初一数学教案

时间:2023-11-14 07:15:35 七年级数学教案 我要投稿

初一数学教案

  作为一名专为他人授业解惑的人民教师,总归要编写教案,教案是教学活动的依据,有着重要的地位。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的初一数学教案,欢迎阅读,希望大家能够喜欢。

初一数学教案

初一数学教案1

  一、教学内容:

  人教版教材五年级上册第五单元多边形的面积整理与复习

  二、教学目标:

  1、使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。

  2、使学生感受数学方法和思想的重要性及其应用的广泛性。体会数学的价值,培养对数学学习的热爱

  三、教学重、难点

  重点:使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。

  难点:引导学生整理多边形面积的推导过程,掌握转化的'数学思想方法,建构知识网络。

  四、教学准备:多媒体课件,多边形纸模

  五、教学步骤与过程

  (一)导入复习

  师:同学们,我们学过哪些平面图形的面积计算公式?(正方形、长方形、平行四边形、三角形、梯形)

  师:这节课我们就来重点整理和复习有关这些多边形的面积的知识。

  板书课题:多边形面积计算复习课

  (二)回顾整理,建构网络

  1.复习平行四边形、三角形、梯形面积公式的推导过程。

  ⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。

  ⑵根据学生的回答,出示每个公式的推导过程。

  六、课堂练习

  学生独立计算。指名学生板演,集体订正七、说一说,你学会了什么?从整理图中能看出各种图形之间的关系吗?

  七,作业布置:练习十九

  板书设计

  S=ah÷2

  S=abS=ah

  S=(a+b)h÷2

初一数学教案2

  教学目标 知识与技能

  从实际生活中感受有序数对的意义,并会确定平面内物体的位置

  过程与方法 通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会 具体-抽象-具体的数学学习过程。

  情感态度

  与价值观 培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣

  重点 有序数对的概念及平面内确定点的方法

  难点 对有序数对中的有序的理解,利用有序数对表示平面内的点

  教学方法 以通俗、活泼的素材引入本节课内容;本节采用情景建构教学法

  一 教学流程

  (一)创设情境、导入新课

  [引例1]小明买了一张8排6号的电影票,怎样才能既快又准地找到座位呢?

  [引例2]规定竖为列,横为排,如果我的朋友在第3列,你能知道他(她)是谁吗?

  如果说我的朋友在第3列,第2排,那么你知道他(她)是谁吗?

  归纳8排6座、第3列,第2排共同点:用两个数表示位置。

  约定:影院座位,排数在前,座数在后;教室座位列数在前,排数在后。则上述位置可简记为(8,6),(3,2)。

  介绍:像(8,6)、(3,2)这种用括号括起来的一对数我们把它叫做数对。

  追问:12排10座怎么表示?教室中(6,3)表示什么?(3,6)呢?它们意义相同吗?

  可以发现,有顺序的两个数a与b组成的'数对,如果约定了前面的数表示列数,后面的数表示排数,那么a与b组成的数对就表示一个确定的位置。

  引入课题有序数对

  (二)合作交流、探究学习

  由上述问题直接引出概念

  有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

  请思考:我们为什么要学习有序数对,有序数对都有哪些用途?

  [探究1]请学生结合实际的教室座位 若位置记法为(列数,排数)

  (1)请问(5,4)和(4,5)表示的是哪个同学的座位?

  (2)游戏:教师说出一组数对相应的学生立即站起来。

  (3)思考:(3,4)和(4,3)指的是不是同一位置?

  [讨论]利用有序数对,能够准确地表示一个位置,生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的地点等。(展示课件)

  (三)应用迁移、巩固提高

  小明是朝阳实验学校刚入学的初一新生,他为了尽快熟悉学校,请高年级同学为他画了学校的平面示意图。如果用(2,4)表示图上校门的位置,那么花坛图书馆、体育馆、教学楼的位置分别可以表示成什么?(课件展示地图)

  解:花坛(4,6),图书馆(5,0),体育馆(9,6),教学楼(10,3)

  (四)回顾反思、拓展升华

  知识点:有序数对

  有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

  注意点:(a,b)与(b,a)表示的是两个不同的位置。

  主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。

  (五)[拓展应用]

  小王初到某个公司,你有什么办法让他比较容易地找到图上的几处场所。

  (六)布置作业

  自由设计 二选一

  1、 在方格纸上设计一个用有序数对描述的图形。

  2、设计一个游戏,如解密游戏、迷宫游戏等。

  教学反思

  七年级学生的好奇心较重,学习主动性不够,主要是靠自己的兴趣而学习。因此,我从学生的特点出发,明确了以学生为中心,利用适合学生年龄特点的方式来引导教学的各个环节;本节课采用多媒体辅助教学,一方面能生动清楚的反映图形,增加课堂的容量,同时有利于突出重点, 增强教学条理性,形象性,更好的提高课堂效率.

