现在位置:范文先生网>教案大全>数学教案>五年级数学教案

五年级数学教案

时间:2023-11-07 18:17:00 数学教案 我要投稿

五年级数学教案(精)

  作为一名专为他人授业解惑的人民教师,时常要开展教案准备工作,教案有助于学生理解并掌握系统的知识。那么你有了解过教案吗?下面是小编整理的五年级数学教案,欢迎阅读,希望大家能够喜欢。

五年级数学教案(精)

五年级数学教案1

  教学内容:

  第10页例6及后做一做、练习二1—3题。

  教学目标

  1.知识与技能:掌握用“四舍五入法”取积的近似数。

  2.过程与方法:让学生应用迁移的方法来求积的近似数。

  3.情感、态度与价值观:培养学生能根据实际需要正确求积的近似数。

  教学重点

  学生能用“四舍五入法”取积的近似数。

  教学难点

  学生能根据实际需要正确求积的近似数。

  教学过程:

  一、复习.

  1、口算:0.8×40.32×40.8×12.57.8×0.01

  3.2×0.20.08×0.089.3×0.014.8-0.48

  2、把下面各数精确到百分位。

  0.256≈ 12.889≈ 40.00001≈

  二、新授

  1.教学教材第10页例题6.

  (1)出示例题6:

  (2)分析:题目的'已知条件和问题分别是什么?怎样列式计算?

  (3)生尝试练习。

  (4)抽生板演:0.049×45≈2.2(亿个)

  0.049

  × 45

  245

  196

  2.205

  (5)分析订正:大家有什么不明白的地方吗?(学生质疑或师提问:)

  ①为什么用乘法计算?(根据小数乘整数的意义:求0.049的45倍用乘法计算。)

  ②结果2.205保留一位小数约是2.2是怎么来的?(根据四舍五入法:看小数部分的第二位小于五,就从第二位开始省略掉。)

  (6)小结:当我们求出的积的小数位数比较多,我们可以根据需要,按“四舍五入法”保留一定的小数位数。

  三、练习

  1、完成第10页“做一做”。

  生完成在练习本上,抽生板演,并说出四舍五入的方法。

  2、课堂作业:第13页练习二1、2、3题。

五年级数学教案2

  教学内容:

  人教版小学数学教材五年级上册第95页主题图、96页例3、第96页“做一做”,教学目标:

  1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

  2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

  3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

  教学重点:

  掌握梯形面积的计算公式,并会用公式解决实际问题。

  教学难点:

  理解梯形面积公式推导方法的多样化,体会转化的思想。

  考点分析:

  会用梯形面积公式解决实际问题。

  教学方法:

  游戏引入——新知讲授——巩固总结——练习提高

  教学用具:

  课件、多组两个完全相同的梯形。

  教学过程:

  一、提出问题(课件出示教材第95页的主题图)。

  教师:同学们在图中发现了什么?

  教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

  二、通过旧知迁移引出新课。

  教师:同学们还记得平行四边形和三角形的面积怎么求吗?

  1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

  2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

  3、教师:前面我们学习了平行四边形的面积,又学习了三角形的.面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

  三、揭示课题;

  根据学生的回答,引出新课,梯形的面积。

  板书课题--梯形的面积。

  四、新知探究

  1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

  2、请同学们打开学具袋,看看里面的梯形有什么特点?

  生:各种梯形,每种两个,每种梯形颜色一样。

  教师提出要求

  ①选择自己喜欢的梯形把它拼成我们学过的图形

  ②想一想,拼成怎样的图形,利用怎样的方法拼成的?

  ③它们的高与梯形的高有怎样的关系,它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

  ④先独立思考后小组交流

  生小组合作探究。师巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。

  3、(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示。)

  师引导得出如下几种推导思路:(师边利用课件演示边讲解)

  思路一:用两个完全一样的梯形拼成一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出

  梯形面积=(上底+下底)×高÷2

  思路二:把梯形剪成一个平行四边形与一个三角形,梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出

  梯形的面积=上底×高+(下底-上底)×高÷2

  =(上底+下底)×高÷2

  思路三:沿梯形的一条对角线剪开,把梯形分割成两个三角形。得出梯形的面积等于两个三角形面积之和,从而推出

  梯形的面积=上底×高÷2+下底×高÷2

  =(上底+下底)×高÷2

  教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”。

  师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?学生用字母表示出梯形的面积计算公式:S=(a+b)h÷2

  五、巩固提升

  1、(出示课件),三峡水电站全景图及第89页例3并读题。同时出示水电站的横截面的简图(梯形)。提问,实际求什么?

  S =(a+b)h÷2

  =(36+120)×135÷2

  =156×135÷2

  =10530(㎡)

  2、计算下面图形的面积,你发现了什么?

  六、总结结课

  1、这节课你学到了什么?要计算梯形的面积,必须要知道几个条件?还要注意什么?

  2、我们是怎样得出梯形面积的公式的?

  (二)教师总结

  今天我们利用转化的思想推导出了梯形的面积计算公式,并会用梯形的面积计算公式解决生活中的实际问题。

  板书设计:

  梯形面积=(上底+下底)×高÷2

  梯形的面积=上底×高+(下底-上底)×高÷2

  =(上底+下底)×高÷2

  梯形的面积=上底×高÷2+下底×高÷2

  =(上底+下底)×高÷2

五年级数学教案3

  教学内容:

  人教版义务教育课程标准实验教科书《小学数学》五年级上册第五单元第84-86页。

  教学目标:

  通过用面积单位测量三角形的面积探索出计算三角形的方法,从而概括出求三角的面积公式,通过间接测量体会数学的简捷美。

  教学过程:

  一、用直接测量法计算面积

  1.老师指导学生把给定的三角形画在绘画纸(1 ㎝1 ㎝)上,如下图:

  2.学生计算三角形的面积。

  3.汇报,可能说:正好是一个单位的面积太少了,计算三角形的面积也太难了吧。

  二、用转化法计算面积

  老师引导学生:学习平行四边形面积时,把平行四边形转化为长方形,现在我们如何把三角形变成学过的图形使计算变得比较简便呢?学生可能说:

  1.在直角三角形的右上角再画一个同样的直角三角形,就变成一个长方形,长方形的面积是12㎝2,三角形的面积是长方形的一半,是6㎝2。锐角三角形和钝角三角形就不好办了。

