
(推荐)四年级下册数学教案4篇
作为一名默默奉献的教育工作者,往往需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。怎样写教案才更能起到其作用呢?下面是小编为大家收集的四年级下册数学教案,欢迎阅读与收藏。
四年级下册数学教案1
教学内容:
教材第90页例1、第92页“做一做”第1题和第93页练习二十二的1-3题。
教学目标:
1、结合具体情境,在动手操作、观察、讨论等活动中理解平均数的意义,知道求平均数的方法。
2、初步学会简单的数据分析,灵活运用平均数相关的知识解决简单的实际问题,进一步体会统计在现实生活中的作用。
3、在轻松愉快的活动中体会运用知识解决问题成功的愉悦,增强学生学习数学的兴趣和学好数学的自信心。
重点难点:
1、理解平均数的意义,理解并掌握求平均数的方法。
2、理解并掌握求平均数的方法。
教学准备:
多媒体课件,有关平均数的数据统计表。
情景导入:
师:同学们,我今天带来了一些我们生活学习中的信息,请看屏幕。(课件出示信息)
(1)四(1)班踢毽子的4位选手平均每人1分钟踢50个。
(2)一年级第一小组的`3位男生的平均身高是120厘米。
(3)三年级平均每个班开展了3项课间活动。
(依次出示信息,分别请3名同学读题,其他同学认真的看屏幕并倾听)
师:同学们,在这些信息中都用到了同一个词,你们发现了吗?
生:都有“平均”这个词。(课件再次用红色显示信息中的“平均”)
师:对,(指着50个,120厘米,3项,课件同时用粉色显示这些数据)这些数据都是“平均数”。(板书课题:平均数)
师:看到这个课题,你想通过今天的学习了解那些知识?
生:平均数是一个什么数?
生:平均数与平均分有什么关系?
生:怎样计算平均数?
生:平时在生活中那些地方常用平均数?
……
师:让我们带着这些问题来研究今天的知识。
[设计意图:选取学生熟悉的数学信息,让学生感知平均数,激发学习兴趣,培养问题意识,感受数学与生活的密切联系。]
新课讲授:
(一)平均数的意义
通过课前的导入,大家说一说什么叫平均数?学生讨论后交流。师归纳:平均数是指在一组数据的平均值。
(二)平均数的求法
教学例:出示例1情景图。
1、分析问题
师:这个月我校开展了保护环境,争优环保小卫士的活动,大家看看这是我班一个小队同学收集的矿泉水瓶。课件出示相关情景和统计表,学生读题。
师:你看到什么信息?
生:我知道了这个小队有四位同学。
生:我知道了小红收集了14个、小兰12个、小亮11个、小明15个。
生:要求平均每个人收集了多少个矿泉水瓶?
师:什么是平均?
生:平均就是指每个人一样多。
师:那大家想想,应该怎样求这个小队平均每人收集多少个瓶子?
生:可以通过画图表来解决,每个人先都画出11个,然后将剩下的8个平均分下去,每人就是13个了。
生:把他们每个瓶子用一个圆圈表示,再进行移动,使每个人的瓶子一样多为止。
生:可以把所有的瓶子加起来,再平均分成4份,每份就是平均每个人收集的瓶子数量。
2、方法总结
师:请看屏幕(课件出示主题图),这是他们4人收集瓶子的简单统计图,你能发现什么数学信息吗?
生:他们不一样多。
师:那怎么办呢?
生:可以通过移动瓶子来解决。
师:怎样移动?
生:将小红移1个给小兰,小明移2个给小亮,最后每个人都是一样多。同时利用书本等器材进行简单操作,并交流方法。
师:通过刚才的操作,想一想:你为什么要把小红的瓶子移给小兰?
生:小红的多,小兰的少。
师:他是把多的移给少的,这样每个人收集的瓶子数量就怎么样了?
生:同样多。
师:刚才这几位同学都是通过把多的瓶子移出来,补给少的同学,让每个同学的瓶子数量同样多,这种方法就叫“移多补少法”。
(板书“移多补少法”)
师:还有没有其他的方法呢?请说一说。
生:有,可以用平均分的方法来解决。
师:怎么算呢?
生:先算他们的总数再除以4。
师:你可以把你的想法告诉大家,并把算式写在黑板上吗?
生:(14+12+11+15)÷4=52÷4=13(个)
师:指着算式(14+12+11+15)÷4,我们来看看这位同学的方法?请你说说你是怎么想的。
生:我是先把他们4个人收集的瓶子总数加起来,再平均分成4份或我是先算他们一共收集了多少个瓶子,再算平均每个人收集多少个瓶子。
师:听懂了吗?谁和他的方法一样?再给大家说一说。(学生交流)
师:会用这种方法的同学请举手?我们一起来算一算,结果是多少,学生在练习本上列式计算。
师:52表示什么?
生:4个人收集瓶子的总数。
师:是呀,是把小红他们4人收集瓶子的总数量先求出来,是52个。(教师板书“总数量”)
师:为什么要再除以4?
