表示取得份数,分数就大;分子小的表示取得份数少,分数就小。

  分子是1的分数表示都取其中的一份,分母小的表示把一个整体平均分得的份数少,其中的1份反而大;而分母大的表示平均分得的份数多,其中的一份反而小。

  (三)巩固、实践、应用。

  1、给分数先涂上颜色再比较大小(见课本61页下图)。

  要求学生先独立完成,说一说是怎么想的。

  2、按份数涂颜色,并比较分数的大小。(投影出示)

  (1)、学生独立看一看、涂一涂、比一比。

  (2)小组交流

  (3)全班汇报交流

  3、电脑出示题意:怎样才能平均分呢?

  (1)学生独立审题。

  (2)小组交流,把自己分的思维过程讲给同伴听。

  (3)全班交流。

  (4)教师小评:

  同学们表现的很出色,能够运用自己的智慧独立解决一些问题,希望同学们继续努力。

  (四)课堂小结。

  通过今天的学习你有什么更新的收获?

  通过今天的学习,我们对分数有了进一步的理解,学会了比较分数大小的方法,知道了比较分数的大小分两种情况,也就是分母相同还有分子是1的时候。分母相同时,看分子,分子越大分数越大,当分子是1时,分母越大,分数反而越小。

小学数学教案 篇6

  教学内容:

  有余数除法的一些练习题。

  教学目标:

  通过练习,让学生加深对有余数除法的理解,掌握好用竖式计算的方法并能正确地进行计算。

  教学过程:

  1.括号里最大能填几

  3×()<16 ()×5<41 6×()<338×()<65

  23>()×73×()<19()×4<275×()<23

  7×()<37()×9<426×8>5×()

  让学生独立思考后指名回答,说一说是怎么想的。

  2.列竖式计算

  65÷7= 25÷5= 52÷6=

  3.填上合适的.数。

  △÷8=□……☆☆最大是()

  △÷☆=□……3☆最小是()

  □÷4=6……△□最大是()

  4.你会解决下面的问题吗?(让学生独立思考自己完成,集体交流。)

  (1)35个车轮最多能装几辆小轿车?

  (2)19包牛奶,平均分给4个小朋友,每人分得几包?还剩几包?

  (3)46个同学要乘车去观光,每辆车限乘5个,需要几辆车?

  (4)一星期有7天,三月份有31天,这个月有几个星期零几天?

  (5)果园现在有55箱水果,每辆运输车最多能装8箱水果,

  (提问题并解答)

  (6)同学们排队做缆车上山,每辆缆车有4个座位,小红站在第5位,应坐第几辆缆车?小明站在第25位,应坐第几缆车?

小学数学教案 篇7

  教学目标

  1.使学生初步知道0的三个含义,通过直尺认识0在数中的顺序,会读写0.

  2.指导学生规范写0,培养学生书写能力.

  3.引导学生观察图,感悟数学知识的魅力.

  教学重点

  1.初步知道0的含义,0在数中的顺序,会读写0.

  2.指导学生规范书写,养成良好的书写习惯.

  教学难点

  理解0的三个含义

  教学过程

  一、创设情景,激发兴趣.

  教师:大家喜欢听故事吗?你们听过《小猫钓鱼》的故事吗?

  二、观察画面,引入新课

  (一)出示主题图.

  教师:你猜猜故事里的小猫是哪一只?你是怎么知道的呢?

  别的小猫钓了多少条,你们知道吗?你们能把这些数写在下面的田格里吗?

  1.出示图片

  (1)学生在书上写数.

  (2)展示

  教师:小黄猫一只也没钓着,在他的下面应该写几呢?(写 0)

  2.出示图片

  教师:今天我们就来学习0的认识.

  (板书:0的认识)

  教师:你们的知识可真丰富!0也和1、2、3这些数一样,也是一个数.

  师指着小猫下面的0问:在这里0表示什么呢?

  (二)感知0的另两种含义.

  教师:你还在哪见过0?

  我们在直尺上发现了0,请同学们拿出直尺看一看.

  1.出示图片

  教师:直尺上的数是怎样排列的?这些数是从几开始的?

  (这些数是按顺序排列的,从0 开始的)

  这个0表示什么呢?小组同学互相说说.

  谁来说说你们组的意见?

  小结:直尺上的这个0,表示开始,起点的意思.

  2.出示图片

  教师:在温度计上也有0,这个0又是什么意思?

  教师:0度是水变成冰的温度,当温度下降到0度时水就开始结冰了.

  三、学习写0.

  (一)教师:我们在这么多地方见过0,0是怎样写出来的.,请看大屏幕.

  1.课件演示:0的写法

  2.边演示边讲解:

  0是一笔写成,起笔在右上边线中间偏上一点,向上碰到上边线,再向左下写,写

  到横竖中线焦点的地方,与竖中线接触,然后向右下拐,到下边线中间偏左的地方与下线接触,再往上拐到中线附近,与右边线接触,再继续向上,收笔处与起笔处相连接.

  教师:请你用手指和课件演示一起写一遍.

  (二)出示图片

  1.学生练习书写.

  2.出示学生作品.

  教师:你认为他哪写的好,哪还需要改进呢?

  (三)出示图片

  1.教师:你能把下面的空格写完吗?

  2.出示学生写法

  001 002 003 004 005

  006 007 008 009 010

  001 002 003 004 005

  001 002 003 004 005

  教师:哪种写法对呢?为什么?

  (这两种方法都对,第一种是接着写的,第二种是照样子写的.)

  教师:你们写得真棒!在写好字的同时,还注意了写字的姿势.下面我们一起来休息一下.

