五年级下册数学教案精品(15篇)
作为一名老师,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们该怎么去写教案呢?以下是小编为大家整理的五年级下册数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
五年级下册数学教案1
教学内容:
教材第122 、123页的内容及第124 、125页练习二十四的第1—3题。
教学目标:
1、使学生理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2、能根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3、体会统计在生活中的广泛应用,从而明确学习目的,培养学习的兴趣。
重点难点:
1、重点:理解众数的含义,会求一组数据的`众数。
2、弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。
教具准备:
投影。
教学过程:
一、导入
提问:在统计中,我们已学习过哪些统计量?(学生回忆)指出:前面,我们已经对平均数、中位数等一些统计量有了一定的认识。今天,我们继续研究统计的有关知识。
二、教学实施
1、出示教材第122页的例1 。
提问:你认为参赛队员身高是多少比较合适?
学生分组进行讨论,然后派代表发言,进行汇报。
学生会出现以下几种结论:
( 1)算出平均数是1 。 475,认为身高接近1 。 475m的比较合适。
( 2)算出这组数据的中位数是1 。 485,身高接近1 。 485m比较合适。
( 3)身高是1 。 52m的人最多,所以身高是1 。 52m左右比较合适。
2、老师指出:上面这组数据中,1 。 52出现的次数最多,是这组数的众数。众数能够反映一组数据的集中情况。
3、提问:平均数、中位数和众数有什么联系与区别?
学生比较,并用自己的语言进行概括,交流。
老师总结并指出:描述一组数据的集中趋势,可以用平均数、中位数和众数,它们描述的角度和范围有所不同,在具体问题中,究竟采用哪种统计量来描述一组数据的集中趋势,要根据数据的特点及我们所关心的问题来确定。
4、指导学生完成教材第123页的“做一做”。
学生独立完成,并结合生活经验谈一谈自己的建议。
5、完成教材第124页练习二十四的第1 、2 、3题。
学生独立计算平均数、中位数和众数,集体交流。
三、思维训练
小军对居民楼中8户居民在一个星期内使用塑料袋的数量进行了抽样调查,情况如下表。
( 1)计算出8户居民在一个星期内使用塑料袋数量的平均数、中位数和众数。(可以使用计算器)
( 2)根据他们使用塑料袋数量的情况,对楼中居民(共72户)一个月内使用塑料袋的数量作出预测。
五年级下册数学教案2
教案设计
设计说明
1.以学生自主探究为主,引导学生发现分数与小数的互化方法。
学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。
2.在学生原有的认知水平上促进发展。
本节课的内容相对简单,学生在课前已经有了初步的了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的'学生获得不同层次的发展,收获的多少可能不同,但都能获得成功的体验。
课前准备
教师准备 PPT课件
学生准备 两张完全一样的方格纸
教学过程
⊙创设情境,导入新课
师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。
(课件出示情境图)
师:“分数王国”里有哪些数呢?“小数王国”里呢?
(生汇报)
师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?
生:和0.06都说自己更大。
师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)
设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。
⊙自主探索,学习新知
1.解决问题。
(1)课件出示教材7页情境图。
师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?
(2)大胆猜测,探究比较方法。
方法一 把分数化成小数来比较。
=1÷20=0.05,因为0.060.05,所以0.06。
方法二 把小数化成分数来比较。
0.06=,=,因为,所以0.06。
课件展示学生没有想到的画图法,让学生在讨论中理解。
0.06>
师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。
2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?
(1)认真读题,明确题目中的“翻译”指什么。
(2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说与0.125的互化过程。
(3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。
3.归纳分数化成小数的方法。
(1)探究将分数化成小数的方法。
把下列分数化成小数:
练习,并思考转化方法。
(2)小组内交流方法。
(3)班内反馈。
要求学生说出转化方法,并讲明转化的原理。
师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。
4.归纳“小数化成分数”的方法。
把0.3,0.27,0.75,0.125化成分数。
练习,探究小数化成分数的方法。
师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。
设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。
五年级下册数学教案3
【教学内容】
质数和合数(课本第14页例1及第16页练习四1~3题)。
【教学目标】
1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2.知道100以内的质数,熟悉20以内的质数。
3.培养学生自主探索、独立思考、合作交流的能力。
4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
【教学重难点】
重点:理解质数、合数的意义。
难点:掌握判断质数与合数的方法。
【教学过程】
一、复习导入
1.什么叫因数?