生:把总数平均分给4个人,就是求出了平均每人收集了13个。
生:平均分成4份,4表示总份数。
师:4就是总份数,除以4表示平均分成4份,这13个就是他们每个人收集瓶子数量的平均数。(板书“平均数”)
师:那么用式子怎么表示呢?
生:平均数=总数量÷总份数。
师:真不错,大家鼓励一下,向他学习。师小结:我们用“移多补少”的方法和计算的方法都得到了平均数是13个。板书:平均数的求法:(1)移多补少。(2)平均数=总数量÷总份数。
[设计意图:联系学校生活实际,利用活动课创设问题情境,引发探究兴趣,在学生理解平均数意义的基础上,让学生通过动手算一算,发现求平均数的方法,经历数学概念、方法形成的过程,使学生初步理解了求平均数的两种不同方法。]
课堂作业:
1、完成教材第92页“做一做”第1题。理解怎样使每个花瓶里的花相等是求平均数。学生独立完成后交流。
2、完成教材第93页练习二十二的第1题。学生独立完成后集体订正。
课堂小结:
通过今天这节课,大家有什么收获?小结:平均数是一组数据平均水平的代表,我们可以用“移多补少法”和平均分的方法算出平均数是多少。
课后作业:
1、完成教材第93页练习二十二第2-3题。
2、完成练习册本课时练习。
四年级下册数学教案2
教学目标:
1.在熟悉的生活情境中初步认识负数,理解负数的意义,能正确的读写正数和负数,知道0既不是正数也不是负数。会用负数灵活地表示一些实际问题,能比较熟练地在数轴上找到正数、0和负数所对应的点。
2.借助熟悉的生活情境经历负数产生的过程,体会负数的意义。具有数形结合的意识,深刻体会数轴形成的过程。
3.激发学生对数的认识的兴趣,感受负数与生活的密切联系。
教学重点:
理解负数的意义,会用正数、负数表示生活中的相反的量。
教学难点:
理解相反意义的量和对0的认识。
教学准备:
课件
教学过程:
一、认识负数
(1)情境激疑
同学们,刚才一上课大家就做了一组相反的动作,想想看,是什么?
今天这节课咱们就从“相反”这个话题开始聊起:在咱们的生活中有很多的相反现象,比如太阳每天东升西落、车站上人们上车下车……
你能再举几个这样的例子吗?
顺着这位同学的思路继续往下聊,走进数学你又有什么发现?
1. 今年开学,四年级转入15名同学,五年级转出15名同学。
2.在剪刀、锤子、布活动中,男同学赢了3次,女同学输了1次。
3.李叔叔做生意,三月份亏了3000元,四月份赚了8000元。
怎样用数学的形式来表示这些意义相反的量呢?出示。
要求:简洁,是让别人也能一目了然。
汇报,可能有以下情况。
①直接表示 ( 简洁但不明了)
②用文字表示 (明了又不够简洁)
③用符号表示(简明、清楚,一目了然)
小结:现在人们就是用这种形式来区分意义相反的量的。
(2)认识正、负数。
你知道像这样的数,叫什么数吗?
举个例子来说?+3你会读吗?
像(—2)这样的数呢?
怎么读呢
师介绍:加号在这里叫做正号,减号叫
做负号。正数和负数表示意义相反的'量。
练习:读出下面的数
-100、+、-、36
为了简便,+36可以写为36。也就是说通常情况下正号都可以省略。师板书。
得出:正数有无数个,负数也有无数个,用……来表示。
二、丰富新知,介绍负数历史。
同学们,我们今天从“相反”这个词聊起认识了负数这个新朋友。其实对于负数的认识,在咱们中国有着悠久的历史。古代的人,遇到这样问题的时候,也想出了不同的方法。你想知道吗?(课件演示或学习第4页你知道吗?)
听完介绍后你有什么感受?
接下来再让我们回到生活中,找一找在咱们身边又有哪些负数?(板书课题:负数)
三、生活中的应用
1.在温度计上认识负数
我的一位朋友喜爱出门旅游,这是他所定的几个备选城市,我帮他留意了一下气温情况,一起来看一下
(1)(多媒体播放城市天气预报:哈尔滨-15--3℃,北京-5-5℃;上海0-8℃;海口12-20℃)
得出:0℃的作用十分重要,它正好是零上温度和零下温度的分界点,换句话说也就是正数和负数的分界点,所以它既不是正数也不是负数。
(板书0,并用集合圈将正数、负数、0进行分类)
那你知道0度是怎么来的吗?
介绍:瑞典天文学家摄尔秋思,他把自然状态下的水刚开始结冰时的温度,规定为0℃。
(2)温度计。
生活中用什么工具来测量温度吗?(课件示:生活中常用的温度计)
介绍:摄氏度、华氏度,每格代表1℃。
2.电梯里的负数
叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?(5、-2)
5和-2是以什么为分界点的呢?
