现在位置:范文先生网>教案大全>数学教案>小学数学教案

小学数学教案

时间:2023-07-30 11:42:23 数学教案 我要投稿

【必备】小学数学教案5篇

  作为一名专为他人授业解惑的人民教师,时常要开展教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?以下是小编帮大家整理的小学数学教案5篇,仅供参考,大家一起来看看吧。

【必备】小学数学教案5篇

小学数学教案 篇1

  教学内容:求两个数的最小公倍数

  教学目标:

  使学生理解、掌握求两个数的最小公倍数的方法,并能正确地,合理地求两个数的最小公倍数。

  教学过程:

  一、复习

  1、什么是公倍数,最小公倍数?

  2、写出12、30的公倍数和最小公倍数?

  二、教学新课

  1、提出课题:“求两个数的最小公倍数”

  2、把12、30和它们的最小公倍数60,分别分解质因数。

  212230260

  26315230

  3515

  5

  12=2×2×3

  30=2××3×5

  60=2×2×3×5

  观察上面各数分解质因数的`情况,你发现了什么?

  (最小公倍数60的质因数里,包含了12和30公有的质因数2、3,还有12独有的质因数2,30独有的质因数5。)

  3、利用上面的情况,用简便方法求12和30的最小公倍数。

  21230………用公约数2除

  3615……….用公约数3除

  25……..只有公约数1,不必再除

  把所有的除数和商连乘起来,得到:

  12和30的最小公倍数是2×3×2×5=60,也可以这样表示:

  [12。,30]=2×3×2×5=60

  4、求两个数的最小公倍数,先用这两个数的()连续去除,一直除到所得的商只有公约数1,然后把所有的()和()连乘起来。

  5、尝试练习

  求下面每组数的最小公倍数。

  12和16,33和22,16和20,36和54,30和45,10和15

  三、教学求倍数关系,互质关系的最小公倍数。

  在下面各组数中找出倍数关系,互质关系

  12和36,9和5,36和12,4和9,25和75,20和3,51和17,8和11

  1、倍数关系

  2、互质关系

  3、想一想

  (1)如果大数是小数的倍数关系,那么()就是这两个数的最小公倍数。

  (2)如果两个数是互质数,那么这两个数的()就是它们的最小公倍数。

  四、巩固练习

  书本第56页1至4题。

  五、归纳

  六、布置作业

  反思:让学生了解求两个数的最小公倍数为什么要把两个数的公约数还要各自独有的约数。这是本节课的重点。

小学数学教案 篇2

  设计说明

  根据本课时的复习内容和特点,依托教材提供的练习题,从以下两个层次进行复习。

  1.引导学生按照指定的标准分类。

  这一层次的复习,首先让学生按照颜色分类,采用小组讨论的方式,找出自己分类的数据,然后将数据填入统计表中,初步体会到整理数据的全过程。在按照颜色分类的基础上,让学生自主完成按照形状进行分类,以巩固整理数据的方法。

  2.引导学生按照自选的标准进行分类。

  这一层次的复习过程能让学生体验到分类结果的多样性。通过以上的复习设计,使学生会用简单的`统计表、象形统计图来呈现整理的结果,并培养学生从多角度、多层次、多方位地看待事物的意识。

  课前准备

  教师准备 PPT课件

  学生准备 不同形状的平面图形若干

  教学过程

  ⊙导入新课

  (课件出示不同形状的平面图形)

  师:同学们,这些图形都是我们学过的平面图形,谁能告诉大家它们的名称?

  (教师指名汇报)

  师:同学们的记忆力真好,今天我们就利用这些平面图形来复习有关分类与整理的知识。

  设计意图:通过辨认平面图形,为复习课的展开奠定基础。

  ⊙复习梳理

  1.复习按照指定的标准分类。

  (课件出示教材94页3题)

  师:这么多不同颜色、不同形状的卡片混在一起,你们能分别按照它们的颜色和形状把它们分一分吗?

  (1)按照颜色分类。

  师:请同学们小组合作解决,要知道每种颜色的卡片分别有多少张,应该怎么办呢?