2.自然数分几类?(奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。
二、新课讲授
1.学习质数、合数的概念。
(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。
(2)根据写出的因数的个数进行分类。(填写下表)
(3)教学质数和合数的概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)
2.教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
17 22 29 35 37 87 93 96
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:17 29 37
合数:22 35 87 93 96
3.出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100以内的`质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。首先排除掉2的倍数,再排除掉3 的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。
③注意1既不是质数,也不是合数。
100以内质数表
三、课堂作业
完成教材第16页练习四的第1~3题。
四、课堂小结
这节课,同学们又学到了什么新的本领?
学生畅谈所得。
【板书设计】
质数和合数
一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。
【教学反思】
教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。
五年级下册数学教案4
教学目标:
1。使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2。使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。
教学重点:
理解分数与除法的关系
教学难点:
会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题
教具准备:
课件
教学过程:
一、导入
1。出示情境图:把4块饼平均分给4个小朋友。
2。提问:你能提出哪些问题?
二、新课
1。教学例6
把刚才呈现的题目改为:把3块饼平均分给4个小朋友。
提问:你能提出什么问题?怎样列式?
引导:把3块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?
结合学生的回答,指出:每人分得的不满1块,结果可以用分数表示。
提出要求:那么,可以用怎样的分数表示3÷4的商呢?请大家拿出3张同样的.圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?
学生操作,了解学生是怎样分和怎样想的。
组织交流,你是怎么分的?
小结:把3块饼平均分给4个小朋友,每人分得4/3块。完成板书。
把题目改为:把3块饼平均分给5个小朋友,每人能分得多少块?学生口述算式
提问:3除以5,商是多少?怎样用分数表示?小组交流。
2。 总结归纳
谈话:请大家观察上面两个等式,你发现分数与除法有什么关系?
板书课题被除数÷除数=被除数/除数
提问:如果用a表示被除数,用b表示除数,这个关系式可以怎样写?
板书a÷b=a/b
讨论:b可以是0吗?
3。教学试一试。
出示试一试,学生尝试填空。
小组交流:你是怎样想的?
口答:把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?
指出:两个数相除,得不到整数商时,可以用分数表示。
4。做练一练的第1题学生填写后,引导比较:上下两行题目有什么不同?
5。练一练第2题学生独立填写,要求说说填写时是怎样想的。
三、练习
1。练习八第1题
2。第2题
3。第3题学生看图填写后,可让学生说一说是怎样想的。
4。第4题
学生填写后,提问:这道题中的两个问题有什么不同?
5。第5题
让学生联系分数的意义填空,再引导学生根据分数与除法的关系列算式,并写出得数。
四、总结
提问:今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?
五年级下册数学教案5
教学目标
1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3.进一步提高学生的统计技能,增强学生的统计意识。
教学重难点
教学重点:认识众数,理解众数的意义及作用。
教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。
教学过程
(一)复习旧知
1、回忆平均数及中位数的求法,指生回答。
2、求下列这组数据的平均数和中位数。生独立完成后课件出示。
(二)完成例1
1.出示例题:
五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)
1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52
师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?
2.学生小组合作选择10名队员。
3.根据学生汇报,师课件随机演示选择结果。
平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47
+1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52
+1.52+1.52+1.52+1.52)÷20
=29.5÷20
=1.475
中位数=(1.48+1.49)÷2
=2.97÷2
=1.485
接近1.485m的同学人数太少,不适合大多数同学的
身高。最高的与最矮的相差6cm。
这组数据的中位数是1.485,身高接近1.485m的比较合适。
身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。
1 . 52出现的次数最多,最能应这组同学的身高情况.
4.小结:以众数1.52为标准选择队员身高会比较均匀。
师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的`众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!
5.师生共同归纳众数概念。
师揭示众数的概念
一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。
6、做一做,
7、小练习:
学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:
求这次英语百词听写竞赛中学生得分的众数.
三个数据存在的数量和意义:
比较三个统计量:
(三)学习众数的特征
师出示练习题:
1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):
19 23 26 29 28 32 34 35 41 33 31
25 27 31 36 37 24 31 29 26 30
(1)这组数据的中位数和众数各是多少?
(2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?
2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:
甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5
乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9
(1)甲、乙成绩的平均数、众数分别是多少?
(2)你认为谁去参加比赛更合适?为什么?
生先独立思考,再全班交流。
师:在找三组数据的众数的过程中,你发现了什么?