  课间休息:播放歌曲《小猫钓鱼》

  四、课堂练习

  (一)出示图片:请你从0开始,按顺序把这些数连起来

  教师:你们画出的是什么呢?(小熊举重)

  谁还想把你的作品 给大家看看?

  (二)出示图片:怎样数得快?

  教师:请你先想想,怎样数快,再把你的想法和小组同学说说,看谁的方法最快.

  活动目的

  1.使学生加深对5以内数的认识.

  2.培养学生的创新思维能力.

  活动过程

  1.教师出示活动题目:在0、1、2、3、5这5个数中,哪一个数与众不同?

  2.学生分小组讨论.

  3.学生集体交流.

  分析与参考答案

  一个数是不是与众不同,要看选择怎样的标准,选择不同的标准,就会有不同的与众不同,下面只是几种不同的说法:

  0与众不同,理由是只有0小于1,而其他3个数都大于1;也可以说1的起笔和收笔是重合的,所以0与众不同;

  1与众不同,因为只有1是处于两个双数中间;

  2与众不同,因为有两个数比2小,有两个数比2大,2处于中间位置;

  3与众不同,因为在3个单数中,3处于正中间的位置;

  5与众不同不同,因为0、1、2、3这三个数都是一笔写成,而5是用两笔写成;也可以说只有它大于3,而其他三个数都小于3;还可以说前面四个数中,相邻两个数都相差1,只有5与3是相差2;因此5的确与众不同;

  从上面的解答来看,一道题的答案不一定是唯一的,可以是多种多样的.

  活动说明

  这个探究活动的答案还有很多种,只要学生说出自己的理由,都应该算正确.

小学数学教案 篇8

  认识形体

  长方体、正方体的面、棱、顶点,结构与特征。(例 1、例2)

  长方体、正方体表面的展开图(例3)

  表面积

  表面积的意义和计算方法(例4)

  表面积的实际应用(例5)

  体积

  体积的意义、容积的意义(例6、例7)

  常用的体积单位和容积单位(例8)

  长方体、正方体的体积计算公式(例9、例10)

  体积单位的进率及简单换算(例11)

  整理与练习实践活动

  第一, 有一条合理的编排线索。先教学长方体、正方体的特征,再教学它们的表面积,然后教学体积,是一条符合知识间的发展关系,有利于学生认知的线索。把形体的特征安排为第一块内容,能为后面的表面积、体积的教学打下扎实的基础。如果不理解长方体的6个面都是长方形,且相对的面完全相同,就不可能形成长方体表面积的计算方法。如果不建立长方体的长、宽、高的概念,体积公式就是无本之木、无源之水。把表面积安排在体积之前教学,是因为学生已经有了面积的概念,掌握了常用的面积单位,会计算长方形、正方形的面积,教学表面积的条件比体积充分。而且通过表面积的教学,更深一层掌握长方体、正方体的特征,对教学体积是有益的。在体积这部分知识里,先教学体积的意义和常用单位,这些都是重要的基础知识。建立了体积概念和体积单位概念,才能探索体积计算公式。把体积单位的进率安排在体积公式之后教学,就能通过计算获得进率。这样,体积单位的进率就是意义建构的,而不是机械接受的。

  第二,加强了空间观念。教学长方体和正方体,历来都很重视发展空间观念。本单元不仅在传统的基础知识的教学时加强培养,还充实了长方体、正方体表面展开的内容。过去教材里讲长方体的表面展开是为了教学它的表面积及计算,现在教学表面的展开,更是为了发展空间的观念。《数学课程标准(实验稿)》把几何体与其展开图之间的转化作为空间观念的一个内容,把能进行这些转化作为空间观念的一种表现。教材一方面把正方体、长方体纸盒展开,在展开图里找到原来形体的每个面;另一方面又提供一些图形,把它们折叠围成立体,感受图形的各部分在立体上的位置,让学生的空间观念在这些活动中实实在在地获得发展。另外,设计的五道思考题和实践活动《表面积的变化》,加大了空间想像的力度,都以发展空间观念为主要目的。

  第三,注重知识的实际应用。本单元教学的知识与学生的日常生活有密切的联系。在现实的问题情境中能发现和认识数学知识,习得的概念和方法能应用于解决实际问题。教材尽力从数学的角度提出问题、解释问题,引导学生综合应用数学知识、技能解决问题,处处能看到数学与生活的有机结合。如认识长方体、正方体的特征以后,收集这样的实物并量出长、宽、高或棱长;在做纸盒和鱼缸的实际问题中教学表面积的计算和应用;用初步建立的体积(容积)概念比较物体的大小;用学到的体积单位计量常见物体的体积、常见容器的容量;灵活应用体积公式计算沙坑里沙的厚度、塑胶跑道的用料问题

  一、 观察、整理认识长方体、正方体的特征。

  例1教学长方体和正方体的特征,把主要精力放在长方体上。这是由于长方体比正方体复杂,发现长方体的特征需要开展许多活动。而且,研究长方体的学习活动经验可以迁移到认识正方体中去。例题呈现一些图片,如长方体或正方体包装盒、家用电器等,在图片的启发下说说生活中哪些物体的形状是长方体,哪些物体的形状是正方体。在现实的情境中引出本单元的研究对象。

  观察实物,整理特点是认识长方体、正方体的主要教学活动。例1的教学过程安排成三步。

  1. 观察物体,理解直观图,认识面、棱和顶点。

  三年级(上册)通过观察长方体和正方体,已经知道在不同位置看到的面的个数不同。有时只能看到一个面,有时能同时看到两个面,最多能同时看到三个面。例题以这些经验为教学起点,在观察物体的基础上理解长方体、正方体的直观图,认识它们的面、棱和顶点。

