小学数学教案(常用9篇)
在教学工作者实际的教学活动中,常常要写一份优秀的教案,教案有利于教学水平的提高,有助于教研活动的开展。快来参考教案是怎么写的吧!以下是小编整理的小学数学教案10篇,希望能够帮助到大家。
小学数学教案 篇1
教学目标:
1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。
3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的
教学重点:理解、掌握梯形面积的计算公式。
教学难点:理解梯形面积公式的推导过程
教具准备: 各小组准备两个完全一样的梯形。
教学过程
一、复习并导入:
(1)出示一个三角形,提问:这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的`方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算。
二、新课进行
(一),推导公式
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
(二)深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
(三)公式应用。
课件出示练习题请学生完成。
三、巩固练习
完成课后相应练习题
四、小结
通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?
小学数学教案 篇2
教学目标
1.通过直观演示、实物、图形、观察、操作等方法,使学生初步认识几分之几.
2.能正确读写比较简单的分数,并理解它们的含义.
3.使学生对分数的含义有比较完整的认识,培养学生的逻辑思维能力.
教学重点
在学生的头脑中形成几分之几的表象,对分数的含义有比较完整的认识.
教学难点
使学生对分数的含义有比较完整的认识.
教学过程
一、铺垫孕伏
1.回忆旧知,为学习新知识做好铺垫.
出示: ,
提问:在这个分数中,8表示什么?1表示什么? 表示什么? 表示什么?
2.填空:
第一份是它的( ),第七份是它的( ),每一份都是它的( ),共有( )个 .
3.出示下图
二、探究新知
1.谈话导入
这个图的阴影部分,用分数表示该是多少呢?这就是我们今天要学习的新知识.
(板书课题:几分之几)
2.教学例7:认识
(l)教师提问:
a、【出示图片例7-1】一份是这个圆的多少? ( )
b、【出示图片例7-2】阴影部分占这个圆的几份?(3份)
c、是几个 ?(3个 )
d、也就是这个圆的几分之几?(四分之三)
e、四分之三该怎么写呢?
因为还是把一个圆平均分成了4份,所以分母用4表示;因为以前表示有这样的一份,分子写成1,现在有这样的三份,所以分子写成3.
窗体底部
(板书: )
(2)指导读
(板书:读作:四分之三)
(3)练习巩固
①每人拿出一张长方形的纸,折出它的 ,涂上颜色,并标出 .
②判断图中的阴影部分能否用 表示,为什么?
3.学生自学例8.
(l)每人拿出一张长方形的纸,把它平均分成5份,
思考:l份是它的几分之几?
同样的2份是它的几份之几?
这样的4份又是它的.几份之几?
把一个圆平均分成5份,1份是它的 ,这样的2份是它的 ,这样的4份是它的 .
(2)指导看书,填空
教师板书:
4.教学例9.
(1)自学例9有关内容,并把空填上(独立完成)
教师提问:
a、通过学习例9,你知道了什么?(把一条线段平均分成6份,一份是它的 ,5份是5个 ,就是它的六分之五,写作 .)
b、 里面有几个 ?
板书:
5.练习巩固.
选出合适的分数来表示各图中的涂色部分.
6.小结归纳,得出结论.
(1)小结
今天我们学习的 、 、 、 这样的数,也都叫分数.那么今天学的分数与前两节学的分数有什么相同点和不同点?
相同点:都是把一个物体平均分成几份;
不同点:前两节我们学的是分子是1的分数,今天我们的是分子是几.
(2)那么哪些数可以用分数表示?谁能用简单的一句话来概括一下呢?
把1个整体平均分成若干份,这份的1份或几份都可以用分数表示.
三、巩固练习
1.读出下面各分数.
2.写出下面各分数.
七分之二 十分之五 十二分之七
3.用分数表示下面各图的涂色部分.
4.判断:
(l)4个 是 .( )
(2)分母是比分子是7,这个分数是 .( ).
(3)把一个长方形分成7份,表示其中3份的数是 .( )
(4) 中包含着11个 .( )
(5)一块蛋糕平均切成8块,小红吃了3块,小红吃了这块蛋糕的 ( )
四、课堂总结
今天我们学习了哪些知识?几分之几和几分之一的主要区别是什么?
五、课后作业
1.在每个图里的适当部分涂上颜色表示它下面的分数.
2.用分数表示下面每个图里的涂色部分.
3.看图中的涂色部分,在()里填上适当的数.
小学数学教案 篇3
教学内容
教科书第132页例4及例4下面“做一做”中的题目和练习三十的第5~10题。
教学目的
使学生进一步掌握面积单位间的换算的推想过程,加深对面积单位的认识。培养学生的推想能力。
教学重点
使学生进一步掌握面积单位间的换算。
教学难点
理解掌握面积单位间的换算的推想过程。
教具准备
皮尺。
教学过程
一、复习与思考
1、让学生说一说如何计算一个长方形的面积。
2、做下面的题,并说一说是怎样推想的。
5平方分米=( )平方厘米
13平方米=( )平方分米
二、小组合作,探究新知
1、教学例4。(把例题进行改编,让学生直接测量课桌的长、宽,计算出面积,再进行单位间的换算。)
(1)学生测量课桌的'长、宽各是多少厘米?(测量结果可以保留整厘米)求桌面的面积是多少平方厘米?(保留整百平方厘米)合多少平方分米?
(2)学生列式计算,教师根据具体情况,做出判断。
(3)学生讨论由平方厘米换算成平方分米推理过程。(100平方厘米是1平方分米,平方厘米数里面有多少个100平方厘米,就是多少平方分米。)
2、做例4下面“做一做”中的习题:(学生说出推想过程)
500平方厘米=( )平方分米
4200平方分米=( )平方米
三、巩固反馈,掌握换算方法
1、做练习三十的第5题,说一说是怎样推想的?
2、做练习三十的第6题,请学生说一说推算过程。
3、做练习三十的第7题,求平均每平方米收芹菜是多少千克?已知什么条件?还需要什么条件?这个条件在哪儿?
面积单位间的换算
学生把测量后所列算式写在黑板上
小学数学教案 篇4
教学内容:
义务教育课程标准教科书一年级下册第81页例1及“做一做”第1题、练习十五第1、2题。
教学目标:
1.学生会读、写几时几分。
2.学生知道1时=60分。
3.学生树立珍惜时间的意识和习惯。
教学重点:
学生会读、写几时几分。
教学难点:
读出接近整时的时间和1时=60分的推导过程。
教具准备:
多媒体课件,实物钟,学生准备小闹钟。
教学过程:
一、创设情境,导入新课
1.创设情境。
(让课铃响)
师:上课……
师:哪位同学说说,刚才早读下课是几时吗?(8:00)你知道我们学校第一节的上课时间是?(边问边出示课件,课件显示一个钟面,定格在8:15)
2.导入新课。
师:同学们,你们又知道现在是几时吗?(引出8时多)
师:今天,老师就和同学们一起来认识时间。(板书课题《认识几时几分》)
二、直观演示,探索新知
(一)认识钟面
1.师:通过上学期的学习,我们知道,钟面上有些什么?
2.学生反馈,教师用课件演示并板书。(钟面上有时针、分针、12个数字、12个大格、每一个大格里有5小格、一共有60个小格。)
(二)认识时间。
1、认识“时”
(1)引导学生观察时针
师:时针是用来表示“时”的,时针走1大格的时间是1时。
2.认识分。
(l)引导学生观察分针。(屏幕显示放大的钟面,演示分针走1小格)
师:分针是用来表示“分”的,分针走1小格的时间是1分。
(2)感受1分钟有多长,1分钟能做什么。并教育学生要有珍惜时间的意识和习惯。
(3)边在课件中演示,边提问:
分针指着1是几分?为什么?(一个大格有5小格,所以是5分。)
3.认识时间。
(1)教学例1第一个钟面
师:时针指着几?是几时?分针指着几?是几分?(时针指着3多一点,是3时,分针指着1,是5分。)
师:那钟面上表示的时间是几时几分?(3时5分)
(2)教学时间的两种表示方法。(两种表示方法在上学期已学过,在些让学生注意在写3时5分时,要在两点后面加一个“0”如:“3:05”)
(3)用同样的方法教学第二、三个钟面。
4.认识时、分的关系。
(1)学生分组操作。
让学生拿出自己准备的小闹钟,拨一拨,看一看分针走一圈,时针走几大格,并在小组中互相交流自己的操作结果。
(让生思考4个问题1、分针和时针有没有一起走?2、分针走了多长?3、时针走了多长?4、谁花的时间多?)