生:在一组数据中,众数可能不止一个,也可能没有众数。
师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。
2、三个数据存在的数量和意义
(四)综合练习
你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。
(五)联系情境,应用众数
销售衣服问题。
师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41
师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?
生:讨论交流,发表自己想法。
师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!
(五)拓展延伸(“生活中的数学”)均码问题。
师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。
师:课后请同学们调查和了解一下:什么是“均码”?
(六)全课小结
教师:同学们,今天我们上了这节课你收获了什么?
五年级下册数学教案6
教学内容:
长方体、正方体的体积计算
教学目标:
1.通过讲授,引导学生找出规律,总结出体积的公式。
2.指导学生运用公式正确计算长方体、正方体的体积。
3.培养学生积极思考、探索新知的思维品质。
教学重点:
长方体、正方体体积计算。
教学难点:
长方体、正方体体积计算
教具运用:
正方体木块若干。
教学过程:
一、复习导入
1.什么叫体积?计量物体的体积常用的单位有哪些?
2.怎样计算一个物体的体积呢?
二、新课讲授
1.长方体体积的计算。
教师课件出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的'乘积。
板书:长方体的体积=长宽高
讲述:如果用字母V表示长方体的体积公式可以写成:V=abh
(3)质疑:求长方体的体积公式需要知道什么条件?
2.探究正方体的体积公式。
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)
3.运用长方体的体积公式解决问题。
(1)出示教材第30页的例1。
(2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。
(4)指名说出长方体的体积公式。
(5)指名学生上台板演过程,其他同学判断。
(6)老师订正书写。V=abh=743=84(cm3)
(7)看图,学生独立在练习本上完成。
(8)指名板演,集体订正。
三、课堂作业
完成课本第31页做一做第1、2题。
四、课堂小结
1.这节课,你有什么收获?
2.在计算长方体和正方体的体积时,要注意哪些问题?
五、课后作业
完成练习册中本课时练习。
板书设计 :
长方体和正方体的体积
长方体的体积=长宽高
V=abh
正方体体积=棱长棱长棱长
V=aaa=a3
五年级下册数学教案7
教学目标:
1、通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。
2、欣赏美丽的对称图形,并能自身设计图案。
3、同学感受图形的美,进而培养同学的空间想象能力和审美意识。
重点难点:
1、能利用对称、平移、旋转等方法绘制精美的图案。
2、感受图形的`内在美,培养同学的审美情趣。
教学准备:幻灯片、课件。
教学过程:
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让同学尽情发表自身的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2、上面哪幅图是对称的?先让同学边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、安排作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
五年级下册数学教案8
教学目标:
1、知道容积的意义。
2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。
3、会计算物体的容积。
教学重点:
1、容积的概念。
2、容积与体积的关系。
教学难点:
容积与体积的关系。
教具:量筒和量杯、不同的饮料瓶、纸杯
教学过程:
一、复习检查:
说出长正方体体积计算公式。
二、准备:
把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。
三、新授:
1、认识容积及容积单位:
(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。
通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。
(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。
(3)演示:体积单位与容积单位的关系。
说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。
①1升(L)=1000毫升(mL)
将1升 的水倒入1立方分米的容器里。
小结:1升(L)=1立方分米(dm3 )
②1升 = 1立方分米
1000毫升 1000立方厘米
1毫升(mL)=1立方厘米( cm3 )
练一练:
1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L
1.5dm3 =( )L
(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?
(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。
2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。
例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?
5×4×2 =40(立方分米) 40立方分米=40升
答:这个油箱可以装汽油40升。
做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)
小结:计算容积的步骤是什么?
3、我们知道了计算规则物体的体积的'方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?
出示一个西红柿,谁有办法计算它的体积?小组设计方案:
四、巩固练习:
1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?
2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?
3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?
4、提高题:p55、16
五、作业:
五年级下册数学教案9
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、xx引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则
教具准备:多媒体课件、
教学过程:
一、复习引入
1.课件出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少?xx9个11是多少?xx8个6是多少?
(2)计算:
+xx+xx=xx xx+xx+xx=
2.引出课题。
+xx+xx这题我们还可以怎么计算?今天我们就来学习分数乘法。
二:新知探究
1.出示课题明确学习目标。
2.课件出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
3、xx课件出示例1
教师引导学生画出线段图。
学生根据线段图列出不同的算式,并解答。
(1)xx引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的
”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)xx引导学生根据线段图理解,人跑一步是袋鼠跳一下的'xx,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个xx是多少?