  把立体的样子画在纸上,从长方体、正方体实物到它们的直观图,是空间观念的一次发展。在实物上只能看到一部分面,在直观图上实线围出了能看到的面,用虚线勾画不能直接看到的面。把立体与其直观图有机联系,感受直观图真实表达了立体的形状,并在看到直观图时,能想到相应的立体,这是空间观念的表现。直观图是教学难点,从有利于学生理解出发,可以分两步出现。先画出能够看到的面,再勾出不能看到的面。

  面、棱和顶点是长方体、正方体结构的要素,是三个最基本的概念,还是研究长方体、正方体特征的出发点。按面棱顶点的次序教学,有利于建构它们的意义。物体有面是已有认识,只要在立体上摸摸面,在直观图上指出面,就体会了长方体、正方体的面,不必作过多的解释。两个面相交的线叫做棱,是对棱的数学解释。要通过观察和在实物上的演示,直观感受两个面相交的含义,清楚地看到相交处是线。要强调这条线不能叫做长方体、正方体的边,应称作棱。三条棱相交的点叫做顶点,要通过在实物上摸一摸、在直观图上指一指等活动,看到每一个顶点都是三条棱的交点,这是认识顶点的关键。

  2. 观察物体,由量到质认识长方体的特征。

  第11页认识长方体的特征,鼓励主动探索,重视合作交流,遵循逐渐认识的规律。首先数出长方体、正方体有几个面、几条棱和几个顶点,并把结果填在教材预设的表格里,从量的角度认识长方体、正方体的特征。填表能起三个作用:一是及时记录获得的信息,防止流失,有利于特征的整体性;二是通过写出有关的数量,加深印象,有利于记忆;三是显示出长方体、正方体都有6个面、12条棱和8个顶点,有利于感受长方体与正方体的联系。接着深入研究长方体的特征,教材提示了可进行的活动是看、量、比;研究的对象是长方体面的形状与大小,棱的长度与相互关系;研究的目的是发现长方体的特征。在学生充分活动的基础上组织交流,概括出长方体的特征。教学时要注意四点:① 学生对长方体特征的认识很难一步到位,总是由表及里、由浅入深地发展的。认识长方体的特征既让学生自主探索,又要教师引导点拨。如发现6个面都是长方形比较容易,而相对的面完全相同往往需要教师引导学生去关注、去比较。至于长方体的3组棱及每组4条棱长度相等,可能更需要教师给予点拨。再如学生的发现往往是局部的、点滴的,表达往往是不严密的,这就需要教师汇集生成的资源,提升语言水平,帮助抽象概括。② 例题里观察的是一般的长方体,目的是紧扣长方体的本质特征教学。把较特殊的长方体安排在练习三第1、2题里出现,学生不会因为它有两个面是正方形,对它是长方体产生怀疑。这样安排也符合正方体从属于长方体的关系。③ 学生间的学习方式总是多样的,部分学生喜欢探索发现,也有部分学生需要有意义的接受,合作交流能满足学生的不同需要。要让独立探索有困难的学生共享成果,在听懂同伴发言的基础上,给他们亲自验证、亲身感受的机会。④ 教学长、宽、高是继续认识长方体,要在顶点与棱的概念的基础上进行。必须清楚相交于一个顶点的三条棱分别是长方体三组棱中的一条,把它们分别叫做长方体的长、宽、高。不但要在立体上指出,还要在直观图上看出。如果适量地把长方体横放、竖放、侧放,根据不同的摆放位置,让学生说说它的长、宽、高,可以防止死记硬背,发展空间观念。

  3. 观察物体,独立发现正方体的特征。

  由于正方体比长方体简单,又有认识长方体特征的经验,所以正方体特征的教学会比较轻松。教材先提出正方体的面和棱各有什么特征这个研究课题,让学生在独立探索以后,小组交流自己的发现。尽管正方体的特征比较简单、容易得出,教学也不能过于仓促。仍要让学生指指相对的面、相对的棱,说说得出结论的过程与方法,想想6个面是完全相同的正方形与12条棱长度相等之间有什么必然联系使形象思维与抽象思维,以及数学活动的能力都得到发展。

  二、 展、折,想像认识长方体、正方体的展开图。

  第12页教学正方体、长方体的展开图,这部分内容的教育价值和教学要求,在前面介绍本单元教材编排特点时已经阐述,不再重复。这里主要分析教材,提出教学建议。

  1. 初步知道展开图的含义,加强对正方体的认识。

  例3先教学正方体的展开图,原因仍然是正方体的特征比较简单。例题详细展示了把正方体纸盒展开的步骤,用红线标出每步剪开的棱,最后还把剪开后的纸盒摊平。引导学生首次经历立体到展开图的转化过程,从中明白展开图是平面图形,清楚地看到展开图由6个相同的正方形组成。教学这道例题要注意反思,即得到正方体展开图以后,要回忆是怎样展开的,思考为什么展开图里有6个同样的正方形,正方形的边与正方体的棱有什么联系通过反思,既加强对展开图的认识,又加强对正方体特征的认识,更通过立体与展开图关系的思辨发展空间观念。

  除了依照例题设计的剪法展开,还可以沿其他的棱剪。大象卡通提出的要求,是让学生再次进行展开正方体的活动,体会沿着不同位置的棱剪,得到的展开图形状不同。但是,展开图由6个相同的正方形组成,每个正方形的边都是正方体的棱是相同的。从而理解正方体展开图既有多样性,又有确定性。多样性是剪法不同的结果,确定性是正方体的特点决定的。