(2)学生反馈交流结果。
学生反馈,教师出示课件:分针走一圈,同时时针走一大格。
(3)引出“1时=60分”。找板书
三、动手实践、巩固新知
1.教师拨钟,学生说时间。
2.两个同学为一小组,一个同学拨钟,另一个同学说时间。
3.教师说时间,学生拨钟。
四、运用新知、解决问题
1.完成课本“做一做”第1题。
学生练习时,先说一说:时针指着几,是几时?分针指着几,是几分?再把时间写在每个钟面的下面。
2.完成练习十五第1题。
先让学生说一说每一大格的刻度分别对应多少分,再说一说第一幅图中的学生在做什么,读出时间是几时几分,再用两种方法记录下来。
学生完成后,两人为一小组,
相互说说自己一天的作息时间是什么样的,边说边用小闹钟把时间拨出来。
3.练习十五第2题。
先让学生读出钟面上的时间,再连线。
五、小结
师:同学们,你们今天学到了什么?
(下课铃响,屏幕上的钟面显示出8:55)
师:你能说出我们第二节课下课的时间是几时几分吗?
教学反思
本堂课的优点有:
1、导入自然,很好地结合了学生的生活情境,集中了学生的注意力,激发了学生的学习兴趣。唤醒了学生的生活经验和旧知,为新课的教学作好了铺垫。
2、在提问8:15分时引出8时多,为后面学生学习接近整时的时间提供了有利的'重要条件
3、在认识分针走一小格是一分钟,走一大格是5分钟,5分5分的认读时间时运用了多媒体的直观展示,提高了学生的学习兴趣,突破了难点。
4、在教学9:05记法时充分尊重学生的想法,又注重学生与生活实际的沟通,使学生乐意接受。
5、在拓展应用中既对新知进行了巩固,又对学生进行了珍惜时间的德育熏陶。
6、4个问题问得好,使学生能较好的推导出“1时=60分”
本堂课的缺点:
1、4个问题最好提到前一张课件。
2、教师还是讲了多了些,认识时间时,教学学生怎么看时间,还讲得不够,还要让学生多讲讲。
3、本节课重点是让学生会看几时几分,不要让学生拨出时间,最好下一节课再拨。
小学数学教案 篇5
课前准备
教师准备 PPT课件
教学过程
⊙谈话导入
同学们,你听说过“杠杆原理”吗?知道它在生活中的应用吗?可能大家都没有想到,杠杆原理的背后隐藏着数学原理,那就是反比例关系。下面就让我们通过实验来体验它的奥秘吧。
⊙实践与操作
1.明确提出活动要求。
“有趣的平衡”活动由三部分组成。
(1)制作实验用具。
(2)探索规律,体验“杠杆原理”。
(3)应用规律,体会反比例关系。
2.小组合作,自主活动。(教师巡视,适当点拨)
3.展示制作实验用具情况。
4.汇报探索到的规律。
观察实验二、实验三的操作过程,你有什么发现?
预设
生1:如果左右两个塑料袋放入同样多的棋子,只有把它们移动到与中点距离相同的'位置才能保证平衡。
生2:若满足“左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,则竹竿一定平衡。
生3:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边的刻度数增大,所放棋子数反而减少;右边的刻度数减小,所放棋子数反而增多。
生4:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边所放棋子数和所在的刻度数成反比例关系。
5.活动小结。
“左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,在物理学上,这个规律叫做“杠杆原理”,拴绳的那个点就是杠杆的支点。
⊙典型例题解析
你能利用杠杆原理算出左边物体的质量吗?
分析 根据杠杆原理“左边物体的质量×左边物体与支点的距离=右边物体的质量×右边物体与支点的距离”进行解答。
解答 500×5÷2=1250(g)
⊙探究活动
1.课件出示探究内容。
星期日,爸爸带小明和妹妹到公园去玩跷跷板,小明体重44 kg,妹妹体重35 kg。如果要让跷跷板两边平衡,至少可以想出几种办法?
2.小组讨论、分析、解答。
3.交流、汇报。
(答案不唯一)
⊙全课总结
通过本节课的学习,你有什么收获?
⊙布置作业
找一找生活中还有哪些地方应用了杠杆原理。
板书设计
有趣的平衡
有趣的平衡:左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数。
小学数学教案 篇6
教学目标:
1.通过多种途径查找资料,经历走进生活、收集整理、交流表达等过程,让学生
了解有关储蓄的知识的同时培养学生搜集处理信息的能力。
2.结合百分率的知识,运用调查、观察、讨论、分析数量关系等方式,学习利息的计算方法,并运用所学的数学知识、技能和思想来解决实际问题。
3.通过策划理财活动,让学生感受数学知识服务于生活的价值,培养科学理财的意识。
教学重点:利息的计算方法
教学难点:税后利息的计算。
设计理念:本课除了要让学生掌握利息的计算方法,更重要的是要让学生结合百分率的知识,通过策划理财活动,让学生感受数学知识服务于生活的价值,从小培养科学理财的意识。
教学步骤:
一、情境导入
1. 提问:你家中暂时用不到的钱怎么处理的?(课前布置同学们向自己的爸爸妈妈了解家中暂时用不到的钱怎么处理的)
你们知道为什么要把积余下来的钱存到银行里吗?(明确:人们把钱存入银行或信用社,这叫做存款或者储蓄。这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。)
2. 关于储蓄方面地知识你还了解多少?(全班交流自己收集到信息)
根据学生交流地情况摘其要点板书:
利息 本金 利率
多媒体出示告诉你:存入银行的钱叫做本金,取款时银行除了还给本金外,另外付给的钱叫做利息。利息占本金的百分率叫做利率。按年计算的叫做年利率,按月计算的叫做月利率。
出示利率表。(略,同书上第5页利率表)
师:你从这张利率表上能获得哪些信息?说说年利率2.52%的含义。你认为利息与什么有关?怎样求利息?(学生讨论)
根据学生的回答板书:利息=本金利率时间
二、教学例3
1.出示例3。读题后明确,二年期的利率应该就是表格中对应的二年存期的利率,不是一年期的利率2。
师:要求利息,需要知道哪些条件?你会列式求利息吗?(试着做一做,集体订正)
2.教学试一试
(1)亮亮实际能拿到这么多利息吗?为什么?(请了解利息税的同学解释)
教师再说明:这里求得的利息是税前利息,也叫应得利息。但是根据国家税法规定,从1999年11月开始,储蓄所得的利息应缴纳20%的利息税,由储蓄机构代扣。税前利息中扣掉利息税后余下的部分即是自己实际得到的.利息,即税后利息,也叫实得利息。购买国家债券、教育储蓄不缴纳利息税。
这里的20%是什么?
你觉得应该怎样计算税后利息呢?可以先算什么?用计算器计算亮亮实得利息是多少元?(学生用计算器计算)
(2)小结:一般我们从银行取出来的都是税后利息,所以在多数计算中最后要将利息税减掉。
(3)引申:如果问题问亮亮到期一共可取出多少元?这里的一共是什么意思,包含哪些内容。(明确可取出多少元:本金+税后利息)
这个问题由你来解答。
三、巩固练习
1.完成练一练。
应得利息怎样求?实得利息怎样求?(学生列式解答)
二者的区别是什么?实得利息是应得利息的百分之几?(组织学生讨论)
2.做练习二的第5题。
提醒学生教育储蓄不需缴纳营业税。这里的本金和利息一共多少元是什么意思?(指名学生回答,集体订正)
3.理财我能行
谈话:你们对家中的存款情况了解多少?能说给大家听听吗?当然该保密的就不要说了。(学生交流)
学生交流后出示下面题目(同时出示利率表)
(1)张明家有5000元计划存入银行三年,张明的妈妈想请我们班的同学帮助算一算,是存定期三年合算?还是存定期一年,然后连本带息再转存合算呢?(学生说出自己的想法)
(2)如果你有1000元,根据你家的实际情况,你打算怎样投资?请你设计一个理财方案。
四、全课小结
这节课我们学习了什么知识?通过本节课的学习,你学会了什么?