2/11xx+xx2/11xx+xx2/11xx=
2/11xx×xx3xx=
(3).分数乘以整数的法则。
A.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)
B.归纳法则。
通过以上计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。
小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
C.应用法则计算。
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
4、xx教学例2
(1)出示xx×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
三、当堂测评(课件出示)
1.看图写算式
2.先说算式意义,再填空。
3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
四、学生课堂自评
1、这节课你有什么收获?
2、每个学生给自己在课堂上的表现进行评价。
板书设计
分数乘以整数
意义:求几个相同加数xx和的简便运算。
法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
2/11xx×3
=xx2×3/11
=xx6/11
五年级下册数学教案10
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2。根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
二、民主导学
任务一
任务呈现
动手操作验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘相同的数,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)
师板书:或者除以
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的'大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)
生:不成立,师:为什么
生:因为0不能作除数,师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话
生:0除外
师板书0除外
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思总结
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计
教具课件设计
小黑板正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
五年级下册数学教案11
课标要求:
探索给定情境中隐含的规律。
课标解读:
行为动词是“探索”,指的是独立或他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。核心词是“规律”,本节课指的是有序思考的方法。
由此看来课标对这部分知识的要求是让学生在解决实际问题的过程中,学会排列方法,即有序排列,而不是杂乱无章的去解决问题。
教材分析:
教材是通过三个人排列照相有多少种不同的排法,四个人小合唱固定一个人的位置又有多少中不同的排法,这样两个问题引导学生认识和了解简单的排列,通过列举等直观方法帮学生发现规律掌握解决问题的策略和方法。同时让学生初步的观察、分析、推理及有序全面思考问题的'意识与能力。其中重点是培养学生的思维方法,发展学生的思维能力。
教学目标:
1、探索、发现现实生活中简单的排列规律,培养观察能力及初步推理能力。
2、通过观察、研读、交流、验证等活动,经历探索简单事物排列的过程,体验有序、全面地思考问题的方法。
3、在解决实际问题中体验成功的喜悦,感受数学与生活的紧密联系和数学学习的乐趣,激发学生对身边事物进行数学思考的意识,培养学生初步的数学意识。
教学重、难点:
在探究的过程中,发现简单事物的排列规律。
教学策略:
(1)情境教学法:通过创设现实情境,引起学生的学习兴趣及本节课所要研究的主要问题。
(2)“探究——研讨”法:学生在自主探究、合作交流的过程中,分析问题、解决问题、发现问题,从而提高思维能力。
教学环节:
第三个环节是运用规律解决问题。在这个环节,我提出了
“如果于老师带领我们班A、B、C三个同学到文登学公园游玩,最后我们四个人要排成一行合影留念,而且要把老师安排在左起第二个位置上,其他的3个同学任意排。想一想,有多少种不同的排法?这个问题,引发学生的思考,引导学生发现,三个人排队和四个人排队且确定一个人的位置的排法总数是相等的,让学生意识到排法总数是不受确定的那个人的位置影响的。让学生在探究中体会有序思维方法,发展学生思维能力,在交流中进行思维的碰撞,统一认识。
五年级下册数学教案12
【教学目标】
1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。
2.引导学生学会判断一个数能否被3整除。
3.培养学生分析、判断、概括的能力。
【重点难点】
理解并掌握3的倍数的特征。
【复习导入】
1.学生口述2的倍数的特征,5的倍数的特征。
2.练习:下面哪些数是2的倍数?哪些数是5的倍数?
324 153 345 2460 986 756
教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。
板书课题:3的倍数的特征。
【新课讲授】
1.猜一猜:3的倍数有什么特征?
2.算一算:先找出10个3的倍数。
3×1=3 3×2=6 3×3=9
3×4=12 3×5=15 3×6=18
3×7=21 3×8=24 3×9=27
3×10=30……
观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)
提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)
12→21 15→51 18→81 24→42 27→72
教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?
(以四人为一小组、分组讨论,然后汇报)
汇报:如果把3的倍数的各位上的数相加,它们的`和是3的倍数。
3.验证:下面各数,哪些数是3的倍数呢?
210 54 216 129 9231 9876
小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)
4.比一比(一组笔算,另一组用规律计算)。
判断下面的数是不是3的倍数。
3402 5003 1272 2967
5.“做一做”,指导学生完成教材第10页“做一做”。
(1)下列数中3的倍数有。
14 35 45 100 332 876 74 88
①要求学生说出是怎样判断的。
②3的倍数有什么特征?