  2. 自主研究长方体的展开图,加强对长方体的认识。

  长方体的展开图安排在试一试里让学生剪纸盒得到,学习正方体展开图的经验和体会能支持他们主动地操作、交流。沿着哪几条棱剪?在教材里没有规定,可以自主选择。因此,得到的展开图也是多样的,在每个展开图里都可以看到6个长方形,从而体验了长方体展开图形状的多样性和组成的确定性。卡通提出的从展开图中找到3组相对的面是富有思维含量的问题,能引发学生细致地研究展开图,并把展开图与立体联系起来思考。要鼓励学生进行展开图长方体展开图长方体的折、展活动,反复地看展开图里的每一个长方形,想它在长方体的位置;看长方体的面,想它在展开图里的位置。在体验立体与展开图相互转化的过程中发展空间观念。

  另外,在展开图上想长方体的长、宽、高,并把长、宽、高转换成展开图中各个长方形的长与宽,也有益于空间观念的发展,还能为表面积的教学作铺垫。

  3. 判断哪些图形折叠后能围成正方体或长方体,加强对体的认识。

  第12页练一练第2题提供的每个图形都由6个相同的正方形组成,判断这些图形中哪些折叠后能围成正方体。第14页第5题的每个图形都由6个长方形组成,判断哪几个图形能折叠后围成长方体。其中部分图形围不成正方体或长方体的原因是,折叠的时候部分正方形或长方形重叠,构不成有6个面的立体。因此,这两道题一方面加强了展开图与立体的转化,另一方面加强了对长方体、正方体都有6个面的认识。

  学生进行这些判断会有困难,为此提出两点教学建议: 第一,在例3和试一试里要把沿不同的棱剪纸盒得到的各个展开图充分进行展示和交流。先认识图中所示的标准状态的展开图,再体会展开图还有其他形状,并在各个展开图上指出立体的相对的面。第二,允许学生灵活地先想后围或者先围后想。如果看到的图形是标准的或接近标准状态的,可以先判断它能否围成立体,想想围成的立体是什么样子,然后折叠验证判断和想像。如果看到的图形不是标准状态的,能不能围成立体难以判断,可以先动手操作,从中体会为什么能围成或围不成立体。

  三、 分解,组合有意义地建构表面积的知识。

  教学表面积知识编排的两道例题都是关于长方体的,正方体的表面积通过试一试在练习中教学,这是因为长方体表面积的概念和计算方法能迁移到正方体上去。表面积的教学分两步进行,先是例4与试一试,把表面积的意义和算法结合在一起。然后是例5,着重于表面积知识的应用,灵活地解决与长方体、正方体表面积有关的实际问题。

  1. 联系已有知识经验,探索表面积的知识。

  例4的问题情境是做一个长方体纸盒至少要用多少硬纸板,在掌握长方体特征的基础上,学生会想到这个问题与长方体各个面的面积有关,并出现不同的计算方法。猴子卡通和兔子卡通的算法是比较典型的两种方法,它们有相同的思路:求出纸盒各个面面积的总和,但算法不同: 把3组相对的面的面积相加,把每组相对面中各个面的面积和乘2。前一种算法得益于第13页第3题的铺垫,后一种算法受到了(长+宽)2=长方形面积的启发。两种算法都是计算长方体表面积的较好方法,相同的思路和乘法分配律沟通了两种算法的内在联系,教材鼓励学生选用自己喜欢的方法算出结果。

  学生求至少要用多少硬纸板所想到的各种算法,都应用了分解组合的思想方法,即先把一个较复杂的新颖问题分解成若干个简单问题,再把这些简单问题组合起来。反思并体验这种思想方法,就能很好地理解表面积的意义,也不需要机械地记忆表面积的算法。学生对正方体有完全相同的6个正方形已经有深刻的认识,试一试求做正方体纸盒至少用多少硬纸板,一般都会把一面的面积乘6。得出的长方体(或正方体)6个面的总面积,叫做它的表面积,既形成了表面积的概念,也总结了计算表面积的方法。

  2. 联系生活经验,灵活解决实际问题。

  例5制作上面没有玻璃的鱼缸,利用长方体表面积的知识解决实际问题。通过实物图帮助理解这个实际问题的特点,让学生明白所用玻璃的面积是长方体5个面的面积和,从而主动想出算法。小鸟卡通和兔子卡通仍然应用了分解组合的思想方法,把实际问题抽象成求前、后、左、右和下面5个面的面积和的数学问题,或者抽象成从表面积(6个面的总面积)里去掉一个面的面积的数学问题。两条思路各有特点,前一条突出的是空间想像,要找准并正确计算有关的各个面的面积。后一条的思路负荷轻、思考难度小,能减少错误的发生。还有其他方法吗主要反映在按小鸟卡通的思路,可以列出5个面的面积连加的式子,也可以列出前、后两个面的面积加左、右两个面的面积,再加下面面积的式子。要注意的是,这道例题鼓励解决问题的策略与方法多样,并不要求学生能够一题多解。教材仍然让学生选择一种算法。

  练一练和练习四里还有只计算长方体的前、后、左、右4个面面积和的实际问题,缺少左侧面的长方体的问题等。教材为部分习题配了示意图,便于学生直观感受实际问题是求哪些面的面积之和。部分习题没有配置实物图,可以在现实的生活空间里思考。如粉刷平顶教室的顶面和四周墙壁,只要看看自己的教室,就能把题目里的长、宽、高落到实处。又如台阶的问题,可以找个台阶看看,理解什么是它的占地面积以及地砖铺在哪些面上。计算长方体火柴盒的内盒和外盒所有的材料,综合应用了长方体特征和表面积知识,再次体验实际问题是多变的,要灵活应用知识才能正确解答。