初一数学教案3

  多边形及其内角和

  知识点一:多边形的概念

  ⑴多边形定义:在平面内,由一些线段首位顺次相接组成的图形叫做________.

  如果一个多边形由n条线段组成,那么这个多边形叫做____________.(一个多边形由几条线段组成,就叫做几边形.)

  多边形的表示:用表示它的各顶点的大写字母来表示,表示多边形必须按顺序书写,可按顺时针或逆时针的顺序.如五边形ABCDE.

  ⑵多边形的边、顶点、内角和外角.

  多边形相邻两边组成的角叫做______________,多边形的边与它的邻边的延长线组成的角叫做________________.

  ⑶多边形的对角线

  连接多边形的不相邻的两个顶点的线段,叫做___________________.画一个五边形ABCDE,并画出所有的对角线.知识点二:凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的'直线,整个图形都在这条直线的______,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画CD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是______多边形.

  知识点二:正多边形

  各个角都相等,各条边都相等的多边形叫做_____________.

  探究多边形的对角线条数

  知识点三:多边形的内角和公式推导

  1、我们知道三角形的内角和为__________.

  2、我们还知道,正方形的四个角都等于____°,那么它的内角和为_____°,同样长方形的内角和也是______°.

  3、正方形和长方形都是特殊的四边形,其内角和为360度,那么一般的四边形的内角和为多少呢?

  4、画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?

  探究1:任意画一个四边形,量出它的4个内角,计算它们的和.再画几个四边形,?量一量、算一算.你能得出什么结论?能否利用三角形内角和等于180?°得出这个结论?结论:。

  探究2:从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图3,?请填空:

  (1)从五边形的一个顶点出发,可以引_____条对角线,它们将五边形分为_____个三角形,五边形的内角和等于180°×______.

  (2)从六边形的一个顶点出发,可以引_____条对角线,

  它们将六边形分为_____个三角形,六边形的内角和等于180°×______.探究3:一般地,怎样求n边形的内角和呢?请填空:

  从n边形的一个顶点出发,可以引____条对角线,它们将n边形分为____个三角形,n边形的内角和等于180°×______.

  综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则

  n边形的内角和等于______________.

  想一想:要得到多边形的内角和必需通过“___________定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

  知识点四:多边形的外角和

  探究4:如图8,在六边形的每个顶点处各取一个外角,?这些外角的和叫做六边形的外角和.六边形的外角和等于多少?

  问题:如果将六边形换为n边形(n是大于等于3的整数),结果还相同吗?多边形的外角和定理:.理解与运用

  例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.

  自我检测:

  (一)、判断题.

  1.当多边形边数增加时,它的内角和也随着增加.()

  2.当多边形边数增加时.它的外角和也随着增加.()

  3.三角形的外角和与一多边形的外角和相等.()

  4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.()

  5.四边形的四个内角至少有一个角不小于直角.()

  (二)、填空题.

  1.一个多边形的每一个外角都等于30°,则这个多边形为

  2.一个多边形的每个内角都等于135°,则这个多边形为

  3.内角和等于外角和的多边形是边形.

  4.内角和为1440°的多边形是

  5.若多边形内角和等于外角和的3倍,则这个多边形是边形.

  6.五边形的对角线有

  7.一个多边形的内角和为4320°,则它的边数为

  8.多边形每个内角都相等,内角和为720°,则它的每一个外角为

  9.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠.

  10.四边形的四个内角中,直角最多有个,钝角最多有锐角最

  (三)解答题

  1、一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n边形呢?

  2、在每个内角都相等的多边形中,若一个外角是它相邻内角的则这个多边形是几边形?

  3、若一个多边形的内角和与外角和的比为7:2,求这个多边形的边数。

  4、一个多边形的每一个内角都等于其相等外角的

  5.一个多边形少一个内角的度数和为2300°.

  (1)求它的边数;(2)求少的那个内角的度数.

初一数学教案4

  学习目标

  1.理解平行线的意义两条直线的两种位置关系;

  2.理解并掌握平行公理及其推论的内容;

  3.会根据几何语句画图,会用直尺和三角板画平行线;

  学习重点

  探索和掌握平行公理及其推论.

  学习难点

  对平行线本质属性的理解,用几何语言描述图形的性质

  一、学习过程:预习提问

  两条直线相交有几个交点?