  2.在锐角三角形右边的右边再画一个同样的三角形,就变成一个平行四边形,平行四边形的面积是12㎝2,三角形的面积是平行四边形的一半,是6㎝2。

  3.还可以用同样的方法计算钝角三角形的面积是6㎝2。

  4.在直角三角形的左边再画一个同样的三角形,也是变成一个平行四边形。这样,所有的三角形都变成平行四边形,面积是平行四边形的'一半。

  5.在高的一半的地方剪开,上半部分旋转一下,变成一个平行四边形,它的面积与三角形的一样,是6㎝2。

  三、概括面积公式

  老师适时引导学生用任意三角形通过间接测量法归纳三角形的面积公式,学生可能说:

  1.计算平行四边形面积用间接测量法测量底和高的长度,三角形也是底和高互相垂直,也应该是测量底和高的长度。

  2.用两个完全同样的三角形拼成一个平行四边形,平行四边形的面积=底高,三角形的面积是平行四边形面积的一半,所以三角形的面积S=ah2。

  3.在高的一半的地方剪开,上半部分旋转一下,变成一个平行四边形,平行四边形的底就是三角形的底,它的高是三角形的高的一半,平行四边形的面积就是三角形的面积,三角形的面积=平行四边形的面积=底高的一半,所以三角形的面积S=ah2。

  四、运用知识,解决问题

  1.出示例1:

  2.辨认图形,运用面积公式列式计算。

  S=ah2

  =100332

  =1650(㎝2)

  3.做一做:见教材。

  五、巩固练习

  练习十六第85页第1、2、3题。

  教学反思:

  学习三角形的面积时,教材出于默认的理由而没有编排数格子,从平行四边形不可能完全测量可以推出三角形更不可能完全测量。因此造成了三角形面积教学忽视培养二维空间观念的后果。本设计让学生继续数格子,目的在于使学生能直观地找到将未知图形转化成已知图形的方法。完整单位的格子少,不完整单位的格子其形状不规则,转化和探索成学生必须的选择。在数格子的过程中学生既认识用面积单位测量的局限性和长度测量的便捷性,又可以体验转化方法的多样性和各种方法的内在联系。

  在学习中,学生认识到面积的计算都必须依靠互相垂直两条线段,长方形的两条边互相垂直,这两条边长度相乘的积就是它的面积;平行四边形垂直的两条线段不再是邻边,而是底和高,所以底和高长度相乘的积是它的面积;而三角形用底和高的长度算不出面积,还得再乘上一个系数1/2。

五年级数学教案4

  单元教学目标:

  1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。

  2、使学生会用“四舍五人法”截取积、商是小数的近似值。

  3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。

  教学内容

  小数乘以整数 课型 新授课

  教学目标

  1、使学生理解小数乘以整数的计算方法及算理。

  2、培养学生的迁移类推能力。

  3、引导学生探索知识间的练习,渗透转化思想。

  教学重点

  小数乘以整数的算理及计算方法。

  教学难点

  确定小数乘以整数的积的小数点位置的'方法。

  教具准备

  放大的复习题表格一张(投影)。

  教学过程

  一、引入尝试:

  孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。

  1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:

  ⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)

  (2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)

  用加法计算:3.5+3.5+3.5=10.5元 3.5元=3元5角

  3元×3=9元 5角×3=15角 9元+15角=10.5元

  用乘法计算:3.5×3=10.5元 理解3种方法,重点研究第三种算法及算理。

  ⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?

  (3个3.5或3.5的3倍.)

  (4)初步理解算理。怎样算的? 把3.5元看作35角

  3.5元 扩大10倍 3 5角

  × 3 × 3

  1 0. 5 元 1 0 5角

  缩小到它的1/10

  105角就等于10.5元

  (5)买5个要多少元呢?会用这种方法算吗?

  2、小数乘以整数的计算方法。

  象这样的3.5元的几倍同学们会算了,那不代表钱数的 0.72×5你们会算吗?(生试算,指名板演。)

  ⑴生算完后,小组讨论计算过程。

  板书: 0.7 2

  × 5

  3. 6 0

  (2)强调依照整数乘法用竖式计算。

  (3) 示范:0. 7 2 扩大100倍 7 2

  × 5 × 5

  3. 6 0 3 6 0

  缩小到它的1/100

  (4) 回顾对于0.72×5,刚才是怎样进行计算的?

  使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)

  (5)专项练习

  ①下面各数去掉小数点有什么变化?

  0.34 3.5 0.201 5.02

  ②把353缩小10倍是多少?缩小100倍呢?1000倍呢?

  ③判断

  1 3.5

  × 2

  2.7 0

  (6)小结小数乘整数计算方法

  计算 7 ×4 0.7×4 25×7 2.5×7

  观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?

  ① 先把小数扩大成整数;② 按整数乘法的法则算出积;

  ③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

五年级数学教案5

  设计意图:在设计的时候我想要引导学生学会看书,学会咬文嚼字,比如书上是这样写的:求两个数的最大公约数,一般先用这两个数公有的质因数连续去除,一直除到所得的商互质为止,然后把所有的除数连乘起来。在品味这段话时,有些学生会注意到“一般”这两个字,从而提出“为什么一般用这两个数公有的质因数连续去除,不用质因数去除行不行?”,教师可以引导他们通过向别人求教、上网查资料等方式,自己得出答案,即不用公有的质因数去除也行,也可用公有的合数去除,不过习惯上用两个数公有的质因数去除。解决这个问题之后,学生就会觉得数学语言是非常严谨的,一字一句均需斟酌。

  教学要求

  ①使学生理解公约数、最大公约数、互质数的概念。

  ②使学生初步掌握求两个数最大公约数的一般方法。

  ③培养学生抽象、概括的能力和动手实际操作的能力。

  教学重点 理解公约数、最大公约数、互质数的概念。

  教学难点 理解并掌握求两个数的最大公约数的一般方法。

  教学用具 投影仪等。

  教学过程

  一、创设情境

  填空:①12÷3=4,所以12能被4( )。4能( )12,12是3的( ),3是12的( )。②把18和30分解质因数是 ,它们公有的质因数是( )。③10的约数有( )。

  二、揭示课题

  我们已经学会求一个数的约数,现在来看两个数的约数。

  三、探索研究

  1.小组合作学习

  (1)找出8、12的约数来。

  (2)观察并回答。

  ①有无相同的约数?各是几?

  ②1、2、4是8和12的什么?

  ③其中最大的一个是几?知道叫什么吗?

  (3)归纳并板书

  ①8和12公有的约数是:1、2、4,其中最大的一个是4。

  ②还可以用下图来表示。

  8 1 3

  2 4 6 12

  8 和12 的公约数

  (4)抽象、概括。

  ①你能说说什么是公约数、最大公约数吗?

