现在位置:范文先生网>教案大全>数学教案>五年级数学教案>五年级数学教案

五年级数学教案

时间:2023-10-12 17:49:45 五年级数学教案 我要投稿

五年级数学教案

  作为一名人民教师,编写教案是必不可少的,编写教案有利于我们科学、合理地支配课堂时间。写教案需要注意哪些格式呢?下面是小编为大家收集的五年级数学教案,欢迎大家分享。

五年级数学教案

五年级数学教案1

  教学目标:

  使学生明确小数连除、除加、除减的运算顺序与整数相同,能灵活地运用学过的定律和有关的规律进行简便计算。

  教学重点:

  教学过程:

  一.1.口算:

  0.1230.360.40.10.01

  0.160.024.50.0338

  0.040.50.750.1513

  2.说说下列各式的运算顺序,并算出结果。

  360454206+1507505-80

  3.用简便方法算

  13456035

  二.新授

  1.谈话引入

  小数的连除、除加、除减的运算顺序和整数一样。(板书课题)

  2.教学例10

  (1)读题、审题、列式。

  9.30.52.4

  问9.30.15表示什么?再除以2.4又表示什么?

  (完成板书)

  :小数连除的运算顺序与整数相同,从左往右依次计算。

  (2)练习第31页做一做(中)

  做前先讨论:这两题是什么算式?有几步运算?先算什么?再算什么?后指名板演讲评。

  3.在整数除法中学过的`一些简便算法,有时也可以在小数除法中使用。

  (1)教学例11

  出示例11,师问:怎样算简便呢?

  学生小组讨论:得出把除数转化成是一位数的连除。(生讲师板书)

  5.635

  =5.675

  =0.85

  =0.16

  :在整数除法中学过的一些简便算法,有时也可以在小数除法中使用。(2)大家练第31页做一做(下)

  4.全课:略

  三.巩固练习

  1.第32页2、3填入书本

  2.课作:第1部分第4题

五年级数学教案2

  课题一:两个数的

  教学要求 ①使学生理解公倍数、的概念。②使学生初步掌握求两个数的的方法。③培养学生抽象概括的能力和实际操作的能力。

  教学重点 理解公倍数、的概念。

  教学难点 求两个数的的方法。

  教学用具 投影仪

  教学过程

  一、创设情境

  1、口答:求下面每组数的最大公约数。

  3和8 6和11 13和26 17和51

  2、求30和42的最大公约数。

  二、揭示课题。

  前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。

  三、探索研究

  1.教学例1。

  投影出示例1 及画好的'数轴。

  (1)学生口述4和6的倍数,投影显示在数轴上。

  (2)观察并回答。

  ①4和6公有的倍数是哪几个?

  ②其中最小的一个是多少?有无最大的?为什么?

  (3)归纳并板书。

  ①4 和6公有的倍数有:12、24、36

  其中最小的一个是12。

  ②也可以用图来表示。

  4的倍数 6的倍数

  4 8 16 20 12 24 6 8 30

  4 和6 的公倍数

  (4)抽象、概括。

  ①什么是公倍数、?(让学生说)

  ②指导学生看教材第71页有关公倍数、的概念。

  (5)尝试练习。

  做教材第73页的做一做,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。

  2.教学例2。

  (1)出示例2并说明:我们通常用分解质因数的方法来求几个数的。

  (2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?

  2 18 2 30

  3 9 3 15

  3 5

  18=233

  30=235

  (3)观察、分析。

  ①18(或30)的倍数必须包含哪些质因数?

  ②如果233(或235)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?

  ③18和30的公倍数必须包含哪些质因数?(2335)

  (4)归纳:18 和30 的里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18 和30 的是:

  2335=90

  (5)教学求的一般方法。

  为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求,如: 18 30 并让学生分组讨论写成这种形式后该怎样做。

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出了?

  (6)尝试练习。

  做教材第74页上面的做一做,学生解答后,点几名学生说说是怎样做的,然后集体订正。

  (7)抽象、概括求的方法。

  ①谁能说说求的方法。

  ②指导学生看第74页求两个数的的方法。

  四、课堂实践

  1.做练习十五的第1题,让学生讲讲为什么?

  2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?

  五、课堂小结

  学生小结今天学习的内容及方法。

  六、课堂作业

  做练习十五的第2、3题。

五年级数学教案3

  第五单元小数乘法和除法

  小数四则混合运算

  教学内容:

  课本第76页。

  教学目标:

  1、掌握小数四则混合运算的顺序,能正确地进行计算。

  2、经历计算、猜想、验证等数学活动过程,初步理解和掌握整数加法、乘法的运算律对小数加法、乘法同样适用。

  3、能运用运算律进行简便计算,掌握简便计算的方法,培养简便计算的意识。

  教学重点:

  正确计算小数四则混合运算,应用运算律进行简便计算。

  教学难点:

  运用乘法的运算律进行小数乘法的简便运算。

  教学准备:

  课件

  教学过程:

  一、复习导入,揭示课题。(4分钟左右)

  1、回忆一下,我们学过的整数四则混合运算的运算顺序是怎样的?乘法运算律有哪些?请用字母表示出来。

  总结:

  (1)同一级符号从左往右依次计算;

  (2)既有加减,又有乘除,先算乘除,再算加减;

  (3)有小括号的,先算小括号里面的。

  乘法交换律ab=ba

  乘法结合律a(bc)=(ab)c

  乘法分配率a(b+c)=ab+ac

  2、明确课题。

  今天就一起来学习“小数四则混合运算”。

  二、自学例14。(15分钟左右)

  1、明确例14中的数学信息及所需要解决的问题。

  2、自学。

  导学单(时间:5分钟)

  (1)看图,根据题意列出综合算式。

  (2)你是按照怎样的顺序进行计算的?为什么可以这样计算?

  (3)比较两种解法,哪一种更简便?

  (4)计算并比较三组算式。

  点拨:先分别算出种茄子和辣椒的面积;或先算出这块长方形菜地的长是多少米。

  点拨:小数四则混合运算的顺序和整数相同。

  总结:“先算出这块菜地的长,再算它的面积”相对简便些。

  3、小组交流。

  交流内容

  (1)小数四则混合运算的顺序是怎样的?

  (2)三道算式的圆圈里能填等号吗?为什么?

  (3)整数加、乘法的运算律,对小数加、乘法也都适用吗?

  4。集体交流。

  导学要点:整数加法、乘法的运算律对小数加、乘法同样适用。而且,应用运算律常常能使计算过程比较简便。

  三、巩固练习。(13分钟左右)

  (一)适应练习。

  1。整合“练一练”第1题和练习十四的第2题,先说出各题的运算顺序,再计算。

  点拨:“练一练”第1题的(1)可以先同时计算乘除法,再算加法;练习十四第2题的最后一题,算式中既有中括号又有小括号,先算小括号里的,再算中括号里的。

  2。整合“练一练”第2题和练习十四的第2题,用简便方法计算。

  点拨:0。25×36=0。25×4×9

  运用了什么运算律?

  2。4×1。02=2。4×(1+0。02)

  运用了什么运算律?

  (二)口答练习。

  1、练习十四第1题中的6道题。

  提醒:

  (1)数位对齐;

  (2)从个位算起;

  (3)不要忘加小数点。

  (三)整合练习。

  1、练习十四第4题。

  提示:要求这四名同学完成接力赛的总时间,只要把表中的四个数据相加就可以了;而求这四个数连加的和时,可以应用加法的交换律和结合律使计算简便。

  2、练习十四第5题。

  点拨:

  (1)400×0.25×0.35先算400棵向日葵可收葵花子的千克数,再算可榨油的千克数;

  (2)0.25×0.35×400先算每棵向日葵可榨油的千克数,再算400棵向日葵可榨油的总千克数。

  (四)创编练习。

  简便计算:7.3×9.9 0.125×8.8

  提醒:7.3×9.9=7.3×(10-0.1)

  0.125×8.8=0.125×8×1.1或

  0.125×8.8=0.125×(8+0.8)

  四、课堂总结;

  通过这节课的学习你学到了什么知识?

  教学反思:

  精选阅读

  苏教版四年级上册《整数四则混合运算练习课》数学教案

  苏教版四年级上册《整数四则混合运算练习课》数学教案

  第七单元整数四则混合运算

  第3课时整数四则混合运算练习课

  教学内容:

  教材第73页。

  教学目标:

  学生进一步掌握三步混合运算的运算顺序,逐步形成计算技能,经历分析数量关系的.过程,巩固解决问题的策略,培养数学思维能力和解决问题的能力。

  教学重难点:

  掌握三步混合运算的运算顺序,巩固解决问题的策略。

  教学过程:

  一、计算训练

  1、揭示课题。

  这节课我们继续来练习混合运算,完成练习十一上的练习。(板书课题)

  2、口算:

  720÷90 484÷2 450÷50

  28+42 3×48 40÷2

  360×2 65-17 56+8

  3、计算下面各题。指名说说混合运算的运算顺序是怎样的?