师:通过今天的学习,希望同学们有意识地养成勤俭节约,计划消费的习惯,并能把所学知识应用到实际生活中,发挥其价值。
五、布置作业(两道实践题让学生在家长的陪同下到银行去储蓄,从实践中认识储蓄)
1.到银行存压岁钱;
2.找一份存折或存单,看懂上面的每一栏,并从上面找到本金、利率、时间,能计算到期后这份存折(存单)一共可取出多少元?
小学数学教案 篇7
认识形体
长方体、正方体的面、棱、顶点,结构与特征。(例 1、例2)
长方体、正方体表面的展开图(例3)
表面积
表面积的意义和计算方法(例4)
表面积的实际应用(例5)
体积
体积的意义、容积的意义(例6、例7)
常用的体积单位和容积单位(例8)
长方体、正方体的体积计算公式(例9、例10)
体积单位的进率及简单换算(例11)
整理与练习实践活动
第一, 有一条合理的编排线索。先教学长方体、正方体的特征,再教学它们的表面积,然后教学体积,是一条符合知识间的发展关系,有利于学生认知的线索。把形体的特征安排为第一块内容,能为后面的表面积、体积的教学打下扎实的基础。如果不理解长方体的6个面都是长方形,且相对的面完全相同,就不可能形成长方体表面积的计算方法。如果不建立长方体的长、宽、高的概念,体积公式就是无本之木、无源之水。把表面积安排在体积之前教学,是因为学生已经有了面积的概念,掌握了常用的面积单位,会计算长方形、正方形的面积,教学表面积的条件比体积充分。而且通过表面积的教学,更深一层掌握长方体、正方体的特征,对教学体积是有益的。在体积这部分知识里,先教学体积的意义和常用单位,这些都是重要的基础知识。建立了体积概念和体积单位概念,才能探索体积计算公式。把体积单位的进率安排在体积公式之后教学,就能通过计算获得进率。这样,体积单位的进率就是意义建构的,而不是机械接受的。
第二,加强了空间观念。教学长方体和正方体,历来都很重视发展空间观念。本单元不仅在传统的基础知识的教学时加强培养,还充实了长方体、正方体表面展开的内容。过去教材里讲长方体的表面展开是为了教学它的表面积及计算,现在教学表面的展开,更是为了发展空间的观念。《数学课程标准(实验稿)》把几何体与其展开图之间的转化作为空间观念的一个内容,把能进行这些转化作为空间观念的一种表现。教材一方面把正方体、长方体纸盒展开,在展开图里找到原来形体的每个面;另一方面又提供一些图形,把它们折叠围成立体,感受图形的各部分在立体上的位置,让学生的空间观念在这些活动中实实在在地获得发展。另外,设计的五道思考题和实践活动《表面积的变化》,加大了空间想像的力度,都以发展空间观念为主要目的。
第三,注重知识的实际应用。本单元教学的知识与学生的日常生活有密切的联系。在现实的问题情境中能发现和认识数学知识,习得的概念和方法能应用于解决实际问题。教材尽力从数学的角度提出问题、解释问题,引导学生综合应用数学知识、技能解决问题,处处能看到数学与生活的有机结合。如认识长方体、正方体的特征以后,收集这样的实物并量出长、宽、高或棱长;在做纸盒和鱼缸的实际问题中教学表面积的计算和应用;用初步建立的体积(容积)概念比较物体的大小;用学到的体积单位计量常见物体的体积、常见容器的容量;灵活应用体积公式计算沙坑里沙的厚度、塑胶跑道的用料问题
一、 观察、整理认识长方体、正方体的特征。
例1教学长方体和正方体的特征,把主要精力放在长方体上。这是由于长方体比正方体复杂,发现长方体的特征需要开展许多活动。而且,研究长方体的学习活动经验可以迁移到认识正方体中去。例题呈现一些图片,如长方体或正方体包装盒、家用电器等,在图片的启发下说说生活中哪些物体的形状是长方体,哪些物体的形状是正方体。在现实的情境中引出本单元的研究对象。
观察实物,整理特点是认识长方体、正方体的主要教学活动。例1的教学过程安排成三步。
1. 观察物体,理解直观图,认识面、棱和顶点。
三年级(上册)通过观察长方体和正方体,已经知道在不同位置看到的面的个数不同。有时只能看到一个面,有时能同时看到两个面,最多能同时看到三个面。例题以这些经验为教学起点,在观察物体的基础上理解长方体、正方体的直观图,认识它们的面、棱和顶点。
把立体的样子画在纸上,从长方体、正方体实物到它们的直观图,是空间观念的一次发展。在实物上只能看到一部分面,在直观图上实线围出了能看到的面,用虚线勾画不能直接看到的面。把立体与其直观图有机联系,感受直观图真实表达了立体的形状,并在看到直观图时,能想到相应的立体,这是空间观念的表现。直观图是教学难点,从有利于学生理解出发,可以分两步出现。先画出能够看到的面,再勾出不能看到的面。
面、棱和顶点是长方体、正方体结构的要素,是三个最基本的概念,还是研究长方体、正方体特征的出发点。按面棱顶点的次序教学,有利于建构它们的意义。物体有面是已有认识,只要在立体上摸摸面,在直观图上指出面,就体会了长方体、正方体的面,不必作过多的解释。两个面相交的线叫做棱,是对棱的数学解释。要通过观察和在实物上的演示,直观感受两个面相交的含义,清楚地看到相交处是线。要强调这条线不能叫做长方体、正方体的边,应称作棱。三条棱相交的点叫做顶点,要通过在实物上摸一摸、在直观图上指一指等活动,看到每一个顶点都是三条棱的交点,这是认识顶点的关键。
2. 观察物体,由量到质认识长方体的特征。
第11页认识长方体的特征,鼓励主动探索,重视合作交流,遵循逐渐认识的规律。首先数出长方体、正方体有几个面、几条棱和几个顶点,并把结果填在教材预设的表格里,从量的角度认识长方体、正方体的特征。填表能起三个作用:一是及时记录获得的信息,防止流失,有利于特征的整体性;二是通过写出有关的数量,加深印象,有利于记忆;三是显示出长方体、正方体都有6个面、12条棱和8个顶点,有利于感受长方体与正方体的联系。接着深入研究长方体的特征,教材提示了可进行的活动是看、量、比;研究的对象是长方体面的形状与大小,棱的长度与相互关系;研究的目的是发现长方体的特征。在学生充分活动的基础上组织交流,概括出长方体的特征。教学时要注意四点:① 学生对长方体特征的认识很难一步到位,总是由表及里、由浅入深地发展的。认识长方体的特征既让学生自主探索,又要教师引导点拨。如发现6个面都是长方形比较容易,而相对的面完全相同往往需要教师引导学生去关注、去比较。至于长方体的3组棱及每组4条棱长度相等,可能更需要教师给予点拨。再如学生的发现往往是局部的、点滴的,表达往往是不严密的,这就需要教师汇集生成的资源,提升语言水平,帮助抽象概括。② 例题里观察的是一般的长方体,目的是紧扣长方体的本质特征教学。把较特殊的长方体安排在练习三第1、2题里出现,学生不会因为它有两个面是正方形,对它是长方体产生怀疑。这样安排也符合正方体从属于长方体的关系。③ 学生间的学习方式总是多样的,部分学生喜欢探索发现,也有部分学生需要有意义的接受,合作交流能满足学生的不同需要。要让独立探索有困难的学生共享成果,在听懂同伴发言的基础上,给他们亲自验证、亲身感受的机会。④ 教学长、宽、高是继续认识长方体,要在顶点与棱的概念的基础上进行。必须清楚相交于一个顶点的三条棱分别是长方体三组棱中的一条,把它们分别叫做长方体的长、宽、高。不但要在立体上指出,还要在直观图上看出。如果适量地把长方体横放、竖放、侧放,根据不同的摆放位置,让学生说说它的长、宽、高,可以防止死记硬背,发展空间观念。