  ②指导学生看教材第66页里有关公约数、最大公约数的概念。

  (5)尝试练习。

  做教材第67页上面的“做一做”的第1题。

  2.学习互质数的概念

  (1)找出下列各组数的公约数来:5和7 8和9 12和25 1和9

  (2)这几组数的公约数有什么特点?

  (3)这几组数中的两个数叫做什么?(看书67页)

  (4)质数和互质数有什么不同?(使学生明确:质数是一个数,而互质数是两个数的关系)

  3.学习例2

  (1)出示例2并说明:我们通常用分解质因数的方法来求两个数的最大公约数。

  (2)复习的第2题,我们已将18和30分解质因数(如后) 18=2×3×3 30=2×3×5

  (3)观察、分析。

  ①从18和30分解质因数的式子中,你能看出18和30各有哪些约数吗?

  ②18和30的公约数就必须包含18和30公有的什么?

  ③18和30公有的`质因数有哪些?

  ④18和30的公约数和最大公约数是哪些?(1、2、3、6(2×3))

  ⑤最大公约数6是怎样得出来的?

  (4)归纳板书。

  18和30的最大公约数6是这两个数全部公有质因数的乘积。

  (5)求最大公约数的一般书写格式。

  为了简便,我们把两个短除式合并成一个如: 18 30

  让学生分组讨论合并后该怎样做?

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出最大公约数?

  ④为什么不把商也连乘进去?

  (6)尝试练习。

  做教材第68页的“做一做”,学生独立解答后点几名学生讲每步是怎样做的,最后集体订正。

  (7)抽象概括求最大公约数的方法。

  ①谁能说说求最大公约数的方法。

  ②引导学生看教材第68页求两个数的最大公约数的方法。

  四、课堂实践

  做练习十四的1、2、3题。

  五、课堂小结

  学生总结今天学习的内容。

  六、课堂作业

  1.做练习十四的第4题。

  2.做练习十四的12*题。

  课后反思:教学"求最大公约数",课本共安排了三个例题及一个"做一做",教学时,当教师向学生介绍完用短除法求两个数的最大公约数之后,让学生讨论质疑其它二例时,学生A就提出:"两个数的最大公约数也就是这两个数的差。"教师问:"有什么根据?"学生回答说:"按照课本的三个例题:12和18的最大公约数是6;90和72的最大公约数是18;24、36和48的最大公约数是12;做一做40,60和80的最大公约数是20。"还真是呀!学生们很惊讶,教师了解到学生错误结论的由来,但不急于指出学生的错误,首先肯定了学生善于观察和思考的精神,接着又向学生指出:"是巧合呢,还是真有这样的规律存在呢?"学生为了验证,纷纷举例演算,就连平时较少开动脑筋的学生,也算得很起劲。过了一会,小B第一个发现象36和28,90和68的最大公约数就不是它们的差。教师又及时把这一信息交给学生,学生的研究热情被激发起来,课堂气氛异常活跃。下课了,大家的讨论还在继续着,并且乐此不疲。他们为了探求"规律",愉快地做了几十道求最大公约数的练习,牢固地掌握了知识。在教师创设的途径中,学生品尝到成功的喜悦,更激发了他们探求知识,孜孜以求,为学业成功更努力学习。

五年级数学教案6

  一、教学内容

  本单元主要引导学生推导平行四边形、三角形和梯形的面积公式,应用公式计算有关图形的面积,并解决一些简单的实际问题。

  这部分教材分四段安排:

  第一段,为教材第12~14页的例1、例2、例3和练习二,主要教学平行四边形的面积计算。

  第二段,教材第15~18页的例4、例5和练习三,主要教学三角形的面积计算。

  第三段,教材第19~21页的例6和练习四,主要教学梯形的面积计算。

  第四段,本单元的整理与练习。

  此外,还安排了实践与综合应用“校园的绿化面积”,帮助学生综合应用学过的各种图形的面积公式,解决一些稍复杂图形的面积计算问题,进一步体会这部分内容在实际生活中的应用价值。

  二、教材的编写特点和教学建议

  1.由扶到放,引导学生逐步掌握多边形面积计算的一般策略。

  教学平行四边形的面积计算时,由于学生还没有“通过转化推出面积公式”的意识,相关的学习经验比较少,所以既要有宏观的策略指导,也要有具体的方法点拨。即,先要让学生认识到“可以通过转化推出面积计算方法”,再让学生学会“怎样转化”。这部分教材安排了三道例题,例1通过比较两组图形的面积是否相等,引导学生进一步明确:有些复杂的图形可以通过“分和移”转化成相对简单的图形。例2通过动手操作,引导学生掌握把平行四边形转化成长方形的具体方法。例3通过进一步的操作,引导学生经历“猜想、验证、初步归纳、分析推理、得出公式的过程。

  教学三角形的面积计算时,考虑到学生已经具有“通过转化推出面积计算方法”的意识和经验,缺少的仅是具体的转化方法,所以教材着重指导“怎样转化”。这部分内容安排了两道例题。例4通过计算平行四边形中三角形的面积,启发学生领悟到:一个平行四边形可以分成两个完全一样的三角形;反过来,两个完全一样的三角形能拼成一个平行四边形。例5则通过分组操作,引导学生再次经历“猜想、验证、初步归纳、分析推理、得出公式”的过程。

  教学梯形面积时,考虑到学生不仅有“通过转化推出面积计算方法”的意识和经验,而且把梯形转化为平行四边形的方法与把三角形转化为平行四边形的方法是类似的,所以教材只安排了一道例题,让学生自主操作并探索梯形的面积公式。