  完成练习十一第9题。

  学生独立计算,提醒自觉验算。

  4、练习十一第10题。

  说说每组中两道算式的相同和不同的地方,再判断哪道算式的得数大。

  通过计算检验。

  二、解决问题练习

  1、练习十一第11、12题。

  学生独立解答。

  反馈交流各自的解题思路。说说是怎样整理题目中的条件和问题的,怎样分析数量关系的。

  2、练习十一第13题。

  先让学生独立完成估算,并说说是怎样估算的。

  再列式算出结果,并把它与估算的结果比较。

  3、练习十一第14题。

  学生读题,独立解答。

  反馈解题思路。

  引导思考“你还能提出什么问题”。

  学生提出问题并解答。

  三、课题总结

  通过今天的练习,你有什么收获呢?

  教学反思:

  四则混合运算

  这一单元的目标是这样定的:

  1、使学生掌握含有两级运算的运算顺序,正确计算三步式题。

  2、让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两、三步计算的方法解决一些实际问题。

  3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

  从教参的教学目标定位来看,应该是既注重两级运算的运算顺序教学,又要重视解决问题的一些策略。然而结合我们学生的学习实际情况来看,两样都已初步的感受过,但又不是很深入,如:四则运算的计算顺序包括带括号的计算顺序都在平时的练习中曾经碰到过,但不是很多(但有的学生在家长的帮助下对于先乘除后加减的运算顺序了然于胸了)。所以是不是把四则混合运算顺序作为重点来教我真的曾不止一次的怀疑过。让我怀疑动摇的还有一个原因就是学生解决问题的能力太差,新课程一线教师都清楚现在学生解决问题能力的欠缺。所以,这一次四则运算知识的教学也正是加强学生解决问题能力训练的一次好机会,与我有这种相同想法的教师还真不少,认为还是有必要侧重解决问题的策略教学。

  在教学式题过程中,我要求学生用先算,再算,最后算来口述式题的运算顺序,减少运算顺序的错误,同时也加强学生语言表达能力。写作业时还要求学生根据式题的运算顺序用简单的画顺序线,以增强运算顺序的形象感。如:第11页例题5:先说出各题的运算顺序,再计算。

  (1)42+6(12-4)

  (2)42+612-4

  口述顺序是:先算括号里的减法,再算口述顺序是:先算乘法,再算加法。最后

  括号外的乘法,最后算括号外的加法。算减法。

  而在教两三步计算解决简单的数学实际问题时,我先要求学生口述解题思路,让其明白列综合算式应先算什么,再算什么,最后算什么,把抽象的、明理的东西搞得的尽可能的形象,从而更接近于小学生的实际。

  只有多巩固练习,就能熟能生巧,做到四则运算式题的顺序无误,列综合算式条理清晰,学生分析问题、解决问题的能力得到了提高,更大的收获是差生做式题的计算减少了不必要的错误。

五年级数学教案4

  “方程”是《数学课程标准》数与代数中“式与方程”部分的内容,无论是原《大纲》还是《数学课程标准》,方程的内容都占有重要的地位,原《大纲》提出的内容是:用字母表示数。简易方程(ax±b=c,ax±bx=c)。列方程解应用题。教学要求是会用字母表示数、常见的数量关系、运算定律和公式;初步理解方程的意义,会解简易方程;初步学会列方程解应用题。

  《数学课程标准》的具体标准内容是:

  (1)在具体情境中会用字母表示数。

  (2)会用方程表示简单情境中的等量关系。

  (3)理解等式的性质,会用等式的性质解简单的方程(如3x+2=5,2x-x=3)。虽然都是三条,但两者在具体的要求和内含上有所不同。

  首先,《数学课程标准》强调了要在“具体的情境中”用字母表示数,主要是考虑到用字母表示数是数学符号化的重要内容,从具体情境中抽象,概括出含有字母的“代数式”是数学建模的重要过程。借助学生熟悉的具体事物,认识用字母表示数,不但使学生了解数学“符号”的作用,更重要的是,渗透初步的数学建模的。

  其次,《数学课程标准》不再单纯要求学生列方程解应用题,而是强调“会用方程表示简单情境中的等量关系”,突出了方程的数学模型。让学生在用方程表示具体等量关系中理解方程的实际意义。方程是刻画现实世界数量关系(相等)的数学模型,在传统的教学中,注重的是有关的概念和技能,如方程的等价性、方程解的讨论、方程的解法等。历来被看作数学教学的重点和难点,教学中重视给学生分析数量关系,机械的列出方程,解答问题,更有甚者,把问题进行分类,并就某一类问题主要的等量关系和解题套路。如,行程问题,浓度问题,工程问题等,这样的教学缺乏探索性、研究性和挑战性,学生体会不到方程是现实世界的数学模型,更没有经历到数学建模的过程,应用意识和实践能力的培养也就成了空话。

  《数学课程标准》把“会用方程表示简单情境中的等量关系”单列出来,就是要强调方程在数学教育中的作用,让学生感受方程和实际问题的联系,体会到方程是刻画现实世界的模型,领会数学建模的和基本过程,提高解决问题的能力和自信心。第三,《数学课程标准》强调了利用等式的性质解简单的方程。而不是原《大纲》教材中的利用加、减、乘、除各部分间的关系作为解方程的依据,突出了方程的“代数”以及和初中知识的衔接。鉴于上面的变化,新教材与传统教材在知识建构和内容编排上也有着不同的特点。

  第一、教材安排和设计思路不同。传统教材中,方程的内容一般分三个小节(1.用字母表示数;2.简易方程;3.列方程解应用题)集中安排在五年级上册。在学习用字母表示数以后,先学解方程的方法,再学列方程解应用题。新教材与传统教材相比,首先把式与方程的内容分两个单元分别安排在四年级下册和和五年级下册(本单元)。另外,打破先学解方程的方法,再学列方程解决应用问题的教材体系,在学生认识、了解等式的基本性质以后,把学习方程的解法和解决应用问题整合在一起。选择学生熟悉的、感兴趣的事物和问题。如,手写字和电脑打字问题、猜数奥秘、向山区小朋友捐书等。让学生在具体问题情境中,找到具体问题中的等量关系,进而列出方程,学会求解方法。教材设计的基本思路是:呈现问题情境--数学模型(找等量关系、列方程)--尝试解答--互动学习。

  第二、解方程的依据不同。传统教材中,把小学阶段加、减、乘、除各部分间的关系作为解方程的依据,初中则用等式的基本性质解方程。这种小学、初中解方程思路和方法的不一致,使小学阶段的学习非但起不到打基础的作用,在一定程度上还增加了初中学习解方程的难度。新教材按照《数学课程标准》的要求,小学、初中解方程的依据和思路一样-用等式的基本性质解简单方程。考虑到学生还没有学习有理数的运算,本套教材删去了a-x=b、a÷x=b的方程基本类型。

  第三、列方程解应用问题的内容不同。传统教材中,列方程解决的应用问题都是学生以前用算术方法能够解答的问题。首先,因为两种解题方法的思路不同,加上学生长时间学习用算术方法解答,习惯于算术方法的解题思路,所以学习用方程解决应用问题时,往往受到算术方法解题思路的干扰,影响学习效果。另外,传统教材一般采取先鼓励学生用算术方法解答,再讲用方程解答。而且,把用两种方法解答作为解决问题方法多样性的要求。这样一来,用方程解决问题的学习,不但不利于提高学生解决问题的能力,反而增加了学习的难度,容易造成学生思维方面的混乱。新教材根据《数学课程标准》的要求,首先降低“应用题”的难度,不安排用算术方法解逆思考的应用问题,不单设应用题单元,把解决应用问题和学习计算方法整合在一起,让学生在解决问题的过程中学习计算。这些应用问题都是学生熟悉的、用基本数量关系和四则运算的意义能够解答的简单问题。用方程解应用问题时,则选择一些简单逆思考的或适合用方程解答的问题,强调用x表示具体的量,通过对具体情境中数量关系的分析,找到等量关系,然后,利用等式的解决问题。这样的教材设计,一方面,减轻了学生学习用算术方法解决稍复杂问题的负担,避免了算术方法对用方程解决问题的干扰;另一方面,有利于培养学生数学思维,形成数学思维方法,有利于中、小学知识的衔接。

  本单元共安排7课时。主要内容有:认识等式和方程,等式的基本性质,解简单方程以及列方程解决简单实际问题等。结合单元内容,在探索乐园中安排了“鸡兔同笼”问题解题思路和方法的探索活动。

  本单元的教育目标是:

  1、通过具体情境,了解等式和方程的意义,会用方程表示简单情境中的等量关系。

  2、理解等式的性质,会用等式的性质解简单的方程(如3x+2=5,2x-x=3),会列方程解决一些简单的应用问题。

  3、在解方程的过程中,能进行有条理的思考,能对每一步计算和结论的合理性作出有说服力的说明。

  4、具有回顾与分析解决问题过程的意识,能表达解决问题的过程,能检验方程的解是否正确。

  5、感受用方程解决问题的价值,认识到许多实际问题可以借助解方程的方法来解决,获得自主解决问题的成功体验,增强学习数学的自信心。

  第1课时,认识等式和方程。

  教材选择了天平这个直观教具,呈现了六幅不同的用天平表示物体质量关系的情境图(其中有两幅图天平两边物体的质量不同),提出了“观察天平图、用式子表示天平两边物体质量关系”的要求。在学生观察、按要求写式子,以及对写出的式子进行分析归纳的基础上,认识等式和方程。“试一试”给出了具体的式子,让学生判断哪些是方程,哪些不是方程。“练一练”安排了三个练习题,第1题,用三幅括线图呈现了已知数量和用x表示的未知数量的关系,让学生尝试列出方程。第2题,说明用x表示的未知量和已知量关系的文字叙述题,让学生列出方程。第3题,是把文字叙述的方程“翻译”成方程式的练习。教学时,有条件的可以用天平操作,或用课件演示,让学生认真观察、写出式子,再通过比较和讨论等,认识等式和方程。做“练一练”的题目时,要帮助学生理解x表示的具体意义。如,一本书x元,3本的总价就是3×x=3x元;一辆汽车的载重量5吨,用这辆汽车运x次,可以运40吨的次数,也就是说5×x=40。

  第2课时,等式的基本性质。

  教材仍然用天平设计了两个观察小实验活动,分别探索等式两边同时加、减和同时乘、除的规律。实验一,用六幅天平图呈现出实验的方法和步骤。在用算式表示实验结果的基础上,通过观察实验的过程、算式,使学生知道“等式两边同时加上或减去同一个数,等式仍然成立”这一规律。实验二,用两组天平图呈现了操作方法。在用算式表示实验结果的同时,使学生知道“等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立”这一规律。由于等式的性质是解方程的基础和依据,教学时,教师要给予特别重视,可以用课件进行演示,或用天平操作,给学生认真观察、积极思考、交流自己发现的空间,切实理解等式的性质。“试一试”和“练一练”中,分别安排了在○里填运算符号,在□中填数的模拟解方程练习。练习时,要让学生看懂题目的要求,特别要说一说是怎样想的。也就是根据等式的基本性质做的,为下面用等式的基本性质解方程做准备。

  第3课时,列方程解决一步计算的应用问题。

  教材首先用括线的方式呈现了一件上衣58元,一条裤子x元,一共92元的情境图,通过兔博士的话“一条裤子多少元?”把x和要求的问题联系在一起。然后,鼓励学生借助直观图列出方程,并根据等式的基本性质解方程。交流时,通过“方程两边为什么都减去58?”的问题,启发学生交流解方程的依据,学会解方程的思路和方法。另外,教师要注意指导解方程的书写格式,如:要先写“解”字,各行的等号要对齐等。接着,选择了王叔叔手写和用电脑打字的事例,以文字叙述和人物口述的方式呈现了“王叔叔用电脑每分钟打120个字,电脑打字的速度是手写速度的3倍”等信息,提出了“王叔叔每分钟手写多少个字?”的问题。这是一道关于倍数的逆思考的问题,也就是“已知一个数的几倍是多少,求这个数”的问题,学生第一次接触。教学时,首先要帮助学生了解王叔叔每分钟打字速度和手写速度之间的关系,然后说明列方程的方法和步骤,如:先写“解”字,设未知数x等,引导学生根据数量间的相等关系,列出方程。然后让学生尝试解方程,交流时,重点说一说“为什么两边要除以3,依据是什么”,掌握解方程的思路,即方程左边3x除以3等于x,要使方程两边结果不变,就要同时除以3,依据的是等式的基本性质。

  第4课时,列方程(ax±b=c)解决两步计算的应用问题。

  教材首先设计了一个猜数游戏。以师生对话的形式,说明了游戏的方式和过程,通过让学生自己想一个数,并进行“把它乘2,再加上10,等于多少”的运算,教师马上猜出学生想的数这个既神秘、又有挑战性的游戏,引起学生探求猜数奥秘的兴趣,接着,通过“大头蛙”的话“老师是列方程求出来的”引出列方程解答的问题。即:设学生想的数为x,根据游戏规则和学生算出的结果列出方程,然后,学习解ax±b=c方程的思路和方法。最后,介绍什么是方程的解,什么是解方程这两个概念。教学时,首先教师和学生要进行实际的猜数游戏,利用游戏中生成的课程资源组织教学。不要简单地讲游戏或模仿教材上的师生对话。解决了游戏中的问题后,选择了五年级(1)班同学献爱心向山区小朋友赠书的事情,以文字和对话的方式呈现了“聪聪捐了34本书,比亮亮捐书本数的2倍少4本”的信息和“亮亮捐多少本书?”的问题。这是传统教材中“已知一个数的几倍少几,求这个数”的问题。解决这个问题的方程是:2x-4=34.解这个方程的思路方法与前面的相似,所以,解决这个问题的重点是找等量关系,列方程。教学时,要帮助学生了解情境中的数学信息及其含义,找出数量间的相等关系,如“比亮亮捐书本书的2倍少4本”就是不到亮亮捐书本书的2倍,比2倍少4本。所以,亮亮捐书的2倍减去4就等于聪聪捐书的34本。然后鼓励学生自主列出方程,并求解。交流时,结合求出的方程的解,说明检验的.必要性和方法,再由学生自行检验。

  第5课时,列方程解决稍复杂的相遇问题。

  教材以文字叙述加示意图的形式呈现了北京到上海的路程,乙车的速度,甲、乙两列火车同时从两地相对开出后到相遇所用的时间,以及“甲车平均每小时行多少千米?”的问题。这个问题中有多组等量关系,所以提出了“找出等量关系,试着列方程解答”的要求。以学生进行算法交流的形式,呈现了两种思路不同的解法。教学时,帮助学生理解题意,鼓励学生自主尝试列出方程,解决问题。另外,要给学生充分展示不同方程的机会。如果学生列出:1463-7x=87×3的方程,首先要给与肯定,对解答正确的给与表扬。但不作要求。提示学生,尽量不要把带未知数的量作减数。“试一试”选择了甲、乙两个工程队同时从两端开凿一条隧道的事例,以图文形式了隧道的长度、计划完成的时间、甲队计划每天完成的米数等信息,提出了“乙队每天需要完成多少米?”的问题。这是一道可以用相遇问题思路解决的工程问题。可以让学生自主解决问题。练一练中还安排用“相遇问题”解题思路解决的问题。

  第6课时,列方程解决求两个未知数的应用问题。

  教材设计了英语书配磁带的现实问题,用文字呈现了“一套英语读物和一套磁带共284元。其中磁带的价钱是英语读物价钱的3倍,这套书和磁带各多少钱?”。这个问题中有两个未知量,要解决两个问题。即,磁带的价钱是多少和英语读物的价钱是多少。解决问题时,需要把书的价钱设为x,把磁带的价钱用3x表示。找到等量关系,列方程解答。先求出书的价钱,再求磁带的价钱。教学时,可画出线段图表示题中的数量关系,引导学生根据磁带价钱与读物价钱之间的关系,用x和3x分别表示两个未知量,找出数量间的相等关系。解方程时,要帮助学生理解x+3x=4x,求出英语读物的价钱后,根据磁带和英语读物的关系,求出磁带的价钱。接着,教材给出了一个数的4倍比这个数多135,这个数是多少?这是本套教材第一次出现文字题。教学时,教师要帮助学生理解文字叙述的含义,再让学生尝试列方程求解。“试一试”用两幅线段图,说明两组数量关系。教学时,教师要指导学生看懂图,然后尝试列方程求解。

  第7课时,“探索乐园”,这个探索乐园的主题是解决“鸡兔同笼”问题,了解这一类特殊问题的解题方法。

  教材选择了三个问题。问题一,以对话猜数的方式给出了“鸡和兔一共有22个头,70条腿”的信息,提出了“鸡和兔各有几只?”的问题,通过蓝灵鼠“还是算一算吧!”要求学生自主探索,用自己喜欢的方法解决问题。教材呈现出三种解答方法,即:假设法、列表法、用方程解答。教学活动中,教师要及时引导和启发,使学生了解这类问题的解决方法,特别是假设法和列方程解答。

  问题二,用文字叙述给出“龟和鸭共23只,它们的腿有60条”的信息,提出“龟和鸭各有几只?”的问题。这个问题与“鸡兔问题”解题思路的简单应用。可以鼓励学生自主解决。

  问题三,用信息图呈现出两种不同洗涤液的单价,提出“用100元购买这两种洗涤液,可以有几种买法?各买几瓶?”的问题。这个问题,由于购买的瓶数是任意的,所以答案有多种。教学时,要给学生充分的自主活动空间,让他们在了解数学信息的基础上,利用已有的知识经验,解决问题。发展数学思维。

五年级数学教案5

  目标

  通过总复习中最后几道题的综合复习,检查学生综合运用知识。解决问题的能力。

  复习内容和过程

  教学札记

  一、复习解方程

  1、完成教材第134页”期末复习“第28题。

  (1)独立完成。

  (2)集体订正,说说解方程的依据。

  2、解下列方程

  x--=x++=

  二.复习长方体和正方体

  1、完成课本第134页”期末复习“第29题。

  (1)独立完成

  (2)集体订正,说说你是怎样想的`。

  2、练一练:

  一块长方形铁皮,长28厘米,宽22厘米,在这块铁皮的四个角各剪去一个边长为2厘米的正方形,然后折成一个无盖的长方体铁盒,这个铁盒的容积是多少立方厘米?