  四、 实验、领悟初步建立体积概念。

  例6和例7分别教学体积的意义和容积的意义,容积的意义要建立在体积概念上,因而例6是这部分教材的重点。学生形成体积概念也是教学的难点,这两道例题的教学只能初步感受体积的含义,在后面教学常用的体积单位,以及长方体、正方体的体积计算时,还要通过测量和描述,进一步理解体积的意义。

  1. 在有限的空间里领悟体积。

  物体所占空间的大小叫做体积。空间物体占有空间所占空间的大小都是体积概念的内涵,是建立体积概念必须解决的子概念。例6利用杯子的空间,把感悟体积的过程设计成三步。第一步是初步体会空间和物体占空间。两个同样的玻璃杯,左边的盛满水,右边的放一个桃,把左边杯里的水倒向右杯,会剩下一些水。杯中有一部分空间被桃占去了这句话解释了现象、回答了原因,引出了空间这个词,让学生在现实的背景下感知空间的含义。这一步要把生活常识引向数学认识,看着放了桃的杯子,仔细领悟杯中有一部分空间被桃占去了的意思,是十分重要的教学活动。若有需要,还可以在一只透明空杯的上口放一本书,让学生看着杯子的里面体会杯子的空间。再把桃放入杯里,仍然用书盖住上口,看着杯里的桃,体会它占有杯子的一部分空间。第二步是感受不同的物体占的空间有大、有小。两个同样的杯子,一个杯里放1个桃,另一个杯里放1个荔枝,桃比荔枝大,分别往两个杯里倒水,显然前一个杯里可以倒入的水比后一个杯少。让学生回答为什么,不能简单地用桃大荔枝小来解释。要像兔子卡通那样想和说,用桃占的空间大,荔枝占的空间小来回答问题。理解桃大是指它占的空间大,荔枝小是指它占的空间小,从而获得不同物体占的空间大小不同的体验。第三步继续体会每个物体都占有一定的空间。观察图片里的番茄、荔枝和桃,先思考哪一个占的空间大,再想想这三个水果分别放在三个杯里,往杯中倒水,哪个杯里水占的空间大。这是两个连续的关于物体占有空间的问题,可从前一问题的答案推理得出后一问题的答案。由于苹果占的空间大,杯子盛水的空间就小;番茄占的空间小,杯子盛水的空间就大,这就感受了每个物体都占有一定大小的空间,由此得出体积的意义:物体所占空间的大小叫做物体的体积。

  举例比比两个物体体积的大小是为了巩固体积概念,应该对学生提出两点要求:一是用好体积这个词,二是联系实物解释什么是它的体积。如电冰箱的体积是它占有空间的大小,电冰箱的体积比电视机的体积大。

  练习五第1、3题进一步领悟体积的意义。把同样的盒装饼干堆成3堆,各堆的形状不同、体积相同。理解体积是物体占有空间的大小,与物体的形状无关。用小正方体摆出较大的正方体或长方体,理解体积大的物体占的空间大,体积相等的物体占的空间大小相等。

  2. 从体积引出容积,初步建立容积概念。

  容积与体积是两个既有联系,又有区别的概念,教学容积能进一步理解体积。

  例7教学容积的意义,以体积概念为生长点。图画里有两盒书,一盒是《四大名著》,另一盒是《成语故事》。先在直观情境里比较哪盒书的体积大些,再从左边盒子里书的体积大引出左边盒子的容积大。书的体积是旧知,盒的容积是新知,教学既要以旧引新,也要体现容积与体积的不同意义。教材中比较书的体积,是看着两盒书进行的。而容积是指着两个书盒子讲的,从而凸现容积的属性,以及它与体积的区别。

  为了有利于建立容积概念,教学时应该补充一些实例,让学生懂得容器,体会每个容器能容纳的体积是有限的、确定的。在充分感知的基础上,得出容器所能容纳物体的体积,叫做这个容器的容积。

  试一试的教学要注意两点: 一是让学生解释玻璃杯容积的含义,理解每个杯的容积是指它能容纳多少水;二是通过实验比出哪个杯的容积大。如在一个杯里装满水,再往另一个杯里倒,看能不能装满另一个杯子,会不会有剩下的水。学生应该是实验设计、操作和结论得出的主体。

  练一练第2题两个盒子里装的杯子的数量不同,练习五第4题两个盒子外面同样大,里面装的仪器数量不等,这些直观情境能帮助学生正确理解容积的意义,体会容器的体积与容积是不同的概念。

  五、 认识,应用初步掌握常用的体积单位。

  本单元教学的体积单位有立方厘米、立方分米、立方米。有了体积单位,就能测量、表达物体的体积,也能进一步体会体积的意义。

  1. 认识体积单位包括两方面内容。

  例8教学常用的体积单位,首先是测量、计量体积需要体积单位,然后是各个体积单位的具体含义。

  观察图中的长方体和正方体,很难直接判断哪一个体积大。把它们切成同样大的正方体,就能比出体积的大小。这段教材让学生明白,有了体积单位就能准确计量物体的体积。图中的长方体是9个小正方体那么大,大正方体是8个小正方体那么大,长方体的体积比正方体大。还要让学生感受用于测量物体体积的单位,应该是确定的小正方体,由此导出常用的三个体积单位。把长方体和正方体切成同样的小正方体,最好是学生自主想到的方法。如果有困难,也可以看书或由教师告诉他们。但是,必须理解这个方法,体会其合理性,激发学习体积单位的愿望。