  2.要让学生经历公式推导的过程。

  多边形面积公式的推导过程有着极为丰富的数学内涵。让学生积极主动地参与这一个过程,不仅能锻炼数学思维、发展空间观念,而且有利于学生领悟一些基本的数学思想方法,增强理性精神和创新意识。因此,要把吸引学生参与推导过程作为教学多边形面积计算的重要内容和目标。以三角形面积公式的推导为例,首先要让学生体会到:要求三角形的面积,可以先想办法把它转化为平行四边形或长方形。而这一点可以通过例4的教学得以实现。教学时,可以先让学生用公式或数方格算出图中每个平行四边形的面积,再让学生直观判断每个涂色三角形的面积。使学生在判断以及表达判断理由的过程中初步认识到:平行四边形可以分成两个完全一样的三角形。由此,启发学生进一步思考:是不是所有的平行四边形都能分成两个完全一样的三角形呢?让学生通过动手操作验证此前的初步认识。在此基础上,提出:如果给你两个完全一样的三角形,你一定能拼成平行四边形吗?让学生在操作中进一步明确:用两个完全一样的三角形一定能拼成一个平行四边形。从而为下面的操作活动提供思考的基础。教学例5时,可以先让学生从附页中任选一个三角形剪下来,并提问:你选的这个三角形可以与例5中的哪个三角形拼成平行四边形?学生操作后,要求算出每个三角形以及拼成的平行四边形的面积,并把相关数据填在例题的表格中,从而建立初步猜想:三角形的面积都可以用“底×高÷2来计算吗?然后,引导学生综合小组内同学得到的数据,验证上面的猜想,并初步归纳出结论。最后,组织讨论教材提出的三个问题,使学生在合乎逻辑的推理中,进一步确认公式是正确的,并感受数学思考的严密性。

  3.要充分发挥方格图(点子图)的作用。

  教材利用方格图设计的练习主要有以下几种形式:第一,在方格图上给出一个图形,要求学生画出与它面积相等的其他图形。如,第14页第1题,第23页第4题。第二,在方格图上给出一组图形,要求学生判断这些图形的大小关系。如,第17页第5题,第21页第2题,第22页第1题。第三,要求学生在方格图上自主设计图形。如第17页第6题等。这些练习的优点在于:第一,有利于学生把注意力集中在对图形相互关系的思考上,从而避免一些具体测量活动对数学思考本身的干扰;第二,有利于学生通过反复尝试,在不断的调整中作出正确的选择;第三,便于学生直观地验证操作和思考的结果。教学时,一要让学生多准备一些这样的方格纸,以便随时开展此类活动;二要鼓励学生在自主探索的基础上,自觉总结解决问题的有效策略。例如,第23页第4题,图中长方形的面积是15平方厘米,要使画出的平行四边形面积与这个长方形相等,关键是让平行四边形底与高的乘积等于15;要使画出的三角形面积与这个长方形相等,关键是让三角形底与高的乘积等于30(15×2);要使画出的梯形面积与这个长方形相等,关键是让梯形上、下底之和与高的乘积等于30(15×2)。

  4.怎样处理推导多边形面积公式的不同方法?

  多边形面积公式的推导方法是多样的。教学时,可以选择合适的机会,采用合适的方式,帮助学生对此有所体会,以拓宽解决问题的思路,增强自主探索的兴趣。首先,可以通过教学第16页的“你知道吗”,引导学生初步认识到:多边形面积公式的推导方法不是惟一的。具体教学时,可以先演示“以盈补虚”的过程,引导学生领悟“要使‘盈’和‘虚’相等,就先要找到三角形相应边的中点”,这是解决问题的.前提和关键。在此基础上,重点讨论转化后的长方形的长、宽与原三角形底、高的关系,明确:长方形的长等于三角形的高,长方形的宽等于三角形底的一半,因为长方形面积等于长×宽,所以三角形面积等于“半广以乘正从”,即等于底×高÷2。其次,在教学第25页的思考题时,适当提示不同的转化方法。例如,推导梯形面积公式,可以先出示如下图的几个图形,启发学生看图说说图形转化的过程,再讨论转化前、后图形的关系。

  也可以先让学生照样子剪一剪,再联系操作过程共同讨论怎样才能推导出面积公式。

  5.“校园的绿化面积”要重视实际测量方法的指导。

  “校园的绿化面积”这个实践活动的教学目的主要有两个:一是让学生综合应用学过的面积公式计算一些简单组合图形的面积;二是让学生在校园里进行一些实际的测量,并根据测量的数据计算相应多边形的面积,以提高解决简单实际问题的能力。比较起来,前者的目标相对容易实现,因为计算简单组合图形面积的关键是把原图形进行转化,而这个方法是学生比较熟悉的。因此,真正实现后一个教学目标是本次实践活动的难点。教学时,关键是抓住以下几个环节:第一,帮助学生在小组内明确分工,要有人负责测量,有人负责记录;第二,要选择合适的、便于测量的地块;第三,帮助学生选择合适的测量工具,通常可选择卷尺或米尺;第四,要具体指导图形高的测量方法;第五,要提醒学生适当地取近似值,以便于计算。

五年级数学教案7

  教学内容:

  教科书第18页例4和做一做

  教学目标:

  1、会归纳总结除数是小数的小数除法的计算方法,能比较熟练地计算除数是整数的小数除法;

  2、能根据乘除法之间的关系进行验算,提高计算的正确率;

  3、养成良好的计算、验算习惯。

  教学重点:

  掌握小数除以整数的计算方法,你能正确计算

  教学难点:

  特殊情况的小数除以整数的算法

  教学过程:

  一、复习引入

  1、口算

  2。4÷2 4。8÷6 9。09÷9

  8。24÷8 6÷5 1÷5

  2、填空,并说出为什么?

  (复习乘除法之间的关系,为下面学习验算做好准备)

  3、列竖式计算(生板演)

  (1)7。44÷4(2)7。44÷8

  (3)102÷24(4)4。551÷5

  四道逐渐变难

  二、探究新知

  1、在评价学生的计算结果中帮助学生学会归纳和总结。

  师:通过刚才的解题,你能说出小数除以整数是怎么除的吗?

  学情预设:学生有的会把步骤在说一遍,有的会讲出前面“被除数的整数部分不够除”和“除到被除数的小数末尾还有余数”两种特殊情况的小数除以整数的算法,教师一一给与肯定。

  师:做小数除以整数还有什么要提醒大家的?

  四人小组讨论并归纳

  学情预设:生根据小数乘法经验说出转化乘整数除法去除;商的'小数点要和被除数的小数点对齐;哪一位不够商1就商0,然后继续除。如果除到被除数的末尾仍然有余数,要添0后再除。

  课件出示补充。

  2、在暴露计算错误的过程中引导学生学会验算。

  (1)师:为了保证我们的计算正确,怎么办?——验算

  验算是一种很好的学习方法和习惯,怎样验算黑板上面的小数除法呢?

  学情预设:生根据整数除法经验能说出用乘法验算除法,或估算一下,或用被除数除以商等。

  师:四人小组,一人选一道进行验算,算完在组内说说你是怎么想的?

  (2)门诊台

  课件出示。

  小结:用估算能知道计算有没有错;用乘法或再除一遍的方法能保证计算正确

  三、巩固练习

  1、小马虎也做了两道题,请同学们看看他做对了吗?如果不对应该怎么订正?

