现在位置:范文先生网>教案大全>数学教案>八年级数学上册第十四章教案

八年级数学上册第十四章教案

时间:2023-10-14 07:51:50 数学教案 我要投稿
  • 相关推荐

八年级数学上册第十四章教案

  作为一位优秀的人民教师,通常会被要求编写教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?以下是小编整理的八年级数学上册第十四章教案,希望能够帮助到大家。

八年级数学上册第十四章教案

八年级数学上册第十四章教案1

  一、分式方程

  教学目标

  1、经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用、

  2、经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

  3、在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值、

  教学重点:

  将实际问题中的等量关系用分式方程表示

  教学难点:

  找实际问题中的等量关系

  教学过程:

  情境导入:

  有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每公顷的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

  如果设第一块试验田每公顷的产量为kg,那么第二块试验田每公顷的产量是xxkg。

  根据题意,可得方程xxxx

  二、讲授新课

  从甲地到乙地有两条公路:一条是全长600 km的普通公路,另一条是全长480 km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的'时间。

  这一问题中有哪些等量关系?

  如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为xxh。

  根据题意,可得方程xxxx。

  学生分组探讨、交流,列出方程、

  三、做一做:

  为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程?

  四、议一议:

  上面所得到的方程有什么共同特点?

  分母中含有未知数的方程叫做分式方程

  分式方程与整式方程有什么区别?

  五、随堂练习

  (1)据联合国《20xx年全球投资报告》指出,中国20xx年吸收外国投资额达530亿美元,比上一年增加了13%。设20xx年我国吸收外国投资额为亿美元,请你写出满足的方程。你能写出几个方程?其中哪一个是分式方程?

  (2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2、 5千米/小时,求轮船的静水速度

  (3)根据分式方程编一道应用题,然后同组交流,看谁编得好

  六、学习小结

  本节课你学到了哪些知识?有什么感想?

  七、作业布置

八年级数学上册第十四章教案2

  【教学目标】

  1、了解分式概念、

  2、理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件、

  【教学重难点】

  重点:理解分式有意义的条件,分式的值为零的条件、

  难点:能熟练地求出分式有意义的条件,分式的值为零的条件、

  【教学过程】

  一、课堂导入

  1、让学生填写[思考],学生自己依次填出:xxx、

  2、问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  设江水的流速为x千米/时、

  轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=、

  3、以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式、分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母、

  [思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零、注意只有满足了分式的分母不能为零这个条件,分式才有意义、即当B≠0时,分式才有意义、

  二、例题讲解

  例1:当x为何值时,分式有意义、

  【分析】已知分式有意义,就可以知道分式的`分母不为零,进一步解出字母x的取值范围、

  (补充)例2:当m为何值时,分式的值为0?

  (1);(2);(3)、

  【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解、

  三、随堂练习

  1、判断下列各式哪些是整式,哪些是分式?

  9x+4

  2、当x取何值时,下列分式有意义?

  3、当x为何值时,分式的值为0?

  四、小结

  谈谈你的收获、

  五、布置作业

  课本128~129页练习、

八年级数学上册第十四章教案3

  一、教学目标

  1、理解分式的基本性质。

  2、会用分式的基本性质将分式变形。

  二、重点、难点

  1、重点:理解分式的基本性质。

  2、难点:灵活应用分式的基本性质将分式变形。

  3、认知难点与突破方法

  教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

  三、练习题的意图分析

  1、P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

  2、P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的`最小公倍数,以及所有因式的次幂的积,作为最简公分母。

  教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

  3、P11习题16、1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

  “不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

  四、课堂引入

  1、请同学们考虑:与相等吗?与相等吗?为什么?

  2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?

  3、提问分数的基本性质,让学生类比猜想出分式的基本性质。

  五、例题讲解

  P7例2、填空:

  [分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

  P11例3、约分:

  [分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

  P11例4、通分:

  [分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

【八年级数学上册第十四章教案】相关文章:

八年级上册数学教案11-09

八年级上册人教版数学教案02-27

数学上册教案01-15

人教版八年级数学上册教案01-26

初一历史上册第十六课教案12-09

八年级上册数学教案15篇11-09

八年级上册数学教案13篇01-08

八年级上册数学教案(13篇)01-09

八年级上册数学教案(精选20篇)07-12