  三、复习分数的加法和减法

  1、完成教材第123页期末复习第30题。

  (1)独立完成

  (2)集体订正,说说的解题思路,如有错解,则分析错误原因。

  2、练一练:

  修路队第一天修路4/5千米,比第二天多修了2/15千米,两天一共修路多少千米?

  四、作业:

  教材第134页期末复习第31题。

五年级数学教案6

  一、教学目标

  1、能直接在方格图上,数出相关图形的面积。

  2、能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。

  3、在解决问题的过程中,体会策略、方法的多样性。

  二、重点难点

  整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。

  难点:学生能灵活运用。

  三、教学过程

  (一)直接揭示课题

  1、今天我们来学习《地毯上的图形面积》。请同学们把书P18页,请同学们认真观察这幅地毯图,看看它有什么特征。

  2、小组讨论。

  3、汇报:对称图形、边长为14米的正方形、图案由蓝色组成。

  4、看这副地毯图,请你提出一些数学问题。

  (二)自主探索、学习新知

  1、如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?

  2、学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。

  3、小组内交流、讨论。

  4、全班汇报。

  a)直接一个一个地数,为了不重复,在图上编号。(数方格法)

  b)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4。(化整为零法)

  c)用总正方形面积减去白色部分的面积。(大减小法)

  d)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)

  5、师总结求蓝色部分面积的方法。

  (三)巩固练习

  1、第一题。

  (1)学生独立思考,求图1的面积。

  (2)说一说计算图形面积的方法。引导学生了解“不满一格的'当作半格数”。

  2、第二题。独立解决后班内反馈。

  3、第三题。

  (1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。

  (2)学生观察结果,说发现。

  第(1)题的4个图形面积分别为1、2、3、4的平方数。

  第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。

  (四)总结

  对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。

  四、板书设计

  地毯上的图形面积

  一个一个地数(数方格法)

  平均分成4份,再乘4。(化整为零法)

  总面积减去白色面积。(大减小法)

  五、教学反思

  本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。

五年级数学教案7

  【教学内容】

  认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。

  【教学目标】

  1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  【重点难点】

  理解因数和倍数的含义。

  【复习导入】

  1. 教师用课件出示口算题。

  10÷5= 16÷2=

  12÷3= 100÷25=

  220÷4= 18×4=

  25×4= 24×3=

  150×4= 20×86=

  学生口算

  2. 导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

  (板书课题:因数和倍数(1)

  【新课讲授】

  1.学习因数和倍数的概念

  (1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

  教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

  谁来说一说其他的式子?

  学生回答。

  教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  (2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

  学生回答,教师板书:倍数与因数是相互依存的。

  2.举例概括

  教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

  教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

  教师同时板书。

  教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  如:M÷N=P,M、N、P都是非0自然数,那么N和P是M的因数,M是N和P的倍数。

  A×B=C,A、B、C、都是非0自然数,那么A和B是C的因数,C是A和B的倍数。

  你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

  3、9、15、21、36

  学生独立思考并回答。

  【课堂作业】

  1.完成教材第5页“做一做”。

  2.完成教材第7页练习二第1题。

  3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  【课堂小结】

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(1)

  在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  因数和倍数一般指的是自然数,而且其中不包括0。

  倍数与因数是相互依存的。

  本节课的重点是掌握因数和倍数的概念,理解因数和倍数是相互依存的,知识内容比较抽象,知识点比较少,教学中,我采取让学生反复说,互相说的方式,让学生加深理解,提高他们自主学习和合作学习的能力。

  因数和倍数(2)

  【教学内容】

  一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。

  【教学目标】

  1.通过学习使学生掌握找一个数的因数,倍数的方法;

  2.学生能了解一个数的因数是有限的,倍数是无限的;

  3.能熟练地找一个数的因数和倍数;

  4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的'探究意识和求索精神。

  【重点难点】

  掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。

  【复习导入】

  说出下列各式中谁是谁的因数?谁是谁的倍数?

  20÷4=5 6×3=18

  在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数, 你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。

  (板书课题:因数和倍数(2))

  【新课讲授】

  (一)找因数:

  1.出示例1:18的因数有哪几个?

  一个数的因数还不止一个,我们一起找找18的因数有哪些?

  学生尝试完成后汇报

  (18的因数有: 1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

  2.用这样的方法,请你再找一找36的因数有哪些?

  小组合作交流后汇报,36的因数有: 1,2,3,4,6,9,12,18,36

  教师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  仔细看看,36的因数中,最小的是几,最大的是几?

  教师板书:一个数的最小因数是1,最大因数是它本身。

  3.你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

  4.其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

  (二)找倍数:

  1.我们一起找到了18的因数,那2的倍数你能找出来吗?

  小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……

  教师:为什么找不完?

  你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?

  2.让学生完成做一做1、2小题:找3和5的倍数。汇报

  3的倍数有:3,6,9,12

  教师:这样写可以吗?为什么?应该怎么改呢?

  改写成:3的倍数有:3,6,9,12,……

  你是怎么找的?(用3分别乘以1,2,3,……)

  5的倍数有:5,10,15,20,……

  教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。

  教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

  (一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)【课堂作业】

  1.完成课本第7页练习二第2~5题。

  2.完成教材第8页练习二第6~8题。

  【课堂小结】我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(2)

  一个数的因数的个数是有限的,,最小的是1,最大的是它本身.

  一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数.

  本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。

五年级数学教案8

  教学内容:

  人教版义务教育课程标准教科书五年级下册第84-85页例3、例4及相关练习

  学情分析:

  《约分》是在学生已经掌握了分数的基本性质和公因数的基础上进行教学的,约分作为分数基本性质的直接应用,它是化简分数的常用方法。学习约分,不但可以提高对分数基本性质的的认识,还为分数的四则运算打下基础。

  教学目标:

  1、知识和技能目标:理解最简分数和约分的意义,掌握约分的方法,能够正确地进行约分,培养学生观察、比较和概括能力。

  2、过程与方法目标:通过学生自主探索理解最简分数和约分的意义,经历探究约分方法的过程,渗透恒等变换思想。

  3、情感态度和价值观目标:培养学生运用所学知识解决问题的能力,感受数学与生活的紧密联系。

  教学重难点:

  重点:最简分数的意义和约分的方法;掌握约分的方法。

  难点:能准确的判断约分的结果是不是最简分数。

  教具、学具准备:

  课件

  教学过程

  复习铺垫。

  课件出示一起回答用列举法找出24和30的公因数和公因数(为24

  /

  30约分做准备)

  1、24的因数有(),30的因数有(),24和30的公因数有(),它们的公因数是()。

  2、填空(说说为什么,什么是分数的基本性质)

  (教学方法:课件出示复习题,第1题学生在练习本上完成,第2题先默背,然后指名回答,集体订正。)

  过渡:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕。

  二、探究新知。

  (一)、猜测、验证和比较,理解最简分数的意义

  1、出示例3的教学情境图,让学生观察。

  2、师:从情境图中,你得到了什么信息?(这是某所学校100米游泳比赛中,三个学生的对话,生1:一共要游100米,小明已经游了75米,生2:他已经游了全程的3

  /

  4,生3:75

  /

  100和3

  /

  4是一回事吗?)

  3 、猜一猜:75

  /

  100和3

  /

  4

  /

  是一回事吗?

  4、验证:让学生同桌讨论,把验证过程写在练习本上。

  5、学生汇报结果,教师课件演示。

  6、引导学生比较75

  /

  100和3

  /

  4两个分数的异同,得出最简分数的概念。

  相同点:分数的大小相等

  不同点:75

  /

  100分子和分母较大,含有公因数1、5、25;3

  /

  4分子和分母较小,只含有公因数1。分数的意义,分数单位都不同

  总结概念:分子和分母只含有公因数1,像这样的分数叫做最简分数。

  活动:请学生例举最简分数的例子。

  教师说学生判断,

  学生说大家判断

  学生说同桌判断

  抓住关键:分子和分母只含有公因数1,看是否有公因数2、3、5

  8、课件出示练习:指出下面哪些分数是最简分数?为什么?