  37。8÷6=63 7。4÷5=1。4……4

  2、计算并验算

  43。5÷29 18。9÷27

  1。35÷15 207÷45

  3、书第20页:7、8题

  四、课堂小结

  说说小数除以整数的计算法则,有什么要提醒大家的?

五年级数学教案8

  教学要求:

  使学生进一步掌握平行四边形、三角形、梯形面积的计算公式,能正确地计算它们的面积。

  教学重点:

  熟悉所学实际测量的知识,能正确应用所学的知识,解决一些实际问题。

  教学过程:

  一、基本练习

  1.口算。P.145页口算(四)。

  3.5+7.6 12-6.2-3.8 7÷0.25 5.6×1.01

  1.7+0.4 3+3.3 5.4-2.5-1.47 2.8÷0.8

  (1.25+0.36)×0.2 0.99+1.8 2.56-0.37

  500×0.001 3.2÷1.6 3.9+2.03 7.5×2.5×4

  0.36÷12 0.75×4 4.9÷3.5 1.2×0.4+1.3×0.4

  2.14-0.9 6.25×0.8

  二、复习指导

  1.实际测量的有关知识

  (1)同学们已经知道在测量地面上较远的两点间的距离时,应先测定一条直线。怎样做才能测定这条直线呢?

  在学生回答的基础上再让学生看P.86页的插图及怎样做的步骤。

  (2)在进行步测时,首先要知道自己走一步的长度。怎样做才能知道自己走一步的长度是多少呢?

  在学生回答的基础上,让学生看P.87页怎样算出自己走一步的平均长度。

  (3)学生独立做练习二十第7题。集体订正时让学生讲自己是怎样想的。

  2.平行四边形、三角形、梯形面积的计算。

  练习二十第5题。

  (1)明确各是什么图形?再动手量出计算它们面积所需的数据,并算出它们各自的面积。

  (2)比较它们的面积,你发现了什么?

  (3)在学生发言的基础上说明,这四个图形的形状虽然不同,但面积相等。它们的高都等于2厘米,长方形和平行四边形的底1.5厘米,所以它们的面积相等;而梯形上底与下底的和以及三角形的底都是3厘米,比长方形、平行四边形的底扩大了2倍,但按照它们面积的计算公式底和高相乘后还要除以2,所以它们的面积与长方形、平行四边形的面积相等。

  三、课堂练习

  1.练习二十第6题。

  学生独立计算,集体订正。

  2.练习二十第9题。

  在学生说出自己的看法后,教师再强调:三角形的面积是由它的高和底确定的。如果两个三角形等底、等高,它们的面积就相等;如果两个三角形的高相等,而底不相等,那么它们的面积就不会相等。

  四、作业

  1.练习二十第8题。

  2.学有余力的学生可做练习二十第11题及思考题。

  教学内容:

  根据测量的有关内容,自行设计的综合实践活动

  教学目标:

  1、学会步测、目测等测量方法,了解光侧、影测、绳测等测量方法,进行实际测量。

  2、在解决生活中的实际问题中发展空间观念和抽象概括能力。

  3、提高运用所学知识解决实际问题的能力和计算能力。

  4、体会数学在现实生活中的应用。

  教学准备:

  课件、米尺、卷尺、等

  教学过程:

  一、提出问题

  师:我们认识了长度单位米、分米和厘米,并且知道了它们大概的长度,那么今天我们就用我们所学的知识来进行实际测量。在进行测量前,我们要了解哪些测量知识呢?例如:测量工具、测量单位、测量对象、测量方法等等。

  (学生提到了进行测量的时候,要使用尺子,记录测量结果的时候要用到米、分米、厘米等长度单位。)

  二、活动程序

  1、准备活动:展示人们测量一些建筑物的课件。

  2、布置活动

  师:我们已经掌握了测量的相关知识,下面就请同学们结合实际生活,选择一个你想测量的对象,选用适当的测量方法进行实际测量。

  测量要求:

  (1)以小组为单位,进行实际测量。

  (2)每小组要在活动卡片上做好记录。

  3、提供给学生“实际测量活动”卡片

  教学内容:

  教材第21页例1、22页做一做及练习五1-3题。

  教学目标:

  1、让学生经历观察、比划、测量等学习活动,明确毫米产生的实际意义,使他们初步认识新的长度单位毫米,建立1毫米的概念,会用毫米作单位进行测量,并能掌握毫米与厘米间的关系,进行简单的换算。

  2、借助具体的测量活动,进一步培养学生的动手操作能力,能估计一些物体的长度,进一步发展估测意识。

  3、感受数学与生活的密切联系,学会与他人合作,从而获得积极的学习数学的情感。

  教学重点:

  建立较为准确的“1毫米”的概念。

  教学难点:

  理解厘米与毫米之间的进率。

  教学准备:

  教师准备课件、米尺;学生准备书、直尺一把、一枚1分硬币、一张银行借记卡、小棒等。

  教学过程:

  一、创设情境,揭示课题。

  1、复习米和厘米,引导学生用手势来表示1米和1厘米各有多长。

  2、估计数学书的宽和厚大约是多少,动手测量验证。

  3、组织交流测量结果,引出毫米产生的.意义。

  4、揭示课题“毫米的认识”。

  二、自主探究,学习新知。

  1、建立“1毫米”的表象。

  ①毫米可以用字母mm来表示。设疑:关于毫米,你已经知道了哪些知识?(学生思考、交流)

  ②在学生交流的基础上,重点探讨“1毫米”有多长,请学生在尺上相互指指,从哪里到哪里是1毫米。再请持有不同意见的同学向全班汇报、交流。

  揭示:为了看得更清楚些,我们把尺子用放大镜放大,把1厘米平均分成10份,其中的任何一份也就是每一小格的长度,就是1毫米(边介绍边用课件演示)然后,请学生在自己的尺子上再指一指1毫米有多长。

  ③思考:现在你觉得毫米与厘米之间有什么关系?

  1厘米=10毫米

  ④请学生想一想哪些物体的长度大约是1毫米。(教师准备1分硬币、电话卡和银行借记卡,请学生量一量厚度,加深对“1毫米”的体验。)

  ⑤引导学生用手势来表示1毫米有多长,并谈谈自己的感受。

  ⑥说一说,生活中还有哪些地方用到“毫米”作单位。(学生举例,教师提供一些资料)

  ⑦学生填写数学书的厚和宽并反馈。

  2、画线段。(3厘米7毫米长的线段。)

  提问:用直尺画线段时需要注意什么?如何画出3厘米7毫米长的线段?