  平面内两条直线的位置关系除相交外,还有哪些呢?

  (一)画平行线

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"画"。

  3、请你根据此方法练习画平行线:

  已知:直线a,点B,点C.

  (1)过点B画直线a的平行线,能画几条?

  (2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  (二)平行公理及推论

  1、思考:上图中,①过点B画直线a的平行线,能画 条;

  ②过点C画直线a的平行线,能画 条;

  ③你画的直线有什么位置关系? 。

  ②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

  二、自我检测:

  (一)选择题:

  1、下列推理正确的是 ( )

  A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

  C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

  2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

  A.0个 B.1个 C.2个 D.3个

  (二)填空题:

  1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的.直线有且只有 条。

  2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

  (1)L1与L2 没有公共点,则 L1与L2 ;

  (2)L1与L2有且只有一个公共点,则L1与L2 ;

  (3)L1与L2有两个公共点,则L1与L2 。

  3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

  4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

  三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

初一数学教案5

  教学内容分析

  教育不只是一种简单的“告诉”。学生拥有自己的独立思考水平和认知系统。当他们遇到一个新的待解决的问题情境时,他们会自觉而主动地从自己已有的知识架构和认知经验中摸索、收集、调动处理问题的方法和策略。三角形边的关系这一内容是新教材新增加的内容,并安排在第二学段。通过这一内容的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础。

  根据新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。根据这一教学内容在教材中所处的地位与作用,以及新课标的要求,我认为设计这节课的理念是:活动参与、自主建构,联系生活、应用数学。

  教学目标

  知识目标

  知道和理解“三角形任意两边的和大于第三边”,能用它解释一些生活现象,解决一些简单的生活问题。

  能力目标

  通过动手操作、小组验证,体验探索三角形边的关系的过程,培养猜测意识和自主探索、合作交流的能力。

  情感目标

  经历探究、发现、验证“三角形任意两边的和大于第三边”的过程,体验合作学习和数学学习的快乐。

  教学重点

  三角形三边关系的实验与探究

  教学难点

  三角形三边关系的探究过程。

  教学关键

  使学生理解三角形边的关系

  教学准备

  课件、三根小棒、三边关系试验报告单每组四根小棒

  教学方法

  自主探究小组讨论

  课程类型

  学科课程

  教学过程

  活动的组织与实施(含教师活动和学生活动)

  设计意图

  时间分配

  一、复习旧知,导入新课

  我手上拿的是什么?(三角板)它是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。

  复习旧的知识,使新旧知识之间有很好的连接

  2分钟

  二、动手操作,发现问题

  师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?

  生:三角形。

  师:谁愿意上来围一围?围的时候要注意小棒首尾相连。

  师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)

  三、猜想验证,发现规律

  师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?

  生:换一根小棒

  师:怎样换?同学们说的都是你们的猜想(课件演示猜想1)

  1、学法指导师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)操作要求:(1)、2人一组合作完成四种拼法(2)、围三角形时要注意首尾相连。(3)、完成后,填写好活动记录表准备交流

  2、动手操作,寻找规律(师巡视,并指导)

  3、交流汇报,探究规律。

  师:哪个小组愿意来汇报。小组上台展示,

  3厘米、8厘米、10厘米能

  3厘米、5厘米、10厘米不能3厘米、5厘米、8厘米不能5厘米、8厘米、10厘米能师:其它组有不同意见吗?

  师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?

  三根小棒要围成三角形,必须满足什么条件?

  通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?

  生:

  师:其他同学赞同吗?谁再来说一说。

  师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈 8)你很会观察。

  (课件演示)师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?

  生:3+5=8重合了不能

  师:是这样吗?(课件演示)请看大屏幕。

  师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。

  师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。

  师:那么怎样才能围成三角形呢?

  生:两条边加起来要大于第三边就行了。

  师(板书):两边之和大于第三边

  师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10看起来是这样的。

  3)师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?

  生:有一种不符合就不行了

  师:看来只是其中的两条边之和大于第3条边是不完整的

  生1:加“任何”、“任意”

  生2:其他两边之和都大于第三条边。

  生3:无论哪两条边之和都要大于第三边。

  4、归纳小结

  师:看来只是其中的两条边之和大于第3条边是不完整的,

  师:这句话概括说就是:任意两边之和大于第三边(板书:任意)师:是这样吗?再挑选一组能围成三角形的三条边,来验证:生:3+4>5、3+5>4、4+5>3,师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)

  四、运用结论,加深理解

  师:我们已经知道三角形的三边关系,下面让我们来判断几道题目

  1、快速判断。

  3cm、5cm、() 4cm

  7cm、4cm、() 2cm

  6cm、3cm、() 1cm

  2cm、3cm、() 3cm

  师:为什么围不成?你是怎么判断的?