  5

  /

  7 6

  /

  9 10

  /

  12 11

  /

  12 8

  /

  10 14

  /

  169

  /

  1624

  /

  25 21

  /

  24 13

  /

  17

  名回答,说明为什么。

  还是抓住关键:分子和分母只含有公因数1

  假如都是2或3或5等的倍数,就不只有公因数1。

  (二)、探究约分的意义和方法

  过渡:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢?

  课件出示例4.判断24

  /

  30是不是最简分数(不是,除了1外,还有公因数2、3、6)

  把24/30化简成最简分数

  师提出思考问题:

  (1)、化简指什么?使分子分母的数字变小

  (2)、化简后大小不能变,要运用什么性质?等式的基本性质

  (3)、等式的基本性质中同时乘或除以相同的数(0除外),化简时,是乘,还是除,用什么来除。除,用公因数来除

  (4)、化简到什么时候为止?最简分数,分子分母只有公因数1

  学生小组内讨论交流,明确题目要求,为探究约分方法做准备。

  2、师:请同学们试着做一做,把24/30化简成最简分数。大小不能变。

  完成后小组内交流。

  巡视,指导。

  交流探究结果。

  小组汇报结果。

  (1)方法一:用分子和分母的公因数(1除外)依次去除。除到最简分数为止

  24

  /

  30=24+30

  /

  30+2=12

  /

  152

  /

  15=12÷3

  /

  15÷3=4

  /

  5

  (2)方法二:直接用分子和分母的`公因数去除。直接得到最简分数。

  24

  /

  30=24+6

  /

  30+6=4

  /

  5

  /

  小结:教师用课件演示比较两种约分方法,并总结约分的意义。

  约分的概念:

  师:约分还有一种书写方法,请同学们看第85页例4,

  并在练习本上写一写约分的这种写法。

  6、教师课件直观演示约分的另一种书写格式。

  三、巩固练习(课件演示)

  过渡:刚才我们一起学习到了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗?

  1、判断下面各等式,哪些是约分?为什么?

  2、错题改正。

  3、指出下列分数分子和分母的公因数。

  4、分苹果。

  四、课堂小结

  这节课我们学习了什么内容?(板书课题:约分)

  五、板书设计

  约分

  方法一:

  24

  /

  30=24÷2

  /

  30÷2=12

  /

  15

  12

  /

  15=12÷3

  /

  15÷3=4

  /

  5

  方法二:

  24

  /

  30=24÷6

  /

  30÷6=4

  /

  5

  75

  /

  100= 3

  /

  4

  不同点:分子和分母较大分子和分母较小,

  含有公因数1、5、25只含有公因数1

  最简分数

  教学反思

  1、为学生的数学思考搭梯子。

  课堂提问是学生进行数学思考的前提,问题过易就没有思考探究的价值,但问题过难,学生又研讨不出来也没有实际意义。本节课的教学,我根据问题的难易和学生的实际情况给学生学习搭梯子。

  如:在探究理解最简分数意义这一环节的教学中,学生验证出75

  /

  100和3

  /

  4相等以后,我提出了一个问题:75

  /

  100和3

  /

  4有什么区别?很多学生都能看出75

  /

  100分子分母较大,3

  /

  4分子分母较小,但没有学生从分子和分母的公因数上去比较。接着我给学生搭了个梯子:请同学们从分子和分母的公因数上比较一下看它们有什么区别?很快学生就找出了75

  /

  100分子分母有公因数1、5、25,而3/4只有公因数1,然后我又在“只有”这个词上加以强调,使学生深刻的理解了最简分数的概念。

  又如探究“约分的意义和方法”这个环节,如果直接出示例4:24

  /

  30,然后让学生自主探究约分的方法,相信很多学生会“丈二和尚摸不着头脑”,无从下手。在出示例4之后,我是这样给学生搭梯子的。我要求学生不动手,先思考三个问题(①、化简指什么?②、化简要运用什么性质?③化简到什么时候为止?),接着让学生交流,明确题目要求,为探究约分方法做准备。通过这两步搭梯子之后,学生也就知道了化简就是把分子分母较大的分数化成分子分母较小的分数,化简要运用分数的基本性质,化简要化到最简分数为止。第三步再让学生自己去探究约分的方法。此时学生已胸中成竹,很自然的探究出了约分的方法,体验了成功的喜悦,突破了本课的教学重点。

  2、为学生交流搭台子。

  课堂是学生的舞台,需要教师给学生搭台子。只要有探究的地方,就需要交流,学生交流的过程就是在建构知识的过程。因此在理解最简分数和探究约分方法的教学中,我都充分让学生先同桌讨论再全班交流,最后归纳总结形成知识点。我认为教师在教学时,应时刻记住把课堂还给学生,为学生的精彩交流喝彩。只有这样,你的课堂才会因为学生的精彩交流而精彩。

  3、不动笔墨不读书。

  数学学习是学生动脑、动口、动手的过程。学生在思考交流之后更应让学生动手来写,熟话说“读十遍不如写一遍”。我特别注重学生动手能力的培养,要求学生“不动笔墨不读书”。在复习铺垫中让学生把练习题先写在练习本上,再集体订正;在验证75/100和3/4是否相等的教学时,要求学生把验证过程写在练习本上;在探究约分的方法时,让学生把化简的过程写在练习本上,再交流;在学生看书找约分的另一种书写格式时,我始终要求学生练习写一写。

  4、教学环节过渡亦无痕。

  好的书法给人感觉“行云流水一气呵成”,好的课堂也应是环环相扣,衔接自然的。本节课我注重教学各个环节的过渡,如:复习铺垫后说:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕(过渡到最简分数的教学);在学习了最简分数后说:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢(过渡到约分的教学)?在学习了约分后说:我们一起学习了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗(过渡到巩固练习的教学)?

  5、思想方法渗透亦无形。

  数学知识和技能的教学是一条明线,数学思想的渗透是教学的一条暗线。数学的每一个知识点都会渗透着一种数学思想,《约分》这一知识点就渗透着恒等变换的数学思想。本课的教学中,恒等变换的数学思想在验证75/100和3/4是否相等和化简分数的教学时得到渗透,在巩固练习中得到不断的内化和深化。

  欠缺火候的地方:

  有智慧的教师往往能利用课堂即生资源进行教学,使课堂教学更具魅力。整观这节课,本人扑捉学生课堂发言及练习中有用教育资源的能力不够,课堂教学亮点不够亮;其次本人对学生评价的语言还不能较大程度的激发学生的学习兴趣;第三,学生倾听和动笔的习惯还有待进一步提高。

  名师张齐华说:好课是从心灵深处流淌出来的。一堂成功的课往往不是教师教学技艺和技巧的简单叠加与拼凑,而是其多年来学识、功底、经验、技巧、智慧、个性乃至人生阅历等在特定教育情境下的一种自然勃发与流淌。如练武之人,境界不是十八般武艺样样精通,而是有深厚内力和“手中无剑,心中有剑”的气魄。自知自己还有很多东西需要不断学习,路漫漫其修远兮,吾将上下而求索。

五年级数学教案9

  教学目标:

  1、在实际情境中,认识计算梯形面积的必要性。 2.在自主探索活动中,经历推导梯形面积公式的过程。 3.能运用梯形面积的计算公式,解决相应的实际问题。

  教学重点:理解并掌握梯形面积的计算公式。

  教学难点:理解梯形面积计算公式的推导过程。教具准备:各种梯形各两份,剪刀,课件。

  教学过程:

  一、揭示课题,明确主题

  1、生活中我们能找到许多平面图形,这个教室里有吗?

  2、请大家看看这组图片,看看你发现了谁?找到了就立刻喊出它名字!出现次数最多的是……?(梯形)板书2.梯形,四年级的时候我们已经认识它了,谁来介绍一下它。

  3、今天,我们来更深入地了解这位朋友,研究梯形的面积。(板书)

  二、回忆旧知,建立联系

  1、面积,我们现在已经会计算哪些图形的面积了?他们计算方法你们还记得吗?(课件)

  2、回忆一下,平行四边形和三角形的面积计算方法我们是怎样推导出来的?还记得吗?

  3、同学们,我们在研究它们面积的计算时候,都用到了一种非常重要的数学思想——转化。(板书)把要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式。这种思想,这节课我们也要用到。

  三、转化梯形,推导公式

  (一)应用的需要引出猜想1.同学们喜欢什么体育运动?喜欢篮球吗?(课件出示篮球场地)你们知道这一处是什么区域吗?这是3秒钟限制区,是限制对方队员在这个区域内停留不能超过3秒钟。

  2、但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?