  学生可能有以下几种画法

  A、利用刻度尺先画出3厘米的线段,再接着画出7毫米。

  B、在刻度尺上输出37毫米(3厘米=30毫米),然后画线段。

  学生操作,教师巡视引导,注意线段从“0”刻度开始画和不从“0”刻度开始画的画法区别。

  三、实践应用,巩固新知

  1、学生根据本课的新内容完成“做一做”第1、2、题。

  第1题让学生根据图示读出刻度尺所测量的物体长度。明确先1厘米1厘米地鼠,不满1厘米的再1毫米1毫米地数,这样的方法更加的快捷方便。学生读数,再指名汇报。

  第2题让学生先估算,再测量,然后集体订正,指名说说理由。

  2、完成“练习五”第2题。

  以毫米为单位测量出每条边的长度,学生独立完成后集体订正。

  四、课堂小结,课外延伸。

  这节课我们学习了什么?你学会了什么?请你用手势表示1毫米大约有多长。米不是的长度单位,毫米也不是最小的长度单位,如果你们有兴趣,希望你们到书中或网上查查看。

  板书设计:

  毫米的认识

  1厘米=10毫米

  10毫米=1厘米

五年级数学教案9

  教学内容:

  五年级下册教科书第65—66页。

  教学目标:

  1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

  2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

  3.体会知识来源于实际生活的需要,激发学习数学的积极性。

  教学重点:

  经历探究过程,理解和掌握分数与除法的关系。

  教学难点:

  通过操作,让学生理解一个分数可以表示的两种意义。

  教材分析:

  《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。

  本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。

  教具学具:

  课件,模型。

  教学设计

  一、导入

  师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?

  生:月饼。

  师:你们的课外知识真丰富,你们喜欢吃月饼吗?

  生:喜欢。

  师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?

  生:2块,6÷3=2(块)。(板书)

  师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?

  生:0.5块,1÷2=0.5(块)。(板书)

  师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?

  师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?

  生:七分之五。

  师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?

  生:可以用分数表示。

  师:在表示整数除法的商时,用谁作分母?用谁做分子?

  生:用被除数作分子,除数作分母。

  师:那么分数与除法有什么样的关系呢?谁能用语言概括下?

  生:被除数除以除数等于除数分之被除数。

  师:你表达得这么清晰流畅,了不起!

  师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?

  生:a÷b= a/b(b≠0)(板书)

  师:这个关系式里每个数的范围要注意什么?

  生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。

  师:想一想分数与除法有哪些联系和区别?

  教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

  师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)

  二、巩固练习

  师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?

  1.1.用分数表示下面各式的商。

  (1)3÷2 =()

  (2)2÷9 =()

  (3)7÷8 =()

  (4)5÷12 =()

  (5)31÷5 =()

  (6)m÷n =()n≠0

  2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖

  的( )是相等的

  三、课堂小结

  说说你的收获是什么?重点说说分数与除法的关系。

  结束语:今天我们通过自己的'努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!

  四、作业布置

  练习十二第1,3题。

  板书设计

  分数与除法

  被除数÷除数=被除数/除数

  a÷b= a/b(b≠0)

  教学反思

  这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

五年级数学教案10

  教学目标:

  1、初步体会整数乘法的运算定律在小数乘法中仍然适用。

  2、能运用这些运算定律使计算简便。

  3、培养学生独立思考、认真审题灵活运用运算定律简算的习惯和能力。

  教学重点:

  学生通过观察能找出正确的简便算法。

  教学难点:

  学生通过观察能找出正确的简便算法。

  教学准备:

  媒体等

  教学过程:

  一、复习准备:

  1、口算: 5× = × = 125×= ×= ×= ×80= ×20= 250×= ×=

  2、简便计算:

  32×25×125 79×21+21×21

  二、探究新知:

  1、师:同学们,在整数乘法中我们学过哪些运算定律?用字母怎么表示呢?

  2、出示:观察并计算,下面每组中的两个算式有什么关系:

  ×○× (×)×○×(×)

  ×+×○(+)× 3、通过观察、计算、讨论,引导学生自主发现规律:整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。

  4、揭题:整数乘法运算定律推广到小数 5、你能用这些运算定律来巧算吗? ×× ×+× (+)×4

  a. 让学生独立思考完成

  b. 让学生汇报:你应用哪条乘法运算定律进行简便计算的。

  三、分层练习:

  1、将一个数分解成两个数的`积或两个数的差:

  =8× ( ) =0.8× ( ) =× ( ) =10- ( ) =100- ( ) =1- ( )

  2、下面各题怎样计算比较简便? ×25×125 ×99+ 64× 3、判断下面各题是否正确,并说说理由。(书P17—练一练)

  4、你认为怎样算简便?×

  四、课堂总结:

  整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。

  五、思考题: 判断是否正确(机动)

  × + ×38 = ×( + ) = ×10 = 83

  六、板书:

  整数乘法运算定律推广到小数 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b+c)=a×b+a×c

五年级数学教案11

  教学内容:

  教材14—15页例6、例7及相应的“试一试”“练一练”,练习三第1—3题。

  教学目标:

  1.学生通过自己探究,理解并掌握梯形面积公式,能应用公式进行正确计算。

  2.学生通过操作和观察,发展空间观念;培养学生的分析、综合、抽象、概括和运用转化的思考方法解决实际问题的能力。

  3.学生在探索发现的过程中,获得积极的情感体验,感受数学的魅力。

  教学重点:

  探索发现梯形的面积公式。

  教学难点:

  在探究中理解梯形的上、下底与平行四边形的底之间的关系。

  教学准备:

  多媒体课件、剪下书上第117页的梯形。

  探究方案:

  一、自主准备

  你能想办法求出下面梯形的面积吗?(每个小方格表示1平方厘米)

  你打算怎样做,与同学交流。(可以在图上画一画)

  假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成

  二、自主探究(剪下课本第117页的6个梯形)

  1.拼一拼:剪下的梯形中,哪两个梯形能拼成平行四边形,动手拼一拼。

  2.能拼成平行四边形的,求出平行四边形和梯形的面积,再填写下表。

  3.想一想

  (1)拼成平行四边形的两个梯形有什么关系?

  (2)拼成的平行四边形的底与梯形的上底、下底有什么关系?

  平行四边形的高与梯形的高有什么关系?

  每个梯形的面积与平行四边形的面积有什么关系?