(2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)
②接着再考虑什么?(最小三位数是100)
③最后考虑又是3的倍数。(120)
【课堂作业】
完成教材第11~12页练习三的第4、6、7、8、9、10、11题。
【课堂小结】
同学们,通过今天的学习活动,你有什么收获和感想?
【课后作业】
完成练习册中本课时练习。
3的倍数的特征
一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。
教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。
五年级下册数学教案13
教学内容:
人教版小学数学教材五年级上册第95页主题图、96页例3、第96页“做一做”,教学目标:
1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题
2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。
3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。
教学重点:
掌握梯形面积的计算公式,并会用公式解决实际问题。
教学难点:
理解梯形面积公式推导方法的多样化,体会转化的思想。
考点分析:
会用梯形面积公式解决实际问题。
教学方法:
游戏引入——新知讲授——巩固总结——练习提高
教学用具:
课件、多组两个完全相同的梯形。
教学过程:
一、提出问题(课件出示教材第95页的主题图)。
教师:同学们在图中发现了什么?
教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?
二、通过旧知迁移引出新课。
教师:同学们还记得平行四边形和三角形的面积怎么求吗?
1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。
2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法
3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?
三、揭示课题;
根据学生的回答,引出新课,梯形的面积。
板书课题——梯形的面积。
四、新知探究
1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。
2、请同学们打开学具袋,看看里面的`梯形有什么特点?
生:各种梯形,每种两个,每种梯形颜色一样。
教师提出要求
①选择自己喜欢的梯形把它拼成我们学过的图形
②想一想,拼成怎样的图形,利用怎样的方法拼成的?
③它们的高与梯形的高有怎样的关系,它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?
④先独立思考后小组交流
生小组合作探究。师巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。
3、(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示。)
师引导得出如下几种推导思路:(师边利用课件演示边讲解)
思路一:用两个完全一样的梯形拼成一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出
梯形面积=(上底+下底)×高÷2
思路二:把梯形剪成一个平行四边形与一个三角形,梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出
梯形的面积=上底×高+(下底—上底)×高÷2
=(上底+下底)×高÷2
思路三:沿梯形的一条对角线剪开,把梯形分割成两个三角形。得出梯形的面积等于两个三角形面积之和,从而推出
梯形的面积=上底×高÷2+下底×高÷2
=(上底+下底)×高÷2
教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”。
师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?学生用字母表示出梯形的面积计算公式:S=(a+b)h÷2
五、巩固提升
1、(出示课件),三峡水电站全景图及第89页例3并读题。同时出示水电站的横截面的简图(梯形)。提问,实际求什么?
S =(a+b)h÷2
=(36+120)×135÷2
=156×135÷2
=10530(㎡)
2、计算下面图形的面积,你发现了什么?
六、总结结课
1、这节课你学到了什么?要计算梯形的面积,必须要知道几个条件?还要注意什么?
2、我们是怎样得出梯形面积的公式的?
(二)教师总结
今天我们利用转化的思想推导出了梯形的面积计算公式,并会用梯形的面积计算公式解决生活中的实际问题。
板书设计:
梯形面积=(上底+下底)×高÷2
梯形的面积=上底×高+(下底—上底)×高÷2
=(上底+下底)×高÷2
梯形的面积=上底×高÷2+下底×高÷2
=(上底+下底)×高÷2
五年级下册数学教案14
教学内容:
教材第xx页的内容及第xx页练习的第x题。
教学目标:
1.理解两个数的公倍数和最小公倍数的意义。
2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点:
理解两个数的公倍数和最小公倍数的意义。
教学难点:
自主探索并总结找最小公倍数的方法。
教学具准备:
多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。
教学方法:
小组合作谈话法。
教学过程:
一、创设情景,生成问题:
前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。
二、探索交流,解决问题
1.在数轴上标出4、6的倍数所在的'点
拿出老师课前发的画有两条直线的纸。
在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。
2.引入公倍数
(1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。
(2)观察:从4和6的倍数中你发现了什么?
(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。
(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)
说说看,什么叫两个数的公倍数?
3.用集合图表示
如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。
4.引人最小公倍数
学生汇报后问:
(1)为什么三个部分里都要添上省略号?
(2)4和6的公倍数还有哪些?有没有最大公倍数?