  (学生小组讨论)

  汇报讨论结果。

  方法一:先分一分,再数一数。

  先按照红、绿、蓝、黄、粉五种颜色把卡片分成五类,然后数出每一类的张数。

  方法二:边数边画。

  学生展示画的结果:

  方法三:用文字方式呈现分类的结果。

  红色 绿色 蓝色 黄色 粉色

  5张 3张 6张 2张 4张

  师:请根据你们用不同方法分类整理的结果,把教材94页3题(1)中的表格填写完整。

  (学生自主填写表格)

  师:根据表格中的数据,请你提出数学问题,并自主解答。

  (学生之间根据数据互相提出问题,并解答)

  (2)按照形状分类。

  师:根据按照颜色分类的方法,请同学们按照形状对这些卡片进行分类,并自主填写教材94页3题(2)中的表格。

  (学生小组合作,按照形状分类,并填写表格)

  师:请同学们观察这两个表格并动笔算一算,不管是按照颜色分类还是按照形状分类,卡片的什么是不变的?

  (引导学生说出卡片的总数量是不变的)

  设计意图:通过引导学生复习按照不同标准分类的方法,进一步体会到分类结果在单一标准下的一致性和在不同标准下的多样性,更好地体会分类思想。

小学数学教案 篇3

  教学目标:

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

  2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。

  教学重点,难点:

  掌握圆柱侧面积和表面积的计算方法。

  运用所学的知识解决简单的实际问题。

  教学过程:

  一、引入新课:

  前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?

  1.圆柱是由平面和曲面围成的立体图形。

  2.圆柱各部分的名称(两个底面,侧面,高)。

  3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

  同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。

  二、探究新知:

  以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)

  同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?

  教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

  板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积)

  1.圆柱的侧面积

  (1)圆柱的.侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2.侧面积练习:练习二第5题

  学生审题,回答下面的问题:

  这两道题分别已知什么,求什么?

  小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3.理解圆柱表面积的含义.

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  4.尝试练习。

  (1)求下面各圆柱的侧面积。

  ①底面周长2.5分米,高0.6分米。

  ②底面直径8厘米,高12厘米。

  (2)求下面各圆柱的表面积。

  ①底面积是40平方厘米,侧面积是25平方厘米。

  ②底面半径是2分米,高是5分米。

  5.小结:

  在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)

  三、巩固练习。

  1.做第14页“做一做”。(求表面积包括哪些部分?)

  2.练习二第6,7题。

  四、课后思考。

  同学们想一想是不是所有的圆柱在计算表面积时都可以用

  公式:圆柱的表面积=圆柱的侧面积+底面积×2来计算呢?

小学数学教案 篇4

  教学目标:

  1、理解除数是小数的除法可以转化成除数是整数的除法来计算的道理

  2、掌握除数是小数除法的计算法则,并能运用法则进行正确的'计算。

  3、培养学生的概括能力。

  教学重点:把除数转化成整数后,利用除数是整数的除法来计算。

  教学难点:小数点的移动。

  教具学具:小黑板、卡片、幻灯。

  教学过程:

  一、复习:

  (1)口算:(卡片)

  8.1÷34.84÷40.56÷43÷5

  1÷80.75÷150.25÷50.045÷9

小学数学教案 篇5

  8.3 同底数幂的除法 教学设计

  教学设计思路

  教科书中根据除法是乘法的逆运算,从计算 和 这两个具体的同底数的幂的除法,到计算底数具有一般性的 ,逐步归纳出同底数幂除法的一般性质.教师讲课时要多举几个具体的例子,让学生运算出结果,接着,让学生自己举几个例子,再计算出结果,最后,让学生自己归纳出同底数的幂的除法法则.

  教学目标

  知识与技能

  1.经历同底数幂的除法运算性质的获得过程,掌握同底数幂的运算性质,会用同底数幂的运算性质进行有关计算,提高学生的运算能力.

  2.了解零指数幂和负整指数幂的意义,知道零指数幂和负整指数幂规定的合理性.

  过程与方法

  在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力.

  情感、态度与价值观

  1.提高学生观察、归纳、类比、概括等能力;

  2.在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养.

  教学媒体

  投影仪

  课时安排

  1课时

  教学重难点

  教学重点:同底数幂除法的运算性质及其应用.

  教学难点:零指数幂和负整数指数幂的意义.

  教学过程

  一、创设问题情景,引入新课

  一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?

  [师]1012÷109是怎样的一种运算呢?