  (3)根据平行四边形的面积公式,推想梯形的面积计算公式

  三、自主应用

  试一试:一块梯形麦田,上底36米,下底54米,高40米。这块麦田的面积是多少平方米?

  四、自主质疑

  说一说

  (1)梯形的面积公式是怎么推导的?你有什么疑问?

  (2)你认为本节课应学会什么?

  教学过程:

  一、明确目标

  提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?

  二、探究交流

  1.出示例6,交流梯形的面积。

  (1)组织汇报:面积是多少。

  (2)组内交流,你是用什么方法知道的。

  (3)组织全班交流。

  2.出示例6,交流梯形面积的探究情况。

  (1)小组交流:对照例6的表格说一说自己是怎么拼的,怎么填的?讨论并交流例6下面的问题。

  (2)全班交流:指名上台展示拼法,并对照拼图说一说:拼成的平行四边形的底与梯形的上、下底有什么关系?梯形的高与拼成的平行四边形的高有什么关系?梯形的面积与拼成的平行四边形的面积有什么关系?

  (3)总结归纳:两个完全一样的梯形拼成一个平行四边形,拼成的平行四边形的底就是梯形的上底与下底的和,拼成平行四边形的高就是梯形的高,每个梯形的面积则是拼成平行四边形面积的一半,因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2

  学生在书上完成梯形面积的字母公式。

  3.交流“试一试”。

  (1)出示“试一试”的梯形图,你是怎么求这块梯形的面积的'?先和自己的同桌说一说自己的想法及计算的结果。

  (2)全班交流:梯形的面积计算过程中,为什么要除以2?

  4.完成“练一练”。

  出示“练一练”,学生独立完成。

  全班交流:每个梯形的面积是多少?你是怎么想的?

  明确:根据梯形和拼成的平行四边形的面积关系,如果已知拼成的平行四边形面积,怎样求梯形的面积?如果已知每个梯形的面积,怎样求平行四边形的面积?

  三、巩固拓展

  1.完成练习三第1题。

  (1)学生自己找出面积相等的梯形。

  (2)同桌交流:你是怎么找出面积相等的梯形的?

  (3)全班交流:由于这四个梯形的高都相等,只要比较它们上、下底的和是否相等。除左边第3个之外,其余梯形的面积都相等,因为它们上、下底的和都是8厘米,高都是4厘米。

  2.完成练习三第2题。

  学生独立计算后再集体交流结果。

  3.完成练习三第3题。

  (1)出示零件的示意图,全班讨论交流:怎么理解“横截面”?指出图中零件中的横截面在哪里?

  (2)小组交流:这个零件的横截面是什么形?它的上底、下底、高各是多少?怎样求这个横截面的面积?

  (3)学生独立计算后再集体交流结果。

  (4)学生订正。

  四、总结延伸、组织阅读。

  1.你有什么收获?还有什么疑问?

  2.阅读教材第15页最后的内容,并动手画一画。

  板书设计:

  梯形面积的计算

  两个完全一样的梯形可以拼成一个平行四边形。

  平行四边形的底=梯形的上底+下底

  平行四边形的高=梯形的高

  梯形的面积=平行四边形面积的一半

  梯形的面积= (上底+下底)×高÷2 s=(a+b)×h÷2

五年级数学教案12

  教学目标:

  1、通过找因数,观察它们的特点,初步理解质数和合数的含义。

  2、培养孩子的观察、比较、抽象、概括能力,通过探索找出寻找质数的简单的方法。

  3、使学生初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造。

  教学重点:

  在教学活动中,帮助学生理解质数和合数的意义。

  教学难点:

  培养孩子的观察,通过探索找出寻找质数的简单的方法。

  教具准备:

  投影仪、小正方形纸片等。

  教学过程:

  一、揭示课题

  1、先复习自然数按能不能被2整除的分类。

  2、教师引入:同学们已经学习并掌握了找因数的方法,这一节课,我们再一起学习找质数。

  板书课题:找质数。

  二、组织活动,探索新知。

  活动:拼一拼

  1、用12个小正方形拼成长方形,看谁拼的方法多,动作还快。

  (同桌用12个小正方形拼长方形,可以合作,并完成书第10页的表格。)

  2、学生汇报,教师填表(投影出示下表)

  小正方形个数(n)拼成的长方形种数n的因数

  (1)让学生观察左表中各数的因数,看看有什么发现?

  (2)结合上面的`发现,将2—12各数分为两类,说一说这两类数分别有什么特点。

  3、教师提示质数和合数的意义。

  一个数只有1和它本身两个因数,这个数叫做质数;

  一个数除了1和它本身以外还有别的因数,这个数叫做合数。

  4、教师:1是质数还是合数呢?(1既不是质数,也不是合数。)

  三、巩固练习(做一做)

  1、在1 4 7 10 11 15 17 18 21这些数中,哪些是质数?哪些是合数?

  2、完成课件练一练1、2题

  四、总结

  通过今天这节课的学习,你有什么收获?你还有什么要问的?

  五、作业。

  优化作业

五年级数学教案13

  教学目标

  进一步计算长方体和立方体的表面积和体积(容积),并能熟练解答有关的实际问题。

  教学重点、难点

  重难点:

  能熟练解答有关的实际问题。

  教具、学具准备

  教学过程

  备 注

  一、计算长方体和立方体的表面积和体积。

  长

  16米

  2.4分米

  60厘米

  宽

  8米

  0.2分米

  50厘米

  高

  6米

  1.5分米

  20厘米

  表面积

  体积

  棱长

  28厘米

  1.2米

  0.8分米

  表面积

  体积

  二、解答实际问题

  1、一个长方体木箱,长8分米,宽6分米,高4.5分米。如果在它的外表涂上油漆(底面不涂),涂的面积有读书平方分米?如果每平方分米用油漆0.25千克,漆这个木箱要用油漆多少千克?

  2、把一块棱长是0.4米的立方体钢,锻造成横截面面积是0.08平方米的长方体钢,锻造成的钢有多长?

  3、用8个棱长是3厘米的立方体积木,搭成大立方体。求搭成的大立方体的表面积和体积。

  4、一个长方体的汽油桶,厂分米,宽3.2分米,高6分米。如果1升汽油重0.74千克,这个油桶可以装汽油多少千克?

  5、一个立方体油箱,容积是216立方分米。把这一箱油倒入另一个长8分米,宽5分米的长方体油箱内,油深多少分米?

  6、一个长方体形状的水池,长60米,宽30米,池内原来水深1.5米。如果用水泵向外排水,每分排水2.5立方米,要求在15小时内把水池中的水排完,可能吗?