3. 观察物体,独立发现正方体的特征。
由于正方体比长方体简单,又有认识长方体特征的经验,所以正方体特征的教学会比较轻松。教材先提出正方体的面和棱各有什么特征这个研究课题,让学生在独立探索以后,小组交流自己的发现。尽管正方体的特征比较简单、容易得出,教学也不能过于仓促。仍要让学生指指相对的面、相对的棱,说说得出结论的过程与方法,想想6个面是完全相同的正方形与12条棱长度相等之间有什么必然联系使形象思维与抽象思维,以及数学活动的能力都得到发展。
二、 展、折,想像认识长方体、正方体的展开图。
第12页教学正方体、长方体的展开图,这部分内容的教育价值和教学要求,在前面介绍本单元教材编排特点时已经阐述,不再重复。这里主要分析教材,提出教学建议。
1. 初步知道展开图的含义,加强对正方体的认识。
例3先教学正方体的展开图,原因仍然是正方体的特征比较简单。例题详细展示了把正方体纸盒展开的步骤,用红线标出每步剪开的棱,最后还把剪开后的纸盒摊平。引导学生首次经历立体到展开图的转化过程,从中明白展开图是平面图形,清楚地看到展开图由6个相同的正方形组成。教学这道例题要注意反思,即得到正方体展开图以后,要回忆是怎样展开的,思考为什么展开图里有6个同样的正方形,正方形的边与正方体的棱有什么联系通过反思,既加强对展开图的认识,又加强对正方体特征的认识,更通过立体与展开图关系的思辨发展空间观念。
除了依照例题设计的剪法展开,还可以沿其他的棱剪。大象卡通提出的要求,是让学生再次进行展开正方体的活动,体会沿着不同位置的棱剪,得到的展开图形状不同。但是,展开图由6个相同的正方形组成,每个正方形的边都是正方体的棱是相同的。从而理解正方体展开图既有多样性,又有确定性。多样性是剪法不同的结果,确定性是正方体的特点决定的。
2. 自主研究长方体的展开图,加强对长方体的认识。
长方体的展开图安排在试一试里让学生剪纸盒得到,学习正方体展开图的经验和体会能支持他们主动地操作、交流。沿着哪几条棱剪?在教材里没有规定,可以自主选择。因此,得到的展开图也是多样的,在每个展开图里都可以看到6个长方形,从而体验了长方体展开图形状的多样性和组成的确定性。卡通提出的从展开图中找到3组相对的面是富有思维含量的问题,能引发学生细致地研究展开图,并把展开图与立体联系起来思考。要鼓励学生进行展开图长方体展开图长方体的折、展活动,反复地看展开图里的每一个长方形,想它在长方体的位置;看长方体的面,想它在展开图里的位置。在体验立体与展开图相互转化的过程中发展空间观念。
另外,在展开图上想长方体的长、宽、高,并把长、宽、高转换成展开图中各个长方形的长与宽,也有益于空间观念的发展,还能为表面积的教学作铺垫。
3. 判断哪些图形折叠后能围成正方体或长方体,加强对体的认识。
第12页练一练第2题提供的每个图形都由6个相同的正方形组成,判断这些图形中哪些折叠后能围成正方体。第14页第5题的每个图形都由6个长方形组成,判断哪几个图形能折叠后围成长方体。其中部分图形围不成正方体或长方体的原因是,折叠的时候部分正方形或长方形重叠,构不成有6个面的立体。因此,这两道题一方面加强了展开图与立体的转化,另一方面加强了对长方体、正方体都有6个面的认识。
学生进行这些判断会有困难,为此提出两点教学建议: 第一,在例3和试一试里要把沿不同的棱剪纸盒得到的各个展开图充分进行展示和交流。先认识图中所示的标准状态的展开图,再体会展开图还有其他形状,并在各个展开图上指出立体的相对的面。第二,允许学生灵活地先想后围或者先围后想。如果看到的图形是标准的或接近标准状态的,可以先判断它能否围成立体,想想围成的立体是什么样子,然后折叠验证判断和想像。如果看到的图形不是标准状态的,能不能围成立体难以判断,可以先动手操作,从中体会为什么能围成或围不成立体。
三、 分解,组合有意义地建构表面积的知识。
教学表面积知识编排的两道例题都是关于长方体的,正方体的表面积通过试一试在练习中教学,这是因为长方体表面积的概念和计算方法能迁移到正方体上去。表面积的教学分两步进行,先是例4与试一试,把表面积的意义和算法结合在一起。然后是例5,着重于表面积知识的应用,灵活地解决与长方体、正方体表面积有关的实际问题。
1. 联系已有知识经验,探索表面积的知识。
例4的问题情境是做一个长方体纸盒至少要用多少硬纸板,在掌握长方体特征的基础上,学生会想到这个问题与长方体各个面的面积有关,并出现不同的计算方法。猴子卡通和兔子卡通的算法是比较典型的两种方法,它们有相同的思路:求出纸盒各个面面积的总和,但算法不同: 把3组相对的面的面积相加,把每组相对面中各个面的面积和乘2。前一种算法得益于第13页第3题的铺垫,后一种算法受到了(长+宽)2=长方形面积的启发。两种算法都是计算长方体表面积的较好方法,相同的思路和乘法分配律沟通了两种算法的内在联系,教材鼓励学生选用自己喜欢的方法算出结果。
学生求至少要用多少硬纸板所想到的各种算法,都应用了分解组合的思想方法,即先把一个较复杂的新颖问题分解成若干个简单问题,再把这些简单问题组合起来。反思并体验这种思想方法,就能很好地理解表面积的意义,也不需要机械地记忆表面积的算法。学生对正方体有完全相同的6个正方形已经有深刻的认识,试一试求做正方体纸盒至少用多少硬纸板,一般都会把一面的面积乘6。得出的长方体(或正方体)6个面的总面积,叫做它的表面积,既形成了表面积的概念,也总结了计算表面积的方法。
2. 联系生活经验,灵活解决实际问题。
例5制作上面没有玻璃的鱼缸,利用长方体表面积的知识解决实际问题。通过实物图帮助理解这个实际问题的特点,让学生明白所用玻璃的面积是长方体5个面的面积和,从而主动想出算法。小鸟卡通和兔子卡通仍然应用了分解组合的思想方法,把实际问题抽象成求前、后、左、右和下面5个面的面积和的数学问题,或者抽象成从表面积(6个面的总面积)里去掉一个面的面积的数学问题。两条思路各有特点,前一条突出的是空间想像,要找准并正确计算有关的各个面的面积。后一条的思路负荷轻、思考难度小,能减少错误的发生。还有其他方法吗主要反映在按小鸟卡通的思路,可以列出5个面的面积连加的式子,也可以列出前、后两个面的面积加左、右两个面的面积,再加下面面积的式子。要注意的是,这道例题鼓励解决问题的策略与方法多样,并不要求学生能够一题多解。教材仍然让学生选择一种算法。
练一练和练习四里还有只计算长方体的前、后、左、右4个面面积和的实际问题,缺少左侧面的长方体的问题等。教材为部分习题配了示意图,便于学生直观感受实际问题是求哪些面的面积之和。部分习题没有配置实物图,可以在现实的生活空间里思考。如粉刷平顶教室的顶面和四周墙壁,只要看看自己的教室,就能把题目里的长、宽、高落到实处。又如台阶的问题,可以找个台阶看看,理解什么是它的占地面积以及地砖铺在哪些面上。计算长方体火柴盒的内盒和外盒所有的材料,综合应用了长方体特征和表面积知识,再次体验实际问题是多变的,要灵活应用知识才能正确解答。
四、 实验、领悟初步建立体积概念。
例6和例7分别教学体积的意义和容积的意义,容积的意义要建立在体积概念上,因而例6是这部分教材的重点。学生形成体积概念也是教学的难点,这两道例题的教学只能初步感受体积的含义,在后面教学常用的体积单位,以及长方体、正方体的体积计算时,还要通过测量和描述,进一步理解体积的意义。