  教学体积单位的具体含义,要准确地表达1立方厘米、1立方分米、1立方米各是多大的正方体。教材在文字描述这些体积单位的意义的同时,还选择一些辅助方法,让学生体会体积单位。棱长1厘米的正方体,体积是1立方厘米。教材里画出了1立方厘米的示意图,配合语言描述,让学生了解1立方厘米。受版面限制,教材里画出1立方分米、1立方米的直观图有困难。因此,在1立方分米的示意图的旁边,画一个体积接近1立方分米的粉笔盒,利用熟悉的物体,感知1立方分米是多大。用3根1米长的木条,在墙角搭一个1立方米的空间,在现实情境中体会1立方米。

  寻找体积接近1立方厘米、1立方分米的物体,是带着体积单位的初步表象观察周围的事物,进一步体验这些单位。教材举的手指头的体积大约1立方厘米这个实例,能引起观察手指头的兴趣,加强1立方厘米的表象,再通过自主寻找实例,对1立方厘米的认识就深刻了。

  2. 掌握体积单位有两方面的要求。

  掌握体积单位,要能应用体积单位计量物体的体积。在这部分教材里,一是说出由1立方厘米小正方体摆成的物体的体积,二是为常见的物体选择合适的体积单位。

  第21页说出用4个或6个棱长1厘米的正方体摆成的长方体的体积,第一次量化描述物体的体积。两个长方体的结构都很直观,分别说出它们的体积非常容易。教学不能满足于答案,要让学生说出怎样想的,进一步理解体积的意义和体积单位的用途。第24页第6题里的三个物体都是1立方厘米的正方体摆成的,其中两个物体的结构不是很直观。说出它们的体积,要数出各是几个正方体摆成的,尤其是想到那些不能直接看到的正方体,能发展空间观念。第8题根据三视图摆出物体,说出体积。摆出物体是解决问题的关键,是发展空间观念的机会。这个物体不复杂,多数学生能够摆出来。教学时不必补充这样的练习,更不要增加摆出物体的难度。

  第24页第7题为物体选择合适的体积单位。能不能填出合适的单位,一般决定于三个因素:一是对物体的熟悉程度,二是具有体积单位的表象,三是能开展正确而有效的思考。如学生都熟悉西瓜,知道1个西瓜大致是多大,如果体积是8立方厘米或8立方米,显然都不符合实际。反之,为不熟悉的物体选择体积单位,只能是脱离实际地乱猜,这是毫无意义的。教材里的橡皮、集装箱、水桶等都是多数学生比较熟悉的物体。教学时如果补充类似的练习,一定要注意这点。

  3. 进一步教学升与毫升。

  四年级(下册)曾经教学升与毫升,初步知道它们都是计量液体的单位,也是容器的容量单位。对1升、1毫升液体是多少有了初步的认识。现在教学升和毫升,主要有两个内容: 第一,升和毫升都是体积单位,用于计量液体的体积,也用于计量容器的容积。把升与毫升纳入体积单位的范畴,建立新的知识结构,是已有认识的深化和提高。第二,1升等于1立方分米,1毫升等于1立方厘米,利用1立方分米、1立方厘米的表象理解1升与1毫升的实际大小,使原有认识更清晰、更牢固。

  六、 操作,发现探索长方体、正方体的体积公式。

  例9和例10教学长方体的体积计算公式,并推导出正方体体积计算公式。在初步掌握两个体积公式以后,还把它们统一起来。

  1. 让学生探索求积公式。

  长方体、正方体体积公式的教育价值,不能局限于知道公式和应用公式。况且,记忆和照公式列式计算的思维含量较低。得出体积公式能加强对体积意义、体积单位的理解;能发展解决问题的策略,积累数学活动经验;能培养创新精神和实践能力,有利于形成积极的情感态度。因此,教材十分重视探索体积公式的过程,设计、安排了认知线索和主要的探索活动。

  例9和例10是两个层次的活动,不仅操作内容、要求有区别,而且思维程度有差异。例9用1立方厘米的正方体摆出4个不同的长方体,从已有的知识和能力开始教学新知识。没有规定长方体的大小,学生可以按自己的意愿去摆,既调动积极性,又为合作学习营造了氛围。在教材预设的表格里填写每个长方体的长、宽、高,所用正方体个数以及体积,可以获得两点感受:一是沿着长、宽、高各摆几个正方体,长方体的长、宽、高就分别是几厘米;二是长方体里有多少个正方体,体积就是多少立方厘米,体积应该与长、宽、高有关。这两点感受能使学生明白:探索长方体的体积计算公式,要研究体积与长、宽、高的关系。教学例9不要急于得出体积公式,而要在摆长方体与填表的基础上,着力引导学生获得上述两点感受,形成继续研究的心向。即使有学生从例9已经看出了体积公式,也要引导他们通过例10进一步验证公式,理解体积与长、宽、高之间的必然联系,感受数学的严谨及结论的确定性。

  例10根据图示的长、宽、高,用1立方厘米的正方体摆出三个长方体。活动的本质是用体积单位测量物体的体积。对学习的要求是先想怎样摆、需要几个正方体,再按想法摆,验证想的是否可行、是否正确。三个长方体是精心设计的。左起第一个长方体的宽与高都是1厘米,只要把4个正方体摆成一行,能够体会长方体长的数量与沿着长摆的体积单位个数之间有必然联系。第二个长方体的高1厘米,只要把正方体摆成一层。体会长方体宽的数量是几,沿着宽应该摆出几行体积单位。而长与宽的乘积,就是一层里体积单位的个数。第三个长方体高2厘米,要把正方体摆成2层,体会长方体高的数量与摆的体积单位的层数是一致的。教材在各个长方体里预设的教学内涵,规划了各次实物操作时的思维重点,有助于学生逐渐建构数学认识。摆各个长方体获得的体会,就是对长方体的体积与它的长、宽、高关系的理解。教材让学生说说在两道例题中的发现,是引导他们回顾、反思例题的学习,进一步清楚这些体会,并把这些体会有条理地组织起来,得出长方体的体积公式。