  (1)学生独立完成

  (2)小组交流

  (3)反馈,说解题思路。

  三、思考题

  想一想,议一议:怎样求出土豆的体积?

  四、

  课后反思:

  在教学时,教师要多创造机会让学生探索比如可以拿一个大土豆,让学生想一想,议一议:怎样求出土豆的体积?在教师的引导下,学生想出了许多解决问题的办法。有的同学说,把土豆煮熟后,挤压成一个长方体,就可求出它的体积;有的`同学说,从大土豆切出一个1立方厘米的小土豆,测出它的重量,根据大土豆和小土豆重量之间的倍数关系,可以求出大土豆的体积;有的同学说,把土豆放在长方体水槽里,水上升的体积,就是土豆的体积。

五年级数学教案14

  教学目标:

  1、利用表面积等知识,探索多个相同长方体叠放后使其表面积最小的最优策略。

  2、体验解决问题的基本过程和方法,提高解决问题的能力。

  3、通过解决包装的问题,体验策略的多样化。

  教学重点、难点:

  利用表面积等知识,探索多个相同长方体叠放后使其表面积最小的最优策略。

  教学准备:

  相同的.课本、包装纸。

  教学过程:

  一、创设情境

  提问:现在,老师要把26本数学课本用包装纸包起来,怎样保才能节约包装纸?

  学生讨论交流方法,说一说怎样包装好。并说出自己的理由。

  二、学习新知识

  1、出示教材中的插图和问题:将两盒糖果包成一包,怎样包才能节约纸?

  2、学生探索两盒糖叠放得方法,并根据叠放的方法列式计算出长方体的表面积。

  3、引导学生比较得出方案。并反思为什么方案最节约。

  4、学生交流自己的发现。

  (1)同样的方法解决“试一试”中的问题。

  (2)教师根据学生的探索情况进行评价总结。

  板书设计:

  包装的学问。

  尽量减少面积最大的面。

五年级数学教案15

  教学目标:

  1、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。

  2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。

  3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。

  教学重点:

  通过活动认识一些事件发生的等可能性。

  教学难点:

  理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的---会是相等的。

  教学准备:

  多媒体,红球3个黄球3个

  教学过程:

  一、创设情境,激趣导入。

  1、出示装有3个红球的袋子

  (1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)

  (2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)

  2、揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)

  二、活动体验,探索新知。

  1、摸球。

  (1)猜测。

  (出示上述装有3个红球和3个黄球的透明口袋)

  谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?

  学生自由猜测

  (2)验证。

  谈话:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)

  ①明确活动要求。

  谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。

  ②明确统计方法。

  提问:怎样能记住每次摸球的结果呢?

  以前我们用过哪些方法来记录?(画“√”、涂方块…)

  在生活中,你还见过哪些记录数据的方法?(引导说出画“正”字的方法)

  怎样用画“正”字的方法来记录呢?谁能向大家介绍一下?

  教师相---出示“摸球结果记录表”,向学生介绍。

  讲解示范:一画“一”表示1次,1个“正”字表示记录5次。

  红球

  黄球

  ③明确分工。

  谈话:活动时我们要互相合作,互相帮助,这样才能顺利完成任务。请各小组在组长的带领下进行分工活动。

  ④活动体验。

  学生分组实验,教师巡视指导。

  (3)归纳。

  ①各小组交流汇报统计结果,教师用实物投影展示。

  ②提问:统计的结果和你的估计差不多吗?我们再将各小组摸到红球的次数和摸到黄球的次数进行比较,你有什么发现?(有的小组摸到红球的次数和摸到黄球的次数同样多,有的小组摸到红球的'次数比摸到黄球的次数多一些,有的小组摸到红球的次数比摸到黄球的次数少一些)如果继续摸下去,摸到红球的次数和摸到黄球的次数会怎样?

  讲述:这就说明从装有3个红球和3个黄球的袋子里任意摸一个球,摸到红球的---会和摸到黄球的---会是相等的,也就是摸到红球和黄球的可能性是相等的。

  提问:我们是用什么方法来记录摸球结果的?你觉得用画“正”字的方法来记录好不好?(记录简便、整理迅速)记录之后我们又对数据作了怎样的处理?(填入统计表)可见用统计的方法来研究事情发生的可能性是一个很好的方法。通过实验和统计得到了什么结论?(摸到红球和黄球的可能性是相等的)

  三、玩中交流,内化交流。

  1、抛小正方体。

  教师出示小正方体,问:知道小正方体有几个面吗?在6个面上都写有数字,小组成员仔细观察有哪些数字?各出现了几次?

  如果把小正方体抛30次,那么“1”“2”“3”各字朝上的次数会怎样呢?

  验证。

  明确活动要求:小组成员按顺序轮流抛小正方体,并记录朝上数字的次数。

  在小组内明确分工。

  活动体验:学生先分组实验,再统计结果,填写下列表格。

  朝上的数字123

  次数

  归纳。

  各小组汇报统计结果,教师将数据填入下表。

  朝上的数字

  123

  合计

  第一小组

  第二小组

  第三小组

  第四小组

  提问:仔细观察统计表,统计的结果和你估计的差不多吗?你发现了什么?

  反思。通过这一活动,你又明白了什么?为什么1、2、3朝上的次数差不多?

  讲述:根据合计栏里的数据,我们可以看出抛的次数越多,数字1、2、3朝上的次数就越接近。那么抛一次,向上的数字有几种可能性?这三种可能性的大小怎样?(相等)

  三、拓展深化

  谈话:如果要在装有红球和蓝球的口袋中任意摸一个球,摸到红球和蓝球的可能性相等,可以怎样放球?

  学生各抒己见

  谈话:为什么可以这样放?(因为红球和蓝球的个数相同,所以任意摸一个球,摸到红球和蓝球的可能性相等。)

  1、完成“想想做做”第2题

  先小组讨论,再展示交流,说说想法。

  四、总结

  提问:通过这节课的学习,你学会了什么?知道了什么?

  板书设计:

  统计与可能性

  3个红球3个黄球

  当口袋里红球与黄球一样多时,摸到红球与黄球可能性是相等的

【五年级数学教案】相关文章:

小学数学教案五年级07-02

五年级数学教案10-12

五年级教案数学教案12-27

五年级数学教案09-29

五年级上数学教案01-14

五年级数学教案04-23

小学五年级数学教案11-05

五年级《分数的意义》数学教案08-29

五年级上册数学教案11-13

【推荐】五年级数学教案11-28