1. 在有限的空间里领悟体积。
物体所占空间的大小叫做体积。空间物体占有空间所占空间的大小都是体积概念的内涵,是建立体积概念必须解决的子概念。例6利用杯子的空间,把感悟体积的过程设计成三步。第一步是初步体会空间和物体占空间。两个同样的玻璃杯,左边的盛满水,右边的放一个桃,把左边杯里的水倒向右杯,会剩下一些水。杯中有一部分空间被桃占去了这句话解释了现象、回答了原因,引出了空间这个词,让学生在现实的背景下感知空间的含义。这一步要把生活常识引向数学认识,看着放了桃的杯子,仔细领悟杯中有一部分空间被桃占去了的意思,是十分重要的教学活动。若有需要,还可以在一只透明空杯的上口放一本书,让学生看着杯子的里面体会杯子的空间。再把桃放入杯里,仍然用书盖住上口,看着杯里的桃,体会它占有杯子的一部分空间。第二步是感受不同的物体占的空间有大、有小。两个同样的杯子,一个杯里放1个桃,另一个杯里放1个荔枝,桃比荔枝大,分别往两个杯里倒水,显然前一个杯里可以倒入的水比后一个杯少。让学生回答为什么,不能简单地用桃大荔枝小来解释。要像兔子卡通那样想和说,用桃占的空间大,荔枝占的空间小来回答问题。理解桃大是指它占的空间大,荔枝小是指它占的空间小,从而获得不同物体占的空间大小不同的体验。第三步继续体会每个物体都占有一定的空间。观察图片里的番茄、荔枝和桃,先思考哪一个占的空间大,再想想这三个水果分别放在三个杯里,往杯中倒水,哪个杯里水占的空间大。这是两个连续的关于物体占有空间的问题,可从前一问题的答案推理得出后一问题的答案。由于苹果占的空间大,杯子盛水的空间就小;番茄占的空间小,杯子盛水的空间就大,这就感受了每个物体都占有一定大小的空间,由此得出体积的意义:物体所占空间的大小叫做物体的体积。
举例比比两个物体体积的大小是为了巩固体积概念,应该对学生提出两点要求:一是用好体积这个词,二是联系实物解释什么是它的体积。如电冰箱的体积是它占有空间的大小,电冰箱的体积比电视机的体积大。
练习五第1、3题进一步领悟体积的意义。把同样的盒装饼干堆成3堆,各堆的形状不同、体积相同。理解体积是物体占有空间的大小,与物体的形状无关。用小正方体摆出较大的正方体或长方体,理解体积大的物体占的空间大,体积相等的物体占的空间大小相等。
2. 从体积引出容积,初步建立容积概念。
容积与体积是两个既有联系,又有区别的概念,教学容积能进一步理解体积。
例7教学容积的意义,以体积概念为生长点。图画里有两盒书,一盒是《四大名著》,另一盒是《成语故事》。先在直观情境里比较哪盒书的体积大些,再从左边盒子里书的体积大引出左边盒子的容积大。书的体积是旧知,盒的容积是新知,教学既要以旧引新,也要体现容积与体积的不同意义。教材中比较书的体积,是看着两盒书进行的。而容积是指着两个书盒子讲的,从而凸现容积的属性,以及它与体积的区别。
为了有利于建立容积概念,教学时应该补充一些实例,让学生懂得容器,体会每个容器能容纳的体积是有限的、确定的。在充分感知的基础上,得出容器所能容纳物体的体积,叫做这个容器的容积。
试一试的教学要注意两点: 一是让学生解释玻璃杯容积的含义,理解每个杯的容积是指它能容纳多少水;二是通过实验比出哪个杯的容积大。如在一个杯里装满水,再往另一个杯里倒,看能不能装满另一个杯子,会不会有剩下的水。学生应该是实验设计、操作和结论得出的主体。
练一练第2题两个盒子里装的杯子的数量不同,练习五第4题两个盒子外面同样大,里面装的仪器数量不等,这些直观情境能帮助学生正确理解容积的意义,体会容器的体积与容积是不同的概念。
五、 认识,应用初步掌握常用的体积单位。
本单元教学的体积单位有立方厘米、立方分米、立方米。有了体积单位,就能测量、表达物体的体积,也能进一步体会体积的意义。
1. 认识体积单位包括两方面内容。
例8教学常用的体积单位,首先是测量、计量体积需要体积单位,然后是各个体积单位的具体含义。
观察图中的长方体和正方体,很难直接判断哪一个体积大。把它们切成同样大的正方体,就能比出体积的大小。这段教材让学生明白,有了体积单位就能准确计量物体的体积。图中的长方体是9个小正方体那么大,大正方体是8个小正方体那么大,长方体的体积比正方体大。还要让学生感受用于测量物体体积的单位,应该是确定的小正方体,由此导出常用的三个体积单位。把长方体和正方体切成同样的小正方体,最好是学生自主想到的方法。如果有困难,也可以看书或由教师告诉他们。但是,必须理解这个方法,体会其合理性,激发学习体积单位的愿望。
教学体积单位的具体含义,要准确地表达1立方厘米、1立方分米、1立方米各是多大的正方体。教材在文字描述这些体积单位的意义的同时,还选择一些辅助方法,让学生体会体积单位。棱长1厘米的正方体,体积是1立方厘米。教材里画出了1立方厘米的示意图,配合语言描述,让学生了解1立方厘米。受版面限制,教材里画出1立方分米、1立方米的直观图有困难。因此,在1立方分米的示意图的旁边,画一个体积接近1立方分米的粉笔盒,利用熟悉的物体,感知1立方分米是多大。用3根1米长的木条,在墙角搭一个1立方米的空间,在现实情境中体会1立方米。
寻找体积接近1立方厘米、1立方分米的物体,是带着体积单位的初步表象观察周围的事物,进一步体验这些单位。教材举的手指头的体积大约1立方厘米这个实例,能引起观察手指头的兴趣,加强1立方厘米的表象,再通过自主寻找实例,对1立方厘米的认识就深刻了。
2. 掌握体积单位有两方面的要求。
掌握体积单位,要能应用体积单位计量物体的体积。在这部分教材里,一是说出由1立方厘米小正方体摆成的物体的体积,二是为常见的物体选择合适的体积单位。
第21页说出用4个或6个棱长1厘米的正方体摆成的长方体的体积,第一次量化描述物体的体积。两个长方体的结构都很直观,分别说出它们的体积非常容易。教学不能满足于答案,要让学生说出怎样想的,进一步理解体积的意义和体积单位的用途。第24页第6题里的三个物体都是1立方厘米的正方体摆成的,其中两个物体的结构不是很直观。说出它们的体积,要数出各是几个正方体摆成的,尤其是想到那些不能直接看到的正方体,能发展空间观念。第8题根据三视图摆出物体,说出体积。摆出物体是解决问题的关键,是发展空间观念的机会。这个物体不复杂,多数学生能够摆出来。教学时不必补充这样的练习,更不要增加摆出物体的难度。
第24页第7题为物体选择合适的体积单位。能不能填出合适的单位,一般决定于三个因素:一是对物体的熟悉程度,二是具有体积单位的表象,三是能开展正确而有效的思考。如学生都熟悉西瓜,知道1个西瓜大致是多大,如果体积是8立方厘米或8立方米,显然都不符合实际。反之,为不熟悉的物体选择体积单位,只能是脱离实际地乱猜,这是毫无意义的。教材里的橡皮、集装箱、水桶等都是多数学生比较熟悉的物体。教学时如果补充类似的练习,一定要注意这点。
3. 进一步教学升与毫升。
四年级(下册)曾经教学升与毫升,初步知道它们都是计量液体的单位,也是容器的容量单位。对1升、1毫升液体是多少有了初步的认识。现在教学升和毫升,主要有两个内容: 第一,升和毫升都是体积单位,用于计量液体的体积,也用于计量容器的容积。把升与毫升纳入体积单位的范畴,建立新的知识结构,是已有认识的深化和提高。第二,1升等于1立方分米,1毫升等于1立方厘米,利用1立方分米、1立方厘米的表象理解1升与1毫升的实际大小,使原有认识更清晰、更牢固。