  抓住正方体12条棱长度相等的特点,能从长方体的体积公式推导出正方体的体积公式。教材要求学生主动经历推导过程,在独立思考之后小组交流。推导的思维方法是多样的,从正方体具有长方体的所有特征出发,演绎推理能完成推导,从再现测量体积活动出发,

  类比推理能完成推导: 用体积单位测量正方体的体积,每行摆的个数、摆的行数、摆的层数都与正方体的棱长相等。因此,正方体的体积=棱长棱长棱长。

  写正方体体积的字母公式时,根据字母表示数的书写规则,如果把乘号简写为,那么V=aaa;如果乘号省去不写,要写成V=a3。一般采用后一种写法,a3以及它表示的意思都是新知识。第26页练一练第2题,算几个整数或小数的立方的得数,巩固对立方的认识。解决正方体体积的实际问题,经常会列出和计算这样的算式。其中13、103和0.13要提醒学生特别注意,防止算错。

  2. 深入理解体积公式。

  长方体与正方体的体积公式,除了有一般与特殊的关系(正方体是特殊的长方体,正方体的体积公式是长方体体积公式的特例),还有相同的内容。认识它们的相同,能简化知识结构。第27页教学这个内容,分三步进行: 第一步认识长方体和正方体的底面。教材在长方体、正方体的直观图上,用涂颜色和文字标注等办法呈现它们的底面,让学生看到底面一般指长方体、正方体的下面(认识长方体时曾指过上、下、前、后、左、右三组相对的面)。第二步认识底面积。长方体或正方体的底面,都是表面的一部分。教材指出,长方体和正方体底面的面积,叫做它们的底面积,帮助学生建立底面积的概念,要求学生研究计算底面积的方法,联系求表面积的经验,得出长方体的底面积=长宽,正方体的底面积=棱长棱长,进一步加强对底面的认识。第三步演变原来的体积公式。在长方体的体积=长宽高里,如果把长宽看成先算底面积,那么体积公式可以演变成底面积高。在正方体的体积=棱长棱长棱长里,如果把棱长棱长看作先算底面积,那么体积公式也演变成底面积高。由于长方体、正方体的体积公式都能演变成底面积高,因而获得了统一。

  把长方体和正方体的体积公式统一成底面积高,有两点教学意义: 第一是深入理解原有的两个体积公式。长、宽、高或棱长都是立体的棱的长度,决定立体的大小。长宽或棱长棱长得到长方体或正方体的底面积,底面积高得到的是体积。这里面蕴含了长度、面积、体积之间的联系。第二是重组知识结构。把两个体积公式合并成一个公式,其本身是一次认知简化。而且,底面积高还是计算所有直柱体体积的方法。无论底面是直线图形的.柱体,还是曲线图形的柱体,体积公式都是V=Sh。前一点意义,在现在的教学中就能实现;后一点意义,在以后的教学中会逐渐体现出来。

  练习六第5题已知一根长方体木料的长与横截面的边长,横截面是第一次出现的概念,教材利用示意图帮助学生理解横截面的含义。先算出横截面的面积,再算木料的体积,有两点意图:一是通过计算横截面的面积,进一步认识这个面;二是体会长方体、正方体的体积公式还能演变成长横截面面积、横截面面积棱长,从而对体积公式有更充实、更丰富的体验。

  七、 计算,迁移理解体积单位的进率。

  在初步掌握长方体、正方体的体积公式以后,教学体积单位的进率,采用让学生经过计算发现和理解的教学方法。教材第30~32页,先教学相邻体积单位间的进率,再教学简单的换算。

  1. 求两个同样大小的正方体的体积,发现和理解进率。

  例11的图里有两个正方体,一个棱长1分米,另一个棱长10厘米。从1分米=10厘米,知道两个正方体的棱长相等,进而判断它们的体积相等。这两个正方体的体积分别是1立方分米与1000立方厘米,从它们体积相等,推理得出1立方分米=1000立方厘米,这就是立方分米与立方厘米的进率。

  用同样的方法,通过棱长1米和棱长10分米的正方体,可以得到立方米和立方分米间的进率。

  在教学进率的过程中,作出两个正方体体积相等的判断是关键。因为1立方分米=1000立方厘米、1立方米=1000立方分米,首先表达的是两个棱长相等的正方体的体积相等,然后才本质地表达出相邻两个体积单位的进率。后者是这部分教材的重点所在。

  练习七第1题的表格里已经填了米、分米、厘米三个长度单位以及一个面积单位与一个体积单位,要求学生继续写出其他面积单位和体积单位,还要写出表格里相邻的长度、面积、体积单位的进率。这道题对长度、面积、体积三类计量单位从名称和进率两个方面进行初步的整理。填表能引起学生对这些单位概念的回忆,如边长1米的正方形面积是1平方米,棱长1米的正方体体积是1立方米。从而体验米、平方米、立方米是不同的概念,也是有对应关系的单位。有了这些体验,在测量或计量长度、面积、体积时,就能正确应用单位名称。通过填表能发现规律,如米、分米、厘米这三个长度单位,相邻单位间的进率是10;平方米、平方分米、平方厘米这三个面积单位,相邻单位间的进率是100(1010);立方米、立方分米、立方厘米这三个体积单位,相邻单位间的进率是1000(101010)。理解这些规律,有助于记忆进率。