  通过上面的.问题,我们会发现同底数幂的除法运算和现实世界有密切的联系,因此我们有必要了解同底数幂除法的运算性质.

  二、了解同底数幂除法的运算及其应用

  一起探究:计算下列各式,并说明理由(>n).

  (1)

  (2)

  (3)

  (4)

  [师]我们利用幂的意义,得到:

  (1)

  (2)

  (3)

  (4)

  [生]从以上三个特例,可以归纳出同底数幂的运算性质:a÷an=a-n(,n是正整数且>n).

  [生]小括号内的条件不完整.在同底数幂除法中有一个最不能忽略的问题:除数不能为0.不然这个运算性质无意义.所以在同底数幂的运算性质中规定这里的a不为0,记作a≠0.在前面的三个幂的运算性质中,a可取任意数或整式,所以没有此规定.

  [师]很好!这位同学考虑问题很全面.所以同底数幂的除法的运算性质为:

  (a≠0,、n都为正整数,且>n)运用自己的语言如何描述呢?

  [生]同底数幂相除,底数不变,指数相减.

  [例]计算:

  (1) (2) (3) (4)

  三、探索零指数幂和负整数指数幂的意义

  想一想:

  10000=104, 16=24,

  1000=10( ), 8=2( ),

  100=10( ), 4=2( ),

  10=10( ). 2=2( ).

  猜一猜

  1=10( ), 1=2( ),

  0.1=10( ), =2( ),

  0.01=10( ), =2( ),

  0.001=10( ). =2( )

  大家可以发现指数不是我们学过的正整数,而出现了负整数和0.

  正整数幂的意义表示几个相同的数相乘,如an(n为正整数)表示n个a相乘.如果用此定义解释负整数指数幂,零指数幂显然无意义.根据“猜一猜”,大家归纳一下,如何定义零指数幂和负整数指数幂呢?

  [生]由“猜一猜”得

  100=1,

  10-1=0.1= ,

  10-2=0.01= = ,

  10-3=0.001= = .

  20=1

  2-1= ,

  2-2= = ,

  2-3= = .

  所以a0=1,

  a-p= (p为正整数).

  [师]a在这里能取0吗?

  [生]a在这里不能取0.我们在得出这一结论时,保持了一个规律,幂的值每缩小为原来的 ,指数就会减少1,因此a≠0.

  [师]这一点很重要.0的0次幂,0的负整数次幂是无意义的,就如同除数为0时无意义一样.因为我们规定:a0=1(a≠0);a-p= (a≠0,p为正整数).

  我们的规定合理吗?我们不妨假设同底数幂的除法性质对于≤n仍然成立来说明这一规定是合理的.

  例如由于103÷103=1,借助于同底数幂的除法可得103÷103=103-3=100,因此可规定100=1.一般情况则为a÷a=1(a≠0).而a÷a=a-=a0,所以a0=1(a≠0);

  而a÷an= (

  因此上述规定是合理的.

  [例]用小数或分数表示下列各数:

  (1)10-3;(2)70×8-2;(3)1.6×10-4.

  解:(1)10-3= = =0.001;

  (2)70×8-2=1× = ;

  (3)1.6×10?-4=1.6× =1.6×0.0001=0.00016.

  四、课时小结

  [师]这一节课收获真不小,大家可以谈一谈.

  [生]我这节课最大的收获是知道了指数还有负整数和0指数,而且还了解了它们的定义:a0=1(a≠0),a-p= (a≠0,p为正整数).

  [生]这节课还学习了同底数幂的除法:a÷an=a-n(a≠0,,n为正整数,>n),但学习了负整数和0指数幂之后,>n的条件可以不要,因为≤n时,这个性质也成立.

  [生]我特别注意了我们这节课所学的几个性质,都有一个条件a≠0,它是由除数不为0引出的,我觉得这个条件很重要.

  [师]同学们收获确实不小,祝贺你们!

  五、课后作业

  课本 A组3、4,B组2、3

  六、板书设计

【小学数学教案】相关文章:

小学数学教案11-04

小学数学教案08-29

小学的数学教案03-24

(精选)小学数学教案07-05

小学数学教案(精选)07-05

小学数学教案07-06

小学数学教案07-06

小学数学教案07-06

小学数学教案07-06

小学数学教案07-06