六、 操作,发现探索长方体、正方体的体积公式。
例9和例10教学长方体的体积计算公式,并推导出正方体体积计算公式。在初步掌握两个体积公式以后,还把它们统一起来。
1. 让学生探索求积公式。
长方体、正方体体积公式的教育价值,不能局限于知道公式和应用公式。况且,记忆和照公式列式计算的思维含量较低。得出体积公式能加强对体积意义、体积单位的理解;能发展解决问题的策略,积累数学活动经验;能培养创新精神和实践能力,有利于形成积极的情感态度。因此,教材十分重视探索体积公式的过程,设计、安排了认知线索和主要的探索活动。
例9和例10是两个层次的活动,不仅操作内容、要求有区别,而且思维程度有差异。例9用1立方厘米的正方体摆出4个不同的长方体,从已有的知识和能力开始教学新知识。没有规定长方体的大小,学生可以按自己的意愿去摆,既调动积极性,又为合作学习营造了氛围。在教材预设的表格里填写每个长方体的长、宽、高,所用正方体个数以及体积,可以获得两点感受:一是沿着长、宽、高各摆几个正方体,长方体的长、宽、高就分别是几厘米;二是长方体里有多少个正方体,体积就是多少立方厘米,体积应该与长、宽、高有关。这两点感受能使学生明白:探索长方体的体积计算公式,要研究体积与长、宽、高的关系。教学例9不要急于得出体积公式,而要在摆长方体与填表的基础上,着力引导学生获得上述两点感受,形成继续研究的心向。即使有学生从例9已经看出了体积公式,也要引导他们通过例10进一步验证公式,理解体积与长、宽、高之间的必然联系,感受数学的严谨及结论的确定性。
例10根据图示的长、宽、高,用1立方厘米的正方体摆出三个长方体。活动的本质是用体积单位测量物体的体积。对学习的要求是先想怎样摆、需要几个正方体,再按想法摆,验证想的是否可行、是否正确。三个长方体是精心设计的。左起第一个长方体的宽与高都是1厘米,只要把4个正方体摆成一行,能够体会长方体长的数量与沿着长摆的体积单位个数之间有必然联系。第二个长方体的高1厘米,只要把正方体摆成一层。体会长方体宽的数量是几,沿着宽应该摆出几行体积单位。而长与宽的乘积,就是一层里体积单位的个数。第三个长方体高2厘米,要把正方体摆成2层,体会长方体高的数量与摆的体积单位的层数是一致的。教材在各个长方体里预设的教学内涵,规划了各次实物操作时的思维重点,有助于学生逐渐建构数学认识。摆各个长方体获得的体会,就是对长方体的体积与它的长、宽、高关系的理解。教材让学生说说在两道例题中的发现,是引导他们回顾、反思例题的学习,进一步清楚这些体会,并把这些体会有条理地组织起来,得出长方体的体积公式。
抓住正方体12条棱长度相等的特点,能从长方体的体积公式推导出正方体的体积公式。教材要求学生主动经历推导过程,在独立思考之后小组交流。推导的思维方法是多样的,从正方体具有长方体的所有特征出发,演绎推理能完成推导,从再现测量体积活动出发,
类比推理能完成推导: 用体积单位测量正方体的体积,每行摆的个数、摆的行数、摆的层数都与正方体的棱长相等。因此,正方体的体积=棱长棱长棱长。
写正方体体积的字母公式时,根据字母表示数的书写规则,如果把乘号简写为,那么V=aaa;如果乘号省去不写,要写成V=a3。一般采用后一种写法,a3以及它表示的意思都是新知识。第26页练一练第2题,算几个整数或小数的立方的得数,巩固对立方的认识。解决正方体体积的实际问题,经常会列出和计算这样的算式。其中13、103和0.13要提醒学生特别注意,防止算错。
2. 深入理解体积公式。
长方体与正方体的体积公式,除了有一般与特殊的关系(正方体是特殊的长方体,正方体的体积公式是长方体体积公式的特例),还有相同的内容。认识它们的相同,能简化知识结构。第27页教学这个内容,分三步进行: 第一步认识长方体和正方体的底面。教材在长方体、正方体的直观图上,用涂颜色和文字标注等办法呈现它们的底面,让学生看到底面一般指长方体、正方体的下面(认识长方体时曾指过上、下、前、后、左、右三组相对的面)。第二步认识底面积。长方体或正方体的底面,都是表面的一部分。教材指出,长方体和正方体底面的面积,叫做它们的底面积,帮助学生建立底面积的概念,要求学生研究计算底面积的方法,联系求表面积的经验,得出长方体的底面积=长宽,正方体的底面积=棱长棱长,进一步加强对底面的认识。第三步演变原来的体积公式。在长方体的体积=长宽高里,如果把长宽看成先算底面积,那么体积公式可以演变成底面积高。在正方体的体积=棱长棱长棱长里,如果把棱长棱长看作先算底面积,那么体积公式也演变成底面积高。由于长方体、正方体的体积公式都能演变成底面积高,因而获得了统一。
把长方体和正方体的体积公式统一成底面积高,有两点教学意义: 第一是深入理解原有的两个体积公式。长、宽、高或棱长都是立体的棱的长度,决定立体的大小。长宽或棱长棱长得到长方体或正方体的底面积,底面积高得到的是体积。这里面蕴含了长度、面积、体积之间的联系。第二是重组知识结构。把两个体积公式合并成一个公式,其本身是一次认知简化。而且,底面积高还是计算所有直柱体体积的`方法。无论底面是直线图形的柱体,还是曲线图形的柱体,体积公式都是V=Sh。前一点意义,在现在的教学中就能实现;后一点意义,在以后的教学中会逐渐体现出来。
练习六第5题已知一根长方体木料的长与横截面的边长,横截面是第一次出现的概念,教材利用示意图帮助学生理解横截面的含义。先算出横截面的面积,再算木料的体积,有两点意图:一是通过计算横截面的面积,进一步认识这个面;二是体会长方体、正方体的体积公式还能演变成长横截面面积、横截面面积棱长,从而对体积公式有更充实、更丰富的体验。
七、 计算,迁移理解体积单位的进率。
在初步掌握长方体、正方体的体积公式以后,教学体积单位的进率,采用让学生经过计算发现和理解的教学方法。教材第30~32页,先教学相邻体积单位间的进率,再教学简单的换算。
1. 求两个同样大小的正方体的体积,发现和理解进率。
例11的图里有两个正方体,一个棱长1分米,另一个棱长10厘米。从1分米=10厘米,知道两个正方体的棱长相等,进而判断它们的体积相等。这两个正方体的体积分别是1立方分米与1000立方厘米,从它们体积相等,推理得出1立方分米=1000立方厘米,这就是立方分米与立方厘米的进率。
用同样的方法,通过棱长1米和棱长10分米的正方体,可以得到立方米和立方分米间的进率。
在教学进率的过程中,作出两个正方体体积相等的判断是关键。因为1立方分米=1000立方厘米、1立方米=1000立方分米,首先表达的是两个棱长相等的正方体的体积相等,然后才本质地表达出相邻两个体积单位的进率。后者是这部分教材的重点所在。
练习七第1题的表格里已经填了米、分米、厘米三个长度单位以及一个面积单位与一个体积单位,要求学生继续写出其他面积单位和体积单位,还要写出表格里相邻的长度、面积、体积单位的进率。这道题对长度、面积、体积三类计量单位从名称和进率两个方面进行初步的整理。填表能引起学生对这些单位概念的回忆,如边长1米的正方形面积是1平方米,棱长1米的正方体体积是1立方米。从而体验米、平方米、立方米是不同的概念,也是有对应关系的单位。有了这些体验,在测量或计量长度、面积、体积时,就能正确应用单位名称。通过填表能发现规律,如米、分米、厘米这三个长度单位,相邻单位间的进率是10;平方米、平方分米、平方厘米这三个面积单位,相邻单位间的进率是100(1010);立方米、立方分米、立方厘米这三个体积单位,相邻单位间的进率是1000(101010)。理解这些规律,有助于记忆进率。