3.海拔高度中的负数
世界珠穆朗玛峰比海平面高出米。如果把这个高度表示为+米,那么比海平面低155米的新疆吐鲁番盆地的高度应表示为( )米,海平面的高度为( )米。
练习
如果大雁向南飞30米记作+30,那么向北飞50米记作( )。
如果体重增加4千克用+4表示,那么-表示( )。
4.数轴上的负数
出示例3
你能在一条直线上表示出他们运动后的情况吗?(强调以谁为分界点,以什么方向为正。两种说法)
指出:在一条直线上,确定了0(原点)、正方向和单位长度,就形成了一条数轴,刚才大家所说的就是数轴的形成过程。
现在你能在数轴上找到他们运动后的位置吗?
完成练习
(2)如果小华的位置是+11米说明她是向( )行( )米。(指出+11的位置,体会数轴是无限长的。)
(3)如果小刚先向东行5米,又向西行8米,这时小刚的位置为( )米。
(分层拓展)
5.运动场上的负数
刘翔在第十届世界田径锦标赛半决赛中110米栏的成绩是13秒42,当时赛场的风速是每秒-米,你知道风速每秒-米的意思吗?
四、小结
今天我们一起认识了负数,了解负数在生活中的一些作用,其实在我们的生活中负数还有更加广泛的用途等待着大家继续去了解。
四年级下册数学教案3
教材分析
本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第一课时,是探讨关于一条线段并且两端都要栽的情况。
这是学生第一次接触“植树问题”,是后继学习的'准备,需要正确建立数学模型。
教学目标
1、发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。
2、能利用数学模型解决简单的实际问题。
3、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。
4、体会数学模型的生活意义与作用,体验到学习的喜悦。
学习重点:采取什么策略正确解决“一条线段并且两端都种”的植树问题。
学习难点:发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。
预设过程
一、尝试解题发现问题
1、揭题:今天我们来研究植树方面的问题。(板)
2、课件呈现学习材料,请学生尝试。
3、反馈,形成争议:
1)100÷5=20
2)100÷5+1=21
4、提出研究问题:植树棵数正好等于间隔数,还是间隔数加1呢?(板)我们来研究。
二、研究规律
1、议:在晒场的一侧(8米)种小树,两端都种,可以怎么种?
2、生述师画,发现棵数比间隔数多1。
3、自己尝试画图,完成表格。
4、议:你发现什么?
5、:当在路的一侧种树时,如果两端都种,棵数=间隔数+1,也就是等于总长÷间距+1。(板)
6、分析尝试题的正确解法
三、练习
1、变式练习
2、扩展练习
1、完成1-1。
1)议:已知什么,求什么?(师在模型的相应地方画√)
2)尝试完成,并反馈。
2、完成1-2。
1)议:已知什么,求什么?(师在模型的相应地方画√)
2)议:怎么求总长?(板)
3)尝试完成,并反馈。
3、完成2。
1)议:已知什么,求什么?(师在模型的相应地方画√)
2)议:从间隔10米,能停41辆,能求出什么?求出总长后,怎么安排这51辆车?
3)尝试完成,并反馈。
四年级下册数学教案4
教学内容:
课本22页例3和做一做及练习四1.2题。
教学目标:
1、通过活动使学生学会以不同的地点为观测点判断方向。
2、在学生学会确定任意方向的基础上,使学生体会位置关系的相对性。
3、通过学习,进一步提高学生的空间观念。
重点难点:
使学生进一步认识到位置关系的相对性。
教学用具:
挂图
教学过程:
一、创设情境 生成问题
1、师:老师站在大家的正东方向上,那么你们站在老师的什么方向上呢?(西方)对,我们的位置关系是相对的。
2、分别指两名学生,让大家根据方向说一说他们的位置关系。
(设计意图:组织学生先弄清东西南北四个方向,再根据两名学生的位置分别说一说谁站在谁的方向上,使学生初步理解位置的相对关系。)
3、师:今天我们就来继续研究两个物体位置的相对关系。
(设计意图:通过创设情境,让学生对上两节课学习内容有一个大体的回顾,为本节课新知识的学习做准备。)
二、探索交流 解决问题
1、出示教材第22页例3主题图。
(1)让生观察地图
师:北京和上海两地相距大约 1000千米,说一说,上海在北京的'什么方向上?
①组织学生用直尺,量角器测量出上海在北京的什么方向上。
师根据学生汇报板书:
②讨论:上海在北京的南偏东30℃方向上,那么北京在上海的什么位置呢?
组织学生观察上图,在小组中讨论,然后交流说一说。
出示提示
1、确定以谁为观测点,并建立方向标。
2、用语言描述北京和上海的具体位置。
讨论后每组选出一名同学在班内汇报。
生汇报。
可能会说出:北京在上海的西偏北60℃方向上或北京在上海的北偏西30℃的方向上。
师对照图示指一指,肯定两种说法都是正确的。
师小结:以北京为观测点,上海在北京的南偏东约30度的方向上。以上海为观测点,北京在上海的北偏西30度的方向上。
观测点不同,物体的相对位置就会发生变化。这就是今天这节课学习的内容。