  2. 应用进率进行简单的换算。

  对使用不同单位的体积进行换算,是应用进率的活动。本单元里的单位换算是比较简单的,只在两个相邻单位间进行,而且都是单名数的换算。

  练一练是体积单位的换算,先把较大单位的数量换算成较小单位的数量,再把较小单位的数量换算成较大单位的数量。类似的这些换算在长度单位、面积单位、质量单位里都进行过,学生有换算的经验,知道可以利用小数点向右或向左移动位置的办法解决。完成这里的练一练,可以把已有经验迁移过来,着重思考把小数点向哪边移动几位,并对这样做的原因作出解释。

  练习七第2题把面积单位的换算与体积单位的换算对比着进行,目的是体会它们在换算时的相同与不同。无论哪类计量单位,只要是较大单位的数量换算成较小单位,都把小数点向右移动;只要是较小单位的数量换算成较大单位,都把小数点向左移动,这是规律,是共性。而小数点移动的位数是由进率决定的,进率分别是10、100、1000,小数点分别移动一位、两位、三位。获得这些体会的价值,已经远远超出知识与技能的范畴,更是数学思考、解决问题方面的发展。第4题里升与毫升的换算,四年级(下册)教材里曾经进行过。现在进行这些换算,不限于整数范围内实施,对问题及其解决方法的理解也比过去深刻。把升为单位的数量改写成立方分米为单位,把毫升为单位的数量改写成立方厘米为单位,能加强1升等于1立方分米、1毫升等于1立方厘米的认识,更好地把体积单位组织起来,便于记忆和应用。

  八、 拼拼,想想体验表面积的变化。

  实践活动《表面积的变化》专题研究几个相同的正方体(或长方体)拼起来,得到的立体与原来几个正方体(长方体)表面积之和的关系,发现并理解其中的变化规律,发展空间观念。

  拼拼算算这个栏目,先研究用正方体拼的情况,再研究用长方体拼的情况,后一类情况比前一类复杂。研究正方体拼成长方体,从两个正方体开始。选用体积1立方厘米的正方体,它的每个面的面积都是1平方厘米,有利于体会到表面积的变化。

  用两个相同的正方体拼出长方体,可以上、下两个面拼,也可以左、右两个面拼,还可以前、后两个面拼。从现象看,似乎拼法不同。其实,各种拼法没有实质性的差别。首先是拼成的长方体的体积是2个正方体体积的和,每个正方体的体积是1立方厘米,长方体的体积是2立方厘米。其次是每种拼法都减少原来的2个面,这是正方体拼成长方体时发生的变化,也是这次实践活动的研究内容。在两个正方体拼成长方体的图示中,可以体会减少的2个面分别在两个正方体上。拼的时候,这两个面相重叠。

  用3个、4个甚至更多个相同的正方体摆成一行,拼成长方体,表面积比原来减少几个正方形面的面积?教材让学生边操作、边观察,边思考、边填表。发现的规律要帮助学生分两个层次归纳和交流:一是关于拼的步骤。2个正方体一步就能拼成长方体,3个正方体要分两步拼,4个正方体要分三步拼二是关于减少的面积。2个正方体拼,比原来减少2个(一对)正方形面的面积;3个正方体拼,比原来减少4个(两对)正方形面的面积;4个正方体拼,比原来减少6个(三对)正方形面的面积

  用两个相同的长方体拼,情况比较复杂。由于长方体三组面的形状、大小不同,只有把完全相同的两个面重叠,才能拼出较大的长方体。因此,一般有三种不同的拼法。教材让学生通过操作,了解三种拼法。再看着各种拼法的示意图,思考每种拼法减少的面积。在体会三种拼法减少的面积不同之后,找出拼成的大长方体中,哪个表面积最大,哪个最小。

  第37页的示意图中,左边拼法的两个长方体把54的面重叠,拼成的大长方体的表面积比原来减少两个54;中间拼法的两个长方体把53的面重叠,表面积减少2个53;右边拼法的表面积减少2个43。这些都是学生在操作与看图中能够理解的,也是交流的主要内容。指出表面积最大和最小的大长方体,要进行这样的推理:拼的时候减少的面积最少,拼成的大长方体的表面积最大。反之,减少的面积最多,拼成的大长方体的表面积最小。只要教师稍加引领或点拨,学生都能像这样想。而且计算三个大长方体的表面积比原来减少多少,都有捷径可走。

  拼拼说说栏目里变化了拼法,不但把正方体拼成一行,还拼成两行。仔细地体会拼的活动和研究教材里的示意图,左图可看作有7次正方体的两两相拼(如图),每次减少面积2平方厘米,大长方体的表面积比原来减少7个2平方厘米。右图中可看作有5次正方体的两两相拼(如图),大长方体的表面积比原来减少5个2平方厘米。所以,右边的长方体表面积比左边长方体大4平方厘米。

  为10盒火柴设计一个最节省的包装方案,是应用前面拼正方体或长方体的经验:重叠的面越大,表面积减少越多;两两相拼的次数多,减少的面积也多。这两条经验要灵活地、综合地应用,才能得到理想的方案。这对空间观念和思维能力是很好的锻炼。

【小学数学教案】相关文章:

小学数学教案08-29

小学数学教案11-04

小学的数学教案03-24

人教版小学数学教案07-24

有关小学数学教案02-07

小学趣味数学教案02-24

小学数学教案范文09-28

【推荐】小学数学教案12-30

小学数学教案【热】12-30

【热门】小学数学教案12-30