  3、同学们都很有想法,那到底是不是像同学们想的那样呢?让我们来动手验证一下。在动手操作之前,老师提出三点建议:(1)想想能把梯形转化成学过的什么图形。

  (2)根据转化图形与梯形的关系,推导出梯形面积计算的方法。

  (3)填写好汇报单,比一比,哪个小组的动作快。明白了吗?开始吧!

  (二)小组活动十分钟

  (三)汇报

  1、刚刚同学们把梯形转化成了多种图形!现在让我们请这几个小组的同学说说他们的想法。大家注意听,你们的意见相同吗?你还有补充吗?汇报:平行四边形:两个怎样的梯形可以拼成一个平行四边形?还有的同学拼成的是长方形,让我们来看看他们是怎么拼的。正方形是特殊的长方形,那你们的推导的结果应当是一样的。是吗?

  2、师:同学们,观察这些图形,无论长方形还是正方形,都是……。再看,(移动图形)你发现什么了?过渡:看来,只要是两个完全相同的梯形,就能拼成一个……。(板书)平行四边形的面积我们学过:……(板书)然后我们就可以根据两种图形间的联系来推导梯形的面积了。谁来帮老师梳理一下。平行四边形的底就是梯形的………。,平形四边形的高就是……,所以梯形的面积……为什么除以2?

  3、刚才展示的都是拼组的方法,还有些同学只用一个梯形就完成了任务,他们用了分割的方法。你们都看懂了吗?请这个小组的同学来简单说说你们是怎么推导的。你们小组的方法真独特!方法不同,那你们推导的结论呢?

  4、总结:同学们真爱动脑筋,想出了这么多不同的方法。但这些方法都有共同点。谁来说说?

  5、是不是这样啊?那大家就一起把我们用“转化”的'方法推导出的梯形面积公式读一读吧!(课件)如果用字母表示你会吗?

  6、在这个公式中,哪里应该引起我们注意呢?在计算的时候一定不要忘记。四、加深理解,巩固新知。

  1、 总结:好了,同学们,刚刚大家用学过的知识,通过拼合,分割,旋转,平移等方法,把梯形转化成了学过的图形,根据图形间的联系就推导出了梯形面积的计算方法。

  2、这个方法你们记住了吗?那老师可要考考你了!(判断题)

  3、通过刚刚的研究和辨析,相信大家对梯形面积的计算方法一定有了深刻的理解吧!这个三秒限制区到底多大呢?你会求吗?需要什么条件?(课件出示)动笔试试吧。

  4、梯形面积的计算方法在生活中经常用到,你们想用新知识来解决一些生活中的问题吗?

  5、梯形面积的计算方法在生活中还有更广泛的应用,小到…。.大到…。.都会用到它。

  五、结语

  转化在数学当中是一种非常重要而又常用的思想。在图形的学习中,同学们多次用到了转化的策略,(课件)其实在学习计算时我们也用到了。那我们转化的目就是化未知为已知。以后你再遇到一个未知的新问题,你会怎样想呢?是不是任何未知的问题都可以转化呢?这个问题留给同学们去思考。

五年级数学教案10

  首先,我对本节教材进行一些分析:

  一、教材分析:

  教材所处的地位和作用:

  本节课的主要内容是方程的定义,方程的性质和利用方程性质解方程。

  从知识结构上看:本节课是在学生学习了一定的算术知识(如整数,小数的四则运算及其应用),已初步接触了一些代数知识(如用字母表示数及其运算定律)的基础上,进一步学习的关键。这为过渡到下节的学习起着铺垫作用。

  从认知结构上看:本节课在初等代数中占有重要地位,中学生在学习代数的整个过程中,几乎都要接触这方面的知识。

  二、教育教学目标:

  根据本节课的地位和作用,依据教学大纲,以及学生已有的认知结构心理特征,我制定了如下目标:

  (1)知识目标:根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

  (2)能力目标:培养学生的分析能力应用所学知识解决实际问题的能力。

  (3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。帮助学生养成自觉检验的学习习惯,培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

  这三个目标将为后面的教学起到一个导向作用。

  三、重点与难点:

  那么根据上面的分析不难看出《解简易方程》这节课在整个教材中将起到承上启下的作用,特别是利用方程性质解未知数,它是后续知识发展的起点,学生对未知数的理解对今后一元一次方程,一元二次方程的学习起着决定作用,所以我认为这节课的重点是:

  (1)重点:理解方程的解和解方程的含义。

  另一方面,对于学生来说,弄清方程和等式的异同,正确设未知数,找出等量关系是很困难的,所以我认为这节课的难点是:

  (2)难点:掌握解方程的方法。

  五、教学过程:

  下面,对于如何突出重点,突破难点,从而实现教学目标,在教学过程中拟定计划进行如下操作:(1、复习铺垫;2、探究新知;3、例题解析;4、巩固练习;5、归纳小结;6、布置作业。)六个步骤

  1.复习铺垫:

  (1)抛出问题:

  师:同学们我们上节课学了方程的意义,你还记得什么叫方程吗?

  生:含有未知数的等式叫方程。

  提问的目的:让学生回忆旧知识,巩固旧知识,引出方的解、解方程的定义。结合引导复习的方法,激发学生的学习兴趣。

  (2)判断下面哪些是方程:

  师:你能判断下面哪些是方程吗?

  (1)a+24=73(2)4x<36+17(3)234÷a>12

  (4)72=x+16(5)x+85(6)25÷y=0.6

  生:(1)(4(6)是方程。

  师:你为什么说这三个是方程呢?

  生:因为它含有未知数,而且是等式)

  这样做的目的:在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式教法,课堂讨论法。巩固方程的性质,承接后面利用方程的性质解方程的应用。

  理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  2、探究新知

  (1)、看图写方程

  师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(看书上57页天平图)从图中你知道了什么?

  生:我知道杯子重100克,水重X克,合起来是250克。

  师:你能根据这幅图列出方程吗?

  生:100+X=250.

  这样做的目的:运用知识迁移,结合直观图例,应用方程的性

  质,让学生自主探索列出方程。

  (2)、求方程中的未知数

  师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

  生1:根据加减法之间的关系250-100=150,所以X=150.

  生2:根据数的组成100+150=250,所以X=150.

  生3:100+X=250=100+150,所以X=150.

  生4:假如在方程左右两边同时减去100,那么也可得出X=150.

  目的:这样的提问,有多种回答,锻炼学生的发散性思维,有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。

  (3)、验证方程中的未知数,引出方程的解和解方程两个概念。

  师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

  生:对,因为X=150时方程左边和右边相等。

  师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们翻到课本57页,(使方程左右两边相等的未知数的值叫做方程的解,解出方程的`解的过程叫解方程。)勾上这两句话并齐读三遍。

  这样做的目的:学生齐读的时候,我可以把解方程和方程的解的概念板书在黑板上,并且,在学生读的过程中学生可以加深印象。

  (4)辨析方程的解和解方程两个概念

  师:方程的解是未知数的值,它是一个数,怎样判断一个数是不是方程的解呢?

  生:要看这个数能不能使方程左右两边相等。

  师:而解方程是求未知数的过程,是一个计算过程,它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

  3、例题解析

  师:前几天我们学习了等式的性质,今天我们又学习了请根据等式的性质完成填空吗?

  (1)如果5+3=8,那么5+3-3=8()

  (2)如果50-13=37,那么50-13+13=50()

  (3)如果a-7=8,那么a-7+7=8()

  (4)如果X+9=45,那么X+9-9=45()

  师:你是根据什么填空的?

  生:等式的性质。

  师:等式有什么性质呢?我们齐来说一遍。

  2、理解方程与等式的联系,引出课题。

  师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)

  3、出示例1图,列出方程。

  师:图上画的是什么?你能列出方程吗?

  生:X+3=9

  师:这个方程用天平怎么表示呢?

  生:天平左边放X个和3个球,右边放9个球。(电脑显示)

  4、引导学生思考怎样解方程。

  师:我们解方程的目的是求X,怎样使天平一边只剩x呢?

  生:天平两边同时减去3个球。(电脑显示)

  师:天平两边还平衡吗?怎样反映在方程上呢?

  生:方程两边同时减3。(结合学生回答板书)

  师:为什么同时减3而不是其它数呢?

  生:方程两边同时减3就可以使方程一边只剩X。

  5、检验方程的解。

  师:X=6是不是方程的解呢?