  2、出示P82例3图

  这是小明上学的路线图,同学们仔细看一看,他可以怎样走?

  3、这几条路中,哪条最近?这是为什么呢?

  老师在生活中还看到了这么一种现象:(课件演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?师:今天你有什么收获?

  其实数学就在我们身边,只要你平时多观察、多动脑,你一定能成为数学的好朋友。

  开发学生的动手能力和观察能力,在实践中发现问题并尝试找出问题的原因反复试验,加深同学的理解,猜想验证,发现其内在规律增强小组合作意识以及动手操作能力锻炼同学发言及表达能力

  通过小组讨论,发现问题,尝试找出原因,激发学生自主学习的精神在教学过程中不断引导,自主发现问题,加深对知识的理解和巩固运用练习,巩固学习的知识,加深印象

  3分钟5分钟7分钟3分钟5分钟10分钟5分钟

  板书设计

  三角形边的关系两边之和大于第三边

  教学反思

  本节课巩固应用部分的三个环节,是从学生的.学习认知规律出发,遵循从易到难的原则,分巩固性练习、应用性练习、拓展性练习三个层次。并与学生身边的生活例子相结合,既能体现数学教学生活化的新理念,又能有效地激发学生的学习兴趣,拓展学生的思维,提高学生的数学学习能力。

  以上教学设计,以学生的学习心理为基础,通过简单的动手操作,创设有效的“数学问题情境”,激发学生强烈的探究欲望。通过引导学生大胆的猜想,积极的验证和合理的归纳,使学生学到新知识的同时,经历数学知识的形成过程,这样的教学将会有效地激活了学生的数学思维,使学生在知识、能力,以及情感态度等方面都将得到较好的发展。又通过摆图形,寻找数据间的关系;又通过数据的整理和分析,确定图形的存在性和图形具有的性质,使数形紧密结合,渗透了数形结合的思想方法;同时对不同类型三角形都具有的共性归纳总结,渗透了数学的归纳思想。教学中始终以这一核心的思想为教学灵魂,时时渗透,处处体现。

初一数学教案6

  教学目标

  (一)教学知识点

  1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

  3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

  (二)能力训练要求

  1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

  2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的.数形结合思想.

  3.通过学生共同观察和讨论,培养大家的合作交流意识.

  (三)情感与价值观要求

  1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

  2.具有初步的创新精神和实践能力.

  教学重点

  1.体会方程与函数之间的联系.

  2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.

  3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

  教学难点

  1.探索方程与函数之间的联系的过程.

  2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.

  教学方法

  讨论探索法.

  教具准备

  投影片二张

  第一张:(记作§2.8.1A)

  第二张:(记作§2.8.1B)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.

  现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

  通过学生的讨论,使学生更清楚以下事实:

  (1)分解因式与整式的乘法是一种互逆关系;

  (2)分解因式的结果要以积的形式表示;

  (3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;

  (4)必须分解到每个多项式不能再分解为止。

  活动5:应用新知

  例题学习:

  P166例1、例2(略)

  在教师的引导下,学生应用提公因式法共同完成例题。

  让学生进一步理解提公因式法进行因式分解。

  活动6:课堂练习

  1.P167练习;

  2.看谁连得准

  x2-y2 (x+1)2

  9-25 x 2 y(x -y)

  x 2+2x+1 (3-5 x)(3+5 x)

  xy-y2 (x+y)(x-y)

  3.下列哪些变形是因式分解,为什么?

  (1)(a+3)(a -3)= a 2-9

  (2)a 2-4=( a +2)( a -2)

  (3)a 2-b2+1=( a +b)( a -b)+1

  (4)2πR+2πr=2π(R+r)

  学生自主完成练习。

  通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

  活动7:课堂小结

  从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

  学生发言。

  通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

  活动8:课后作业

  课本P170习题的第1、4大题。

  学生自主完成

  通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

  板书设计(需要一直留在黑板上主板书)

  15.4.1提公因式法例题

  1.因式分解的定义

  2.提公因式法

初一数学教案7

  学习目标:

  1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。

  2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会具体-抽象-具体的数学学习过程。

  3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。

  学习重点:理解有序数对的概念,用有序数对来表示位置。

  学习难点:理解有序数对是有序的并用它解决实际问题,

  学习过程:

  一、 学前准备

  预习疑难: 。

  二、 探索与思考

  1、 观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?

  2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?

  (1)如何找到6排3号这个座位呢?