2. 应用进率进行简单的换算。
对使用不同单位的体积进行换算,是应用进率的活动。本单元里的单位换算是比较简单的,只在两个相邻单位间进行,而且都是单名数的换算。
练一练是体积单位的换算,先把较大单位的数量换算成较小单位的数量,再把较小单位的数量换算成较大单位的数量。类似的这些换算在长度单位、面积单位、质量单位里都进行过,学生有换算的经验,知道可以利用小数点向右或向左移动位置的办法解决。完成这里的练一练,可以把已有经验迁移过来,着重思考把小数点向哪边移动几位,并对这样做的原因作出解释。
练习七第2题把面积单位的换算与体积单位的换算对比着进行,目的是体会它们在换算时的相同与不同。无论哪类计量单位,只要是较大单位的数量换算成较小单位,都把小数点向右移动;只要是较小单位的数量换算成较大单位,都把小数点向左移动,这是规律,是共性。而小数点移动的位数是由进率决定的,进率分别是10、100、1000,小数点分别移动一位、两位、三位。获得这些体会的价值,已经远远超出知识与技能的范畴,更是数学思考、解决问题方面的发展。第4题里升与毫升的换算,四年级(下册)教材里曾经进行过。现在进行这些换算,不限于整数范围内实施,对问题及其解决方法的理解也比过去深刻。把升为单位的数量改写成立方分米为单位,把毫升为单位的数量改写成立方厘米为单位,能加强1升等于1立方分米、1毫升等于1立方厘米的认识,更好地把体积单位组织起来,便于记忆和应用。
八、 拼拼,想想体验表面积的变化。
实践活动《表面积的变化》专题研究几个相同的正方体(或长方体)拼起来,得到的立体与原来几个正方体(长方体)表面积之和的关系,发现并理解其中的变化规律,发展空间观念。
拼拼算算这个栏目,先研究用正方体拼的情况,再研究用长方体拼的情况,后一类情况比前一类复杂。研究正方体拼成长方体,从两个正方体开始。选用体积1立方厘米的正方体,它的每个面的面积都是1平方厘米,有利于体会到表面积的变化。
用两个相同的正方体拼出长方体,可以上、下两个面拼,也可以左、右两个面拼,还可以前、后两个面拼。从现象看,似乎拼法不同。其实,各种拼法没有实质性的差别。首先是拼成的长方体的体积是2个正方体体积的和,每个正方体的体积是1立方厘米,长方体的体积是2立方厘米。其次是每种拼法都减少原来的2个面,这是正方体拼成长方体时发生的变化,也是这次实践活动的研究内容。在两个正方体拼成长方体的图示中,可以体会减少的2个面分别在两个正方体上。拼的时候,这两个面相重叠。
用3个、4个甚至更多个相同的正方体摆成一行,拼成长方体,表面积比原来减少几个正方形面的面积?教材让学生边操作、边观察,边思考、边填表。发现的规律要帮助学生分两个层次归纳和交流:一是关于拼的步骤。2个正方体一步就能拼成长方体,3个正方体要分两步拼,4个正方体要分三步拼二是关于减少的面积。2个正方体拼,比原来减少2个(一对)正方形面的面积;3个正方体拼,比原来减少4个(两对)正方形面的面积;4个正方体拼,比原来减少6个(三对)正方形面的面积
用两个相同的长方体拼,情况比较复杂。由于长方体三组面的形状、大小不同,只有把完全相同的两个面重叠,才能拼出较大的长方体。因此,一般有三种不同的拼法。教材让学生通过操作,了解三种拼法。再看着各种拼法的示意图,思考每种拼法减少的面积。在体会三种拼法减少的面积不同之后,找出拼成的大长方体中,哪个表面积最大,哪个最小。
第37页的示意图中,左边拼法的两个长方体把54的面重叠,拼成的大长方体的表面积比原来减少两个54;中间拼法的两个长方体把53的面重叠,表面积减少2个53;右边拼法的表面积减少2个43。这些都是学生在操作与看图中能够理解的,也是交流的主要内容。指出表面积最大和最小的大长方体,要进行这样的推理:拼的时候减少的面积最少,拼成的大长方体的表面积最大。反之,减少的面积最多,拼成的大长方体的表面积最小。只要教师稍加引领或点拨,学生都能像这样想。而且计算三个大长方体的表面积比原来减少多少,都有捷径可走。
拼拼说说栏目里变化了拼法,不但把正方体拼成一行,还拼成两行。仔细地体会拼的活动和研究教材里的示意图,左图可看作有7次正方体的两两相拼(如图),每次减少面积2平方厘米,大长方体的表面积比原来减少7个2平方厘米。右图中可看作有5次正方体的两两相拼(如图),大长方体的表面积比原来减少5个2平方厘米。所以,右边的长方体表面积比左边长方体大4平方厘米。
为10盒火柴设计一个最节省的包装方案,是应用前面拼正方体或长方体的经验:重叠的面越大,表面积减少越多;两两相拼的次数多,减少的面积也多。这两条经验要灵活地、综合地应用,才能得到理想的方案。这对空间观念和思维能力是很好的锻炼。
小学数学教案 篇8
在前面的教材里,学生已经认识了条形统计图和折线统计图,能够利用这些统计图表示数据及变化态势;初步理解了平均数的意义,会求一组数据的平均数,能够应用平均数对数据进行分析、比较。本单元教学扇形统计图、众数和中位数,扇形统计图过去是选学内容,现在是基本的教学内容,而众数和中位数是根据《标准》的要求新增加的教学内容。扇形统计图能直观地表示出各个部分的数量分别是总数量的百分之几,众数和中位数都是统计量,在平均数不能有效地反映出一组数据的基本特点时,往往选用众数或中位数来表达数据的特点。因此,本单元的教学能进一步提高学生表示数据、分析数据的能力。教材编排了四道例题和两个练习,例1和练习十五主要教学扇形统计图的知识,例2至例4以及练习十六教学众数和中位数的知识。
1.以百分数的知识为基础,教学扇形统计图。
例1教学扇形统计图,分两步进行。第一步从整体到部分认识扇形统计图,让学生观察我国陆地地形分布情况统计图,体会图中的数据信息的具体含义,理解这张统计图用一个圆表示我国陆地的总面积,用五个扇形分别表示平原、盆地、高原、丘陵、山地各占国土总面积的百分之几。由于五种地形所占总面积的百分比不同,所以五个扇形的大小不同。教材及时指出,这样的统计图叫做扇形统计图,它能清楚地表示出各部分的数量与总数量之间的关系。经过这一步教学,学生知道扇形统计图与条形统计图、折线统计图相比,不仅形状不同,而且表达的数据内容也不相同。第二步根据已知的我国国土总面积,利用扇形统计图里的数据,分别算出五种地形的面积并填入统计表,进一步体会扇形统计图的特点。由于计算比较复杂,所以使用计算器。
教学扇形统计图,要理解图中的百分数的具体含义,并利用这些百分数进行相关的计算,不要求学生制作扇形统计图。练一练和练习十五根据教学要求,设计了两方面的练习内容。一是从统计图中各个扇形的大小以及表示的数据出发,进行分析与解释。如练一练第1题看图说出7月份哪项支出最多。第2题从我国的国土只占世界的7%,人口却占世界的22%,想到我国人均占有的土地比较少,人口密度很大。练习十五第1题通过对应数据的比较,判断哪天的食物搭配比较合理。二是看图估计或计算,如练习十五第2题根据拼盘里的花生米所占面积的百分比,估计其他干果各占面积的百分比。第3题分别计算我国四个海域的实际面积。