  生:是,因为X=6是方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。

  6、强调解方程的格式步骤

  电脑显示:解方程要注意:

  (1)先写“解”,等号要对齐。

  (2)做完后要注意检验。

  2.学情分析:

  (1)学生特点分析:积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

  (2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  (3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  三、教学程序及设想:

  (1)引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。抛出问题,什么叫方程?什么是方程的性质?让学生回忆上节课内容,引出方的解、解方程的定义。揭示课题:这节课我们就利用等式的性质来解简易方程。

  (2)由例题得出本课新的知识点:

  解方程:X+6=7.8;X-6=7.8;6X=7.8;X÷6=7.8。

  讲解例题。说明在方程的两边什么情况应该同时加,什么情况该同时减,什么情况该同时乘,什么情况该同时除?在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

  (3)接下来,我们用今天学习的知识解决实际问题。

  出示情景图:

  X元X元X元

  18元

  提问:从图中你知道了哪些信息?会列方程吗?然后说出图意并列出方程。

  (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  ①列出方程并解答:每个福娃X元,买5个共花80元。

  ②看题回答:1.6X=6.4(要解这个方程,方程两边应同时?)

  (看来解法掌握得不错,下面看谁的反应最快。)

  ①选择正确答案,说说你是怎样判断的?

  X+8=30的解是()A.X=22B.X=38

  0.3X=0.21的解是()A.X=7B.X=0.7

  X=5是方程()的解。A.15X=3B.6X=30

  X=30是方程()的解。A.0.2X=6B.2X=15

  (5)总结结论:知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。(这节课学习了什么?解简易方程的依据和方法是什么?)

  *(6)变式延伸:针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高进行重构,适当对题目进行引申,使教学的作用更加突出,有利于优等学生对知识的串联,累积,加工,从而达到举一反三的效果。(对有能力接受的学生)

  (7)板书:略

  (8)布置作业。P66第5—7题。

五年级数学教案11

  教学内容:推导长正方体的体积计算方法

  教学目标:

  1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

  2、培养学生空间和空间想象能力。

  教学重点:长正方体体积公式的推导。

  教学难点:运用公式计算。

  教学用具:1立方厘米学具。

  教学过程:

  一、复习:

  1、什么叫物体的体积?

  2、常用的体积单位有哪些?

  3、什么是1立方厘米、1立方分米、1立方米?

  二、导入新课:

  1、导入:

  我们知道了每个物体都有一定的体积,我们也知道可以利用数体积单位的方法计算物体的体积。

  要知道老师手中的这个长方体和正方体的体积?你有什么办法?(用将它切成1立方厘米(1立方分米)的小正方体后数一数的方法。)

  说明:用拼或切的方法看它有多少个体积单位。但是在实际生活中,有许多物体是切不开或不能切的`,如:冰箱,电视机等,怎样计算它的体积呢?他们的体积会和什么有关系呢?这节课我们就来研究长方体和正方体的体积。(板书课题)

  2、新课:

  (!)、请同学们任意取出几个1立方厘米的正方体在小组里合作摆出一个长方体,边摆边想:你们是怎么摆的?你们摆出的长方体体积是多少?

  (2)、板书学生的:(设想举例)

  体积 每排个数排数 排数 层数

  4 4 1 1

  8 4 2 1

  24 4 3 2

  (3)、观察:每排个数、排数、层数与体积有什么关系?

  板书:体积=每排个数排数排数×层数

  每排个数、排数、层数相当于长方体的什么?

  因为每一个小正方体的棱长是1厘米,所以,每排摆几个小正方体,长正好是几厘米;摆几排,宽正好是几厘米;摆几层,高也正好是几厘米。

  (4)如何计算长方体的体积?

  板书:长方体体积=长×宽×高

  字母公式:V=abh

  三、练习:

  1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?

  2、导出正方体体积公式:

  根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

  正方体体积=棱长×棱长×棱长V=aaa=a3读作a的立方

  3、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?

  4、看表计算:

  长

  宽

  高

  体积

  12m

  5m

  4m

  1.5dm

  0.8dm

  0.5dm

  8cm

  4.5m

  3cm

  正方体

  棱长

  体积

  0.9m

  2.4dm

  1.6cm

  请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?

  长方体体积=长×宽×高 提问:长方体的长、宽、高不同,体积相同这是为什么?

  四、小结:这节课学会了什么?

  怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。

  四、作业:

五年级数学教案12

  教学目标

  知识与技能:

  明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

  过程与方法:

  能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  情感态度与价值观:

  渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

  教学重难点

  教学重点:

  在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

  教学难点:

  根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

  教学工具

  多媒体设备

  教学过程

  教学过程设计

  1 创设情境,引导探索

  师:生活中有许多图形,老师今天准备了4幅,大家观察一下,这些图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?

  图一

  图二

  图三

  图四

  课件逐一出示图一、图二、图三,图四让学生发表意见。

  生1:小房子的表面是由一个三角形和一个正方形组成的。

  生2:风筝的面是由四个小三角形组成的。

  生3:队旗的面是由一个梯形和一个三角形组成的。

  生4:七巧板是由三角形,长方形,正方形和平行四边形组成的。

  师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?

  生1:由两个或两个以上的图形组成的是组合图形。

  生2:有几个平面图形组成的图形是组合图形。

  师小结:组合图形是由几个简单的图形组合而成的。

  图一:是由三角形、长方形、加上长方形中间的正方形组成的,

  面积= 三角形面积+长方形面积-正方形面积

  图二:作辅助线使它分成一个大梯形和一个三角形。

  方法一:分割法:将整体分成几个基本图形,求出它们的面积和。

  是由两个梯形组成的。

  师:为什么要分成两个梯形?怎样分成两个梯形?

  引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。

  师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计算。

  (板书:转化)

  大家想想,用辅助线的方法还有不同的作法吗?

  方法二:添补法:用一个大图形减去一个小图形求出组合图形的面积。

  作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形

  图三:是由四个三角形组成的。

  面积 = 三角形面积+三角形面积+三角形面积+三角形面积

  2 新知探究

  (一)右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

  ( 三角形+正方形 )

  右图表示的.是一间房子侧面墙的形状,它的面积是多少平方米?

  ( 两个完全一样的梯形)

  (二)计算组合图形的面积,一般是把它们分割成基本图形,如长方形、正方形、三角形、梯形等,再计算它们的面积。

  3 巩固提升

  (一)这是学校教学楼占地的面积平面图,你能用几种方法求出它的面积?

  (二)一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?

  (三)下面各个图形可以分成哪些已学过的图形?

  (四)学校要油漆60扇教室的门的正面。(单位:米)需要油漆的面积一共是多少?

  (五)求下列图形中阴影部分的面积。

  (六)求下列图形中阴影部分的面积。

  (七)如图,有两个边长是200px的正方形放在桌面上,求被盖住的桌面的面积。

  课后小结

  (一)学生总结

  这节课你学习了什么?有什么收获?还有什么不明白的地方?(小组说--组内总结--组间交流)

  (二)教师总结

  今天我们认识了组合图形,并能将组合图形分割成已经学习过的图形,计算出它的面积。

  板书

  组合图形的面积

  组合图形是由几个简单的图形组合而成的

五年级数学教案13

  教学目标:

  1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。

  2、过程与方法:采用探究式学习法,通过操作、观察自主学习、提出猜想、合作、交流验证、分类、比较、抽象、归纳总结、巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。

  3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。

  教学重点:

  理解质数和合数的意义

  教学难点:

  判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类

  教具学具准备:

  学生每人准备一张学号牌、课件

  教学过程:

  (一)创设情境,激趣导入

  1、介绍学号数字9和12,引出整数的第一次分类:偶数、奇数。

  2、学生介绍数字时出现质数,教师借机引入本节课学习内容:质数和合数。

  3、学生汇报预习结果,同时提出学习目标。

  (二)主动参与,探索新知

  1.课前预习。每个同学都有自己的学号,课前大家已经在自己的学号牌上写出1—20的所有因数。(课前完成)

  2、交流:课件出示1—12所有的因数,现在请所有同学一起来观察屏幕,看看你把1—12依据什么标准进行分类的?你又是如何理解质数与合数的?课前大家在预习的时候已经有了自己的想法,现在在组内互相说一说。(交流、汇报)

  【设计意图:根据给定的标准观察、分析,突出了有关概念的本质特征,又能使学生体会到分类标准的合理性。通过对“1”的研究,完善对非0自然数的认识,促进学生对质数和合数概念的理解。】

  3、教师提问:我们班有29个人,谁的学号是质数?谁的学号是合数?1号同学呢?引出整数的第二次分类(板书)

  4、判断下面各数,哪些是质数,哪些是合数。

  17 22 29 35 37 87

  学生先自己想一想,然后分组讨论,汇报交流。

  【设计意图:课堂上充分发挥学生的主体作用,营造独立思考的时间和空间,使他们积极参与课堂讨论,促进学生的自主学习和探究。】

  (三)动手实践,制作100以内的质数表。

  1、51是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的'数表,想想怎样找出100以内的质数,制成质数表。

  2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?

  (把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)

  3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!