  (2)在电影票上6排3号与3排6号有什么不同?

  (3)如果将6排3号简记作(6,3),那么3排6号如何表示?

  (4)(5,6)表示什么含义?(6,5)呢?

  3、结论:①可用排数和列数两个不同的数来确定位置;

  ②排数和列数的先后顺序对位置有影响。

  4、概念:

  有序数对:用含有 的词表示一个 位置,其中各个数表示不同的含义,我们把这种 两个数a与b组成的数对,叫做有序数对,记作(a,b)。

  三、 理解与运用

  (一)用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的地点.你有没有见过用其他的方式来表示位置的?

  (二)应用

  例1 如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?

  分析:图中确定点用前一个数表示大街,后一个数表示大道。

  解:其他的路径可以是:

  (3,5)(4,5)(4,4)(5,4)(5,3);

  (3,5)( ,5)(4,4)( , )(5,3);

  (3,5)( , )( , )( , )(5,3);

  四、学习体会:

  1、 本节课你有哪些收获?你还有哪些疑惑?

  2、 预习时的疑难解决了吗?

  五、自我检测

  1、小游戏:

  怪兽吃豆豆是一种计算机游戏,图中的标志表示怪兽先后经过的几个位置. 如果用(1,2)表示怪兽按图中箭头所指路线经过的第3个位置. 那么你能用同样的方表示出图中怪兽经过的其他几个位置吗?

  2、如图,马所处的位置为(2,3).

  (1) 你能表示出象的位置吗?

  (2) 写出马的下一步可以到达的位置。

  3、右图是国际象棋的棋盘,E2在什么位置?又如何描述A、B、C的位置?

  4、有趣玩一玩:

  中国象棋中的马颇有骑士风度,自古有马踏八方之说,如图六(1),按中国象棋中马的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的`走法就象一步从日字形长方形的对角线的一个端点到另一个端点,不能多也不能少。

  要将图六(2)中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)(六,5)(四,4)(五,2)(六,4)

  (1) 下面提供另一走法,请填上所缺的一步:(四,6)(五,8)(七,7)___(六,4)

  (2)请你再给出另一种走法(要与前面的两种走法不完全相同即可,步数不限),你的走法是:

  六、方法归类

  常见的确定平面上的点位置常用的方法

  (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

  (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

  如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。

  1、如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:

  (1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么

  数据?

  (2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

  (3)要确定每艘敌舰的位置,各需要几个数据?

  2、如图是某城市市区的一部分示意图,对市政府来说:

  (1) 北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?

  (2) 火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?

  课题:6.1.2平面直角坐标系(第一课时) 课型:新授

  学习目标:1.理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念.

  2.认识并能画出平面直角坐标系.

  3.能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置

  学习重点:根据点的坐标在直角坐标系中描出点的位置。

  学习难点:探索特殊的点与坐标之间的关系。

  学具准备:坐标纸,三角板

  学习过程:

  一、学前准备

  1、预习疑难: 。

  2、填空:①规定了 、 、 的直线叫做数轴。

  ②数轴上原点及原点右边的点表示的数是 ;原点左边的点表示的数是 。

  ③画数轴时,一般规定向 (或向 )为正方向。

  二、探索与思考

  (一)平面直角坐标系

  1、观察:在数轴上,点A的坐标为 ,点B的坐标为 。

  即:数轴上的点可以用一个 来表示,这个数叫做这个点的 。

  反过来,知道数轴上的一个点的坐标,这个点在数轴上的位置也就确定了。

  2、思考:能不能有一种办法来确定平面内的点的位置呢?

  3、平面直角坐标系概念:

  平面内画两条互相 、原点 的数轴,组成平面直角坐标系.

  水平的数轴称为 或 ,习惯上取向 为正方向;

  竖直的数轴为 或 ,取向 为正方向;

  两个坐标轴的交点为平面直角坐标系的 。

  4、点的坐标:

  我们用一对 表示平面上的点,这对数叫 。表示方法为(a,b).a是点对应 上的数值,b是点在 上对应的数值。

  (二)如何在平面直角坐标系中表示一个点

  1、以A(2,3)为例,表示方法为:

  A点在x轴上的坐标为 ,A点在y轴上的坐标为 ,

  A点在平面直角坐标系中的坐标为(2,3),记作:A(2,3)

  2、方法归纳:由点A分别向X轴和 作垂线。

  3、强调:X轴上的坐标写在前面。

  4、活动:你能说出点B、C、D的坐标吗?