2.联系现实的素材,教学众数和中位数。
在一组数据中出现次数最多的那个数,是这组数据的众数。由于众数在一组数据中出现的频率最高,所以众数反映了这组数据的集中情况。教学众数,要让学生领会众数的意义,学会在一组数据中得出众数的方法。例2用表格呈现9个学生每人用20粒黄豆种子做发芽试验的结果,先看表在括号里填数,感受发芽17粒的人数最多,有5人。然后把9个数据依次排列,指出17出现的次数最多,是这组数据的`众数。教学这一段内容,首先要形成正确的众数概念数据中出现次数最多的那个数。在发芽结果的数据中,17出现了5次,17是出现次数最多的数,5是它出现的次数,这组数据的众数是17,不是5。其次要知道求众数的方法在一组数据中寻找出现次数最多的那个数。不管这个数出现了几次,只要比其他数出现的次数多,它就是这组数据的众数。例题还要求计算这组数据的平均数,联系实际比较平均数和众数的意义,体会它们是两个不同的概念,进一步理解众数。
第79页练一练第1题通过找出一组学生的年龄的众数,巩固众数概念和求众数的方法。第2题在解决实际问题时应用了众数,鞋店上周销售皮鞋中,25.5cm这个尺码的皮鞋售出的双数最多,25.5是这组数据的众数,所以进货时要多一些这个尺码的男鞋。练习十六第1题配合例2的教学,男生身高的众数是153,女生身高的众数是148,10名男生里3人的身高是153厘米,10名女生里5人的身高是148厘米,所以说女生身高的众数更能反映这组学生的身高情况,即更具有代表性。这就是众数作为一种统计量,在描述一组数据特征时能起的作用。
一组数据按大小顺序排列,居于中间位置的那个数是这组数据的中位数。如果这组数据的个数是单数,那么中位数是正中间的那个数;如果这组数据的个数是双数,那么正中间的两个数的平均数才是这组数据的中位数。教材编排两道例题,分别教学这两种情况。
例3要求学生评价7号男生的跳绳成绩在这组同学中的位置,有的学生可能根据算出的平均每人跳117下,认为7号男生跳的比平均数少。有的学生可能把7号男生跳的下数与其他男生比较,得出他的成绩是第三名。这些都是学生利用原有的知识、经验进行的比较。为什么7号男生跳的下数比平均数少,成绩还是第三名?为了解决这个疑问,例题先教学中位数的知识,指出把这组数据按大小排列,正中间的一个数102是这组数据的中位数,既揭示了中位数的含义,又讲了求中位数的方法。再把7号男生的成绩与中位数比,看到尽管他跳的下数比平均数少,却比中位数大,在这9个男生中的名次还是比较靠前的,初步体会中位数与平均数是两个不同的统计量。例题还要学生思考为什么这组数据的平均数比中位数多得多,这是由于2号和8号男生的成绩十分突出,远远多于其他男生跳的下数,他俩的优异成绩使男生跳绳的平均数大了,而多数男生的跳绳成绩都低于这个水平。所以,如果一组数据里存在特别大或者特别小的极端数据,平均数往往不能准确地表达这组数据的整体状况,这时用中位数表示这组数据更合适。
例4求10个女生跳绳成绩的中位数,这组数据的个数是双数。教材指出,正中间有两个数,中位数是这两个数的平均数,并要求学生算出这组数据的中位数,学会求这种情况的中位数的方法。然后把各个女生的成绩分别与中位数比较,体会用中位数能评价每个数据在整体里的地位。
练一练的教学不能偏重于求平均数和中位数,要把时间用在第(2)、(3)两个问题的讨论上。9位同学家庭的住房面积中,有两个数据比其他数据小很多,所以平均数比中位数低得多,用中位数代表9个家庭的住房水平比较合适。练习十六第2题的数据中,A飞机的飞行时间只有8秒,比其他飞机少得多,一般用中位数表示这8架飞机的飞行水平。如果A飞机不飞,其他飞机的飞行时间虽然有多有少,但差距不是很大,所以平均数和中位数比较接近,都能代表这些飞机的飞行水平。第3题公司的经理、副经理的月工资比其他员工高出很多,教材让学生分别算出公司员工月工资的平均数、中位数和众数,体会平均数比中位数、众数大得多,应该用中位数或者用众数来反映这个公司的工资水平,进一步理解中位数与众数的实际应用。
小学数学教案 篇9
教学目标
1.通过观察、讨论,让学生在认识圆的基础上认识球的特征,了解球的各部分名称,发展空间想像能力。
2.通过学生多种感官的参与学习,增强学生的研究意识,提高学生的学习兴趣。
教学过程
一、激趣引入
前阶段学校搞泥塑大赛,同学们都踊跃参加了。泥塑有个基本功,就是要把橡皮泥搓成小球。你能吗?拿出橡皮泥,看谁搓得标准、美观。相机揭示课题。
评析:
学生通过动手活动,创造了感兴趣的、有结构的观察材料,使探究活动更直接有效。同时也唤起学生更直接的生活经验,激发了学习的'积极性。
二、自主探究
1.分小组学习。先让学生畅所欲言,谈谈自己想了解球的哪些知识。然后请同学们充分发挥想像力,通过切割、观察、讨论,自主认识关于球的一些知识。
评析:
这里不再是教师手拿学具按部就班的讲解,而是学生利用搓好的球和其他实物、学具带着问题自主求知。课堂是开放的,学生的需要和兴趣始终处于核心地位,学生是学习的真正主人。
2.学生交流。主要解决以下问题:
(1)名称:球面,球心(o),半径(r),直径(d)。
(2)特征:球面是曲面;在同一个球里,有无数条半径,长度都相等;有无数条直径,长度也都相等;直径是半径的2倍,半径是直径的1/2 等等。
评析:
这种设计具有较强的灵活性。教学过程是个动态的过程,不可能完全按事先设计好的程序进行。教学中,学生能说的教师决不包办代替,当学生回答得不完整时,教师可做适当的点拨或补充。
3.归纳整理。同学们将刚才研究的知识写在纸上,并请两位学生到讲台前交流。
评析:
建构主义认为,学生的学习行为不是对教师所授予的知识的被动接受,而是依据已有的知识和经验所做的主动建构。通过归纳,学生将学到的新知识纳入到已有的知识经验中去,形成新的认知结构。
4.质疑问难。
下面的问题如果学生提出,则灵活解决。如无学生提出,前两个问题教师可直接提出:
(1)怎样测量一个球的直径?如何证明一个球的直径都相等?(先让学生说方法,引导学生用两块木板夹住演示)
(2)球与圆有什么联系与区别?(先讨论,再交流)
(3)如有学生提出表面积、体积问题,则引导:现在解决这个问题难度还很大,回去可以查阅有关资料,看球的表面积和体积公式是什么。
三、巩固练习
1.看书并完成第19页做一做第2题。
2.地球的赤道大约是一个半径6400千米的圆。如果有一根长比赤道的周长多1米的铁丝围成一个与赤道是同一圆心的圆,那么,你的拳头能否从赤道与铁丝的空隙处穿过?
先让学生猜一猜,可让听课教师也参与。再让学生说解答方法。全班计算。如有时间可改成木星(赤道半径71400千米)等,让学生推理得出结论,
评析:
新课程强调创造性和开放性思维的培养。开放题的设计,大大激发了学生的学习兴趣。学生在挑战性的问题情境中创新精神得到培养。
【小学数学教案】相关文章:
小学的数学教案03-24
小学数学教案11-04
小学数学教案[精选]07-05
(精选)小学数学教案07-05
[精选]小学数学教案07-05
【精选】小学数学教案07-05
小学数学教案(精选)07-05
小学数学教案【精选】07-05
小学数学教案07-05
小学数学教案(精选)07-05