(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)
4的倍数6的倍数
4,8,
16,20,
12,24,
4和6的公倍数:
五年级下册数学教案15
教学目标:
1、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。
2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。
3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。
教学重点:
通过活动认识一些事件发生的等可能性。
教学难点:
理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的———会是相等的。
教学准备:
多媒体,红球3个黄球3个
教学过程:
一、创设情境,激趣导入。
1、出示装有3个红球的袋子
(1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)
(2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)
2、揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)
二、活动体验,探索新知。
1、摸球。
(1)猜测。
(出示上述装有3个红球和3个黄球的透明口袋)
谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?
学生自由猜测
(2)验证。
谈话:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)
①明确活动要求。
谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。
②明确统计方法。
提问:怎样能记住每次摸球的结果呢?
以前我们用过哪些方法来记录?(画“√”、涂方块…)
在生活中,你还见过哪些记录数据的方法?(引导说出画“正”字的方法)
怎样用画“正”字的方法来记录呢?谁能向大家介绍一下?
教师相———出示“摸球结果记录表”,向学生介绍。
讲解示范:一画“一”表示1次,1个“正”字表示记录5次。
红球
黄球
③明确分工。
谈话:活动时我们要互相合作,互相帮助,这样才能顺利完成任务。请各小组在组长的带领下进行分工活动。
④活动体验。
学生分组实验,教师巡视指导。
(3)归纳。
①各小组交流汇报统计结果,教师用实物投影展示。
②提问:统计的结果和你的估计差不多吗?我们再将各小组摸到红球的次数和摸到黄球的次数进行比较,你有什么发现?(有的小组摸到红球的次数和摸到黄球的次数同样多,有的小组摸到红球的次数比摸到黄球的次数多一些,有的小组摸到红球的次数比摸到黄球的次数少一些)如果继续摸下去,摸到红球的次数和摸到黄球的次数会怎样?
讲述:这就说明从装有3个红球和3个黄球的袋子里任意摸一个球,摸到红球的———会和摸到黄球的———会是相等的,也就是摸到红球和黄球的'可能性是相等的。
提问:我们是用什么方法来记录摸球结果的?你觉得用画“正”字的方法来记录好不好?(记录简便、整理迅速)记录之后我们又对数据作了怎样的处理?(填入统计表)可见用统计的方法来研究事情发生的可能性是一个很好的方法。通过实验和统计得到了什么结论?(摸到红球和黄球的可能性是相等的)
三、玩中交流,内化交流。
1、抛小正方体。
教师出示小正方体,问:知道小正方体有几个面吗?在6个面上都写有数字,小组成员仔细观察有哪些数字?各出现了几次?
如果把小正方体抛30次,那么“1”“2”“3”各字朝上的次数会怎样呢?
验证。
明确活动要求:小组成员按顺序轮流抛小正方体,并记录朝上数字的次数。
在小组内明确分工。
活动体验:学生先分组实验,再统计结果,填写下列表格。
朝上的数字123
次数
归纳。
各小组汇报统计结果,教师将数据填入下表。
朝上的数字
123
合计
第一小组
第二小组
第三小组
第四小组
提问:仔细观察统计表,统计的结果和你估计的差不多吗?你发现了什么?
反思。通过这一活动,你又明白了什么?为什么1、2、3朝上的次数差不多?
讲述:根据合计栏里的数据,我们可以看出抛的次数越多,数字1、2、3朝上的次数就越接近。那么抛一次,向上的数字有几种可能性?这三种可能性的大小怎样?(相等)
三、拓展深化
谈话:如果要在装有红球和蓝球的口袋中任意摸一个球,摸到红球和蓝球的可能性相等,可以怎样放球?
学生各抒己见
谈话:为什么可以这样放?(因为红球和蓝球的个数相同,所以任意摸一个球,摸到红球和蓝球的可能性相等。)
1、完成“想想做做”第2题
先小组讨论,再展示交流,说说想法。
四、总结
提问:通过这节课的学习,你学会了什么?知道了什么?
板书设计:
统计与可能性
3个红球3个黄球
当口袋里红球与黄球一样多时,摸到红球与黄球可能性是相等的
【五年级下册数学教案】相关文章:
五年级下册数学教案01-04
五年级下册人教版数学教案01-12
人教版五年级下册数学教案01-09
五年级下册数学教案优秀02-23
五年级下册数学教案【推荐】01-19
【精】五年级下册数学教案01-18
五年级下册数学教案【热门】01-19
五年级下册数学教案【热】01-19
【推荐】五年级下册数学教案01-20
【荐】五年级下册数学教案01-20