  注意:横坐标和纵坐标不要写反。

  5、思考归纳:原点O的坐标是( , ),

  x轴上的点纵坐标都是 , y轴上的横坐标都是 。

  横轴上的点坐标为(x,0) ,纵轴上的点坐标为(0,y)

  (三)象限:

  1、 建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

  第二象限(,+) 第一象限(+,+)

  第三象限(,) 第四象限(+,)

  2、注意:坐标轴上的点不属于任何一个象限

  3、你能说出上面例子中各点在第几象限吗?

  三、理解与运用

  1、在游戏中学数学:以某同学为原点,以他所在的横排为x轴,以这一组为y轴,相邻两个同学之间的距离为单位长度建立坐标系.

  (1)下面大家一起找一找自己在坐标系中的坐标分别是什么?

  (2)下面这些坐标分别表示谁的位置? A(2,1);B(2,-1);C(-1,1);D(0,3);E(0,-1)

  2、例 写出图中的多边形ABCDEF各个顶点的坐标.

  (1)点B与点C的纵坐标相同,线段BC的位置有什么特点?

  (2)线段CE的位置有什么特点?

  (3)坐标轴上点的坐标有什么特点?

  3、归纳:点的位置及其坐标特征:

  ①.各象限内的点;

  ②.各坐标轴上的点;

  ③.各象限角平分线上的点;

  ④.对称于坐标轴的两点;

  ⑤.对称于原点的两点。

  4、对应练习:教材43页1、2题(在书上完成)。

  四、学习体会:

  1、本节课你有哪些收获?你还有哪些疑惑?

  2、预习时的疑难解决了吗?

  五、自我检测:

  (一)选择题:

  1、若点M(x,y)满足x+y=0,则点M位于( )。

  (A)第一、三象限两坐标轴夹角的平分线上; (B)x轴上;

  (C) x轴上; (D)第二、四象限两坐标轴夹角的平分线上。

  2、第四象限中的点P(a,b)到x轴的距离是( )

  (A)a (B)-a (C)-b (D)b

  3、点A(-m,1-2m)关于原点对称的点在第一象限,那么m的取值范围是( )。

  (A)m(B)m (C)m (D)m0 。

  (二)填空题:

  1、点P(3,-4)关于原点的对称点的坐标为___________;关于x轴的对称点的坐标为___________;关于y轴的对称点的坐标为____________

  2、已知A(a,6),B(2,b)两点。

  ①当A、B关于x轴对称时,a=_____;b=_____。

  ②当A、B关于y轴对称时,a=_____;b=_____。

  ③当A、B关于原点对称时,a=_____;b=_____。

  六、解答题

  1.在下图中,分别写出八边形各个顶点的坐标.

  2.下图是画在方格纸上的某岛简图.

  (1)分别写出地点A,L,O,P,E的坐标;

  (2)(4,7)(5,5)(2,5)所代表的地点分别是什么?

初一数学教案8

  一、教学目的

  通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

  二、重点、难点

  1、重点:探索这些实际问题中的`等量关系,由此等量关系列出方程。

  2、难点:找出能表示整个题意的等量关系。

  三、教学过程

  (一)、复习

  1、储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

  本利和=本金×利息×年数+本金

  2、商品利润等有关知识。

  利润=售价—成本; =商品利润率

  (二)、新授

  问题4:小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

  四、巩固练习

  教科书第15页,练习1、2。

  五、小结

  当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

  六、作业

  教科书第16页,习题6.3.1,第4、5题。

初一数学教案9

  教学目标

  使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算;

  能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力;

  经历运用计算器探求数学规律的过程,发展合情推理能力。

  教学难点

  用有理数估计一个无理的大致范围。

  知识重点

  用有理数估计一个无理的大致范围。

  对于计算器的使用,在教学中采用学生自己阅读计算器的说明书、自己操作练习来掌握用计算器进行开立方运算的方法,并让学生互相交流,让学生亲身体会到利用计算器不仅能给运算带来很大的`方便,也给探求数量间的关系与变化带来方便。在教学过程中,教师要关注学生能否通过阅读,掌握用计算器进行开立方运算的简单操作;能否利用计算器探究数量间的关系,从而寻找出数量的变化关系。

  使用计算器进行复杂运算,可以使学生学习的重点更好地集中到理解数学的本质上来,而估算也是一种具有实际应用价值的运算能力,在本节课的课堂教学中综合运用笔算、计算器和估算等培养学生的运算能力。