  【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步发展了学生的数感。】

  (四)巩固练习,拓展延伸

  1、你能写成几个质数相乘的形式吗?

  6= 、、、 28 = 、、、、

  2、判断下面这段话中的数字是质数还是合数。

  2月8日,13名河北唐山农民自费来到遭受最严重冰雪灾害的湖南郴州抗冰救灾,他们每天凌晨5点准时起床,忙到晚上12时才能休息,每天工作近20小时,16天时间他们帮助灾区重建了10座电塔。

  3、猜一猜:小红家的电话号码是多少?

  最小的合数,它的因数只有1和3,既不是合数也不是质数,10以内最大的偶数它的最大的因数是8,10以内3的倍数同时又是偶数,10以内最大的合数

  【设计意图:通过设计一组有层次的练习,既巩固了新知,又联系了以前的知识。通过交流,充分展示学生的思维,强化探究学习的效果,取长补短,达到共同进步。】

  4、课堂反馈:

  (五)归纳总结,师生评价

  1、总结:本节课学习了什么?你有什么收获?还有什么疑问?

  2、回到课始情境,你能打开密码锁了吗?里面是什么?屏显示:“快乐学习,快乐成长”八个大字。

  3、师:这就是老师送给你们的礼物。你们快乐吗?说说感受。

  【设计意图:通过总结与反思,及时反馈,学生内化知识。通过评价,使学生体验成功,树立学好数学的信心。】

五年级数学教案14

  教学内容:

  课本第52页。

  教学目标:

  1.掌握用计算器进行一些稍复杂的小数加、减法的计算方法,能正确进行计算,正确率达到90%以上。

  2.体会使用计算器工具进行计算更简单,更快捷,初步学会使用计算器探索一些简单的数学规律。

  3.体会数学学习的趣味性和挑战性。

  教学重点:

  用计算器正确计算稍复杂的小数加、减法的方法。

  教学难点:

  在计算器上暗处纯小数的简便方法,利用计算器探索规律。

  教学准备:

  课件

  教学过程:

  一、口算热身。(3分钟左右)

  算一组一位小数、两位小数的加减法(不进位、不退位),共8题。

  0.2+0.8= 0.76-0.36=

  5+4.8= 6.9-0.5=

  5.4+3.6= 7.72-6.52=

  3.6+2.1= 9.1-1.1=

  二、自学例3。(15分钟左右)

  1.明确例3中的数学信息及所需要解决的问题。

  出示:教材例3情境图。

  导入:图中有哪些数学信息?围绕导学单进行自主学习。

  2.自学。

  导学单(时间:5分钟)

  1.根据所求的问题列出算式,估算结果。

  2.尝试用计算器计算。(你遇到什么问题?)

  3.对照书本第52页例3的提示,自己的'方法不同在哪里?怎样按键更简便?

  4.模仿练习:用计算器计算下面各题。

  4.75+12.63=

  7.03-0.895=

  0.268+3.87=

  导学要点:

  在计算器上输入小数,可以按照顺序依次按键。

  用计算器再算一遍,进行检验。

  3.小组交流。

 交流内容

  1.你是怎样在计算器上输入买铅笔的钱数的?

  2.小数部分是0的小数还可以怎样按键?

  4.全班交流。

  分析学生在自学中出现的各种情况,给予适当点评。

  三、练习。(15分钟左右)

  (一)适应练习。

  1.第52页试一试,用计算器计算并验算。

  点拨:可以直接利用例3的得数来列式计算,也可以用100一次减去每种商品的金额。

  2.第52页练一练,比一比,看谁算得又对又快。

  同桌互相核对计算结果。

  提醒:

  要按照运算顺序连贯地进行计算。

  (二)比较练习。

  1.完成第53页练习九第1题。

  每桌南边的学生用笔算或口算进行计算;

  每桌北边的学生用计算器进行计算。

  2.完成第53页练习九第2题。

  用计算器进行计算并填表

  示范:

  用上月余额减去9月2日买米、油等的金额等于9月2日的余额。

  点拨:

  用上次余额减去本次用去的金额就等于本次余额。将两次收入相加等于合计

  收入,7次支出相加等于合计支出。

  (三)探索练习。

  第53页练习九第3题。

  用计算器计算上面三题

  思考:这三题有什么规律吗?

  用计算器完成第四题

  (四)应用练习。

  第53页练习九第四题

  先列式,再用计算器进行计算。

  (五)创编练习。

  1.小马虎在计算1.86加上一个一位小数时,由于错误地把数的末尾对齐,结

  果得到2.19,你能帮他算出正确答案吗?

  2.用计算器计算,探索规律。

  1122÷34=

  111222÷334=

  11112222÷3334=

  111111222222÷333334=

  四、课堂总结:

  通过这节课的学习,你学到了什么知识?

五年级数学教案15

  教学目标:

  1、初步建立公倍数和最小公倍数的概念;

  2、初步培养学生的数学应用意识与解决简单实际问题的能力。

  3、培养学生的比较推理与抽象概括能力。

  教学重点:

  公倍数与最小公倍数的概念建立。

  教学难点:

  运用“公倍数与最小公倍数”解决生活实际问题

  教法学法:

  根据教学的要求,结合教材的特点,为了完成教学任务,我主要采用情景教学法,创造生动具体的教学情境,使学生在愉快的情景中学习数学知识。学生通过独立思考、小组合作的方法进行学习。独立思考可以使每个人深入的探究、冷静的分析;小组合作,可以更全面的思考,解题思路得以发散。

  教具准备:

  印有月历纸。

  教学过程:

  一、创设情境,设疑引入

  教师谈话:从11月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打

  算等爸爸妈妈休息时,全家一块儿去公园玩。(小黑板出示:小兰一家和一张11月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?

  请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找小兰妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出小兰爸爸和妈妈共同的休息日了。

  根据学生的回答,教师逐步完成以下板书

  妈妈的休息日:4、8、12、16、20、24、28

  爸爸的休息日:6、12、18、24、30

  他们共同的休息日:12、24

  其中最早的一天:12

  (以讲故事的形式提出问题,为学生提供了一个“公倍数”的实体模型,让学生借助“日期”这一具体有实际意义的“数”,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。)

  二、激思引探,教学新知

  1、几个数的公倍数和最小公倍数的概念教学

  从“妈妈的休息日”、“爸爸的休息日”、“他们共同的休息日”、“其中最早的一天”分别引出“4的倍数”、“6的倍数”、“4和6的公倍数”、“4和6的最小公倍数”的概念,教师修改并完成板书。

  4的倍数:4、8、12、16、20、24、28

  6的倍数:6、12、18、24、30

  4和6的公倍数:12、24

  其中最小的一个:12

  师:教师:为什么要打省略号呢?(因为一个数的倍数是无限的`,不可能写出一个数的所有倍数)。

  师:请你仔细观察妈妈和爸爸的休息的日子又什么特点?(引出4的倍数和6的倍数,并板书)

  师:在6的倍数和4的倍数中,你觉得哪些数字比较特别呢?(引出4和6的公倍数)师:其中最小的一个是12。(引出最小公倍数)

  (通过引导学生对具体问题作进一步研究并根据研究结果修改板书,让学生亲身经历了一个从具体到抽象的数学化过程。通过这一过程,不仅能帮助学生借助生活经验理解数学知识,同时也能让学生感受到数学与生活的联系,体会到数学源于生活又高于生活的特点。)

  2、及时练习

  师:认识了那么多关于倍数的关系,我们就来用一用。完成(试一试)。

  三、巩固练习

  1、书本练一练的第一题

  2、书本练一练的第三题

  3、书本练一练的第四题。

  4、判断题

  (1)两个数的积一定是这两个数的公倍数。()

  (2)两个数的积一定是这两个数的最小公倍数。()

  (3)两个数的公倍数是无限的,而最小公倍数只有一个。()

  此题从整体上挈领知识要点,要求学生对各项知识进行抽象的比较、类比,进而推理、概括,对知识有深入完整的理解。学生有条理地表述自己的思考过程,做到言之有理,用数学语言进行合乎逻辑的讨论与质疑。

  四、课堂小结:学生回忆整堂课所学知识。

  学生通过这一环节可以将整个学习过程进行回顾、按一定的线条梳理新知,形成整体印象,便于知识的理解记忆。

  整节课的设计,我通过四个环节的教学设计来体现数学来源于生活,服务与生活的理念。我主要通过动手操作、自主探索等方法,限度发挥学生的主体作用,使学生在爱数学、学数学、用数学过程中获得知识。

【五年级数学教案】相关文章:

小学数学教案五年级07-02

五年级上数学教案01-14

五年级数学教案04-23

五年级数学教案09-29

五年级教案数学教案12-27

【荐】五年级数学教案12-03

五年级数学教案【荐】11-29

五年级数学教案【推荐】11-28

【热】五年级数学教案11-29

五年级下册数学教案01-04