初一数学教案10

  一、教学目标

  1.通过七巧板的制作,拼摆等活动,进一步丰富对平行,垂直及角等有关内容的认识,积累数学活动经验。

  2.能用适当的图形和语言表示自己的思考结果。

  二、教学重点和难点

  本堂内容的重点是七巧板的制作和拼摆,难点是拼图所要表现的几何图形,对已学过的平行,垂直及角等有关内容的有机联系和语言表达。

  三、教学手段

  引导活动讨论

  引导:意在教师讲解七巧板的历史,七巧板制作的方法。

  活动:人人参与制作七巧板,拼摆七巧板的图案。

  讨论:对自己所拼摆的图形与同伴交流,与全班同学交流(利用多媒体工具)与老师进行交流。

  四、教学方法

  启发式教学

  五、教学过程

  1 创设情景,引入新课

  先用多媒体显示各种已拼摆好的动物,交通工具,植物等等然后介绍它是由怎样的一副拼板拼摆而成的(不一定要七巧板)。紧接着就介绍七巧板的历史,制作方法,让学生制作一副七巧板,并涂上不同的颜色。

  2 合作交流,探索新知

  利用所做的七巧板拼出两个不同的图案,并与同伴交流,与全班同学交流,与老师交流。

  (1) 你的拼图用了什么形状的板?你想表现什么?

  (2) 在你的拼出的图案中,指出三组互相平行或垂直的线段,并将它们间的关系表示出来。

  (3) 在你拼出的图案中,找出一个锐角、一个直角、一个钝角,并将它们表示出来,它们分别是多少度。

  通过学生的展示,教师作适时的评价,树立榜样,培养学生之间的竞争意识。

  3 范例教学

  介绍老师制作的3副游戏板,并用多媒体显示十几种的拼摆图案,通过生动有趣的图案,激发学生的创造欲望,提出你还有材料吗?有信心凭自己的智慧制作一副游戏板吗?意在充分发挥学生的创造能力、想象能力、合作交流能力(可由附近的'同学四人小组制作完成)。

  4 反馈练习

  由四人小组制作的游戏板,拼摆二个不同图案,利用多媒体,展示给全体同学,用语言表示拼图所表现的内容,与所学的知识的联系,呈现平行,垂直及角的有关知识。

  5 归纳小结

  通过制作七巧板及游戏板进一步学会了画平行线段、垂线段、找线段中点的方法,通过拼摆丰富了对平行、垂直及角等有关内容的认识,积累数学活动的经验,提高了空间观念和观察、分析、概括表达的能力。

  六、练习设计

  利用20cm20cm的硬纸板做一副游戏板,利用它拼出5个自己喜欢的图案,并把它画下来,布置教室的环境。

  七、板书设计

  4.7有趣的七巧板

  (一)知识回顾 (三)例题解析 (五)课堂小结

  (二)观察发现 (四)课堂练习 练习设计

初一数学教案11

  教学目标:

  了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。

  教学重点:

  对概念的理解及对数据收集整理。

  教学难点:

  总体概念的理解和随机抽样的合理性。

  教学过程:

  一、情景创设,引入新课

  上节课我们对全班同学对自己所喜爱的学科进行了调查,那么如果要对某校20xx名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?

  二、新课

  1.抽样调查的意义

  在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。

  抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。

  2.总体、个体、样本、样本容量的意义

  总体:所要考察对象的全体。

  个体:总体的每一个考察对象叫个体。

  样本:抽取的部分个体叫做一个样本。

  样本容量:样本中个体的数目。

  3.抽样的注意事项

  ①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查20xx名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映20xx名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.

  ②抽取的.样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在20xx名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.

  总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.

  下面是某同学抽取样本数量为100的调查节目统计表:

  表中的数据信息也可以用条形统计图或扇形统计图来描述。

初一数学教案12

  一内容和内容解析

  1.内容

  二元一次方程,二元一次方程组概念

  2.内容解析

  二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。直接设两个未知数,列方程,方程组更加直观,本章就从这个想法出发引入新内容.

  本节课一以引言中的问题开始,引导学生思考“问题中包含的等量关系”以及“设两个未知数后如何用方程表示等量关系”.继而深入探究二元一次方程,二元一次方程组的解.

  本节课的教学重点是:二元一次方程,二元一次方程组的概念

  二、目标和目标解析

  1.教学目标

  (1)会设两个未知数后用方程表示等量关系列二元一次方程,二元一次方程组.

  (2)理解解二元一次方程,二元一次方程组的解的概念.

  2.教学目标解析

  (1)学生能掌握设两个未知数后,分析问题中包含的等量关系”以及“用方程表示等量关系”.

  (2)要让学生经历探究的过程.体会二元一次方程组的解,二元一次方程组的解是实际意义.

  三、教学问题诊断分断

  1.学生过去已遇到二元问题,但只设一个未知数,再表示出另一个未知数,用一元一次方程解决.现在如何引导学生设两个未知数。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现一元一次方程向二元一次方程组转化的思路

  2.结合一元一次方程的解向二元一次方程,二元一次方程组的解转化,学习知识的迁移.

  本节教学难点:

  1.把一元向二元的转化,设两个未知数.结合实际问题进行分析,列二元一次方程,二元一次方程组.

  2.二元一次方程组的解的意义

  四、教学过程设计

  1.创设情境,提出问题

  问题1篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

  师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

  x=6,则胜6场,负4场

  教师追问:你能根据两个问题中的等量关系设两个未知数列出二个反映题意的方程吗?

  师生活动:学生回答:能。设胜x场,负y场。根据题意,得x+y=10 , 2x+y=16.

  教师归纳:像这样,每个方程都含有两个未知数(x和y)并且含有未知数的项的次数都是1的方程叫做二元一次方程。

  设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,转变思路,再列二元一次方程,为后面教学做好了铺垫.

  问题2:对比两个方程,你能发现它们之间的关系吗?

  师生活动:通过对实际问题的分析,认识方程组中的两个x,y都是这个队的胜,负场

  数,它们必须同时满足这两个方程,这样,连在一起写成

  就组成了一个方程组。这个方程组中每个方程都含有两个未知数(x和y)并且含有未知数的项的次数都是1,像这样的方程组叫做二元一次方程组。

  设计意图:从实际出发,引入方程组的概念,切合学生的认知过程。

  问题3:探究

  满足了方程①,且符合问题的`实际意义的x,y的值有哪些?把它们填入表中

  x

  y

  上表中哪些x,y的值还满足方程②?

  学生小组合作完成。

  教师归纳:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.一般地,二元一次方程组两个方程的公共解,叫做二元一次方程组的解

  设计意图:类比一元一次方程的解,学习二元一次方程的解,二元一次方程组的解。

  2.应用新知,提升能力

  例1把一个长20m的铁丝围成一个长方形。如果一边长为xm,它的邻边为ym .求

  (1) x和y满足的关系式;

  (2)当x=15时,y的值;.

  (3)当y=12时,x的值

  师生活动:小组讨论,然后每组各派一名代表上黑板完成.

  设计意图:借助本题,充分发挥学生的合作探究精神通过比较,进一步体会二元一次方程及二元一次方程的解的意义.

  3加深认识,巩固提高

  练习:一条船顺流航行,每小时行20 km,逆流航行,每小时行16km .求船在静水中的速度和水的流速。

  师生活动:分两小组讨论.一组用一元一次方程解决,另一组尝试列方程组(不要求求解),为解二元一次方程组埋下伏笔。然后每组各派一名代表上黑板完成。

  设计意图:提醒并指导学生要先分析问题的两个未知数关系,尝试结合题意,寻找到两个等量关系,列方程组。体会直接设两个未知数,列方程,方程组更加直观,4归纳总结

  师生活动:共同回顾本节课的学习过程,并回答以下问题

  1.二元一次方程,二元一次方程组的概念

  2.二元一次方程,二元一次方程组的解的概念.

  3.在探究的过程中用到了哪些思想方法?

  4.你还有哪些收获?

  设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.

初一数学教案13

  教学目标:

  1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

  2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的.推理的意识及能力。

  重点难点:

  重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

  难点:勾股定理的发现

  教学过程

  一、创设问题的情境,激发学生的学习热情

  导入课题

  二、做一做

  出示投影3提问:

  1、图1—3中,A,B,C之间有什么关系?

  2、图1—4中,A,B,C之间有什么关系?

  3、从图1—1,1—2,1—3,1|—4中你发现什么?

  学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

  三、议一议

  1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

  2、你能发现直角三角形三边长度之间的关系吗?

  在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c,那么我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

  3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

  四、想一想

  这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

初一数学教案14

  一、教学目的

  让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。

  二、重点、难点

  1、重点:通过分析图形问题中的数量关系,建立方程解决问题。

  2、难点:找出“等量关系”列出方程。

  教学过程

  三、复习提问

  1、列一元一次方程解应用题的步骤是什么?

  2、长方形的周长公式、面积公式。

  四、新授

  问题3、用一根长60厘米的铁丝围成一个长方形。

  (1)使长方形的宽是长的专,求这个长方形的长和宽。

  (2)使长方形的宽比长少4厘米,求这个长方形的面积。

  (3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的.长方形吗?

  实际上,如果两个正数的和不变,当这两个数相等时,它们的积,通过以后的学习,我们就会知道其中的道理。

  五、巩固练习

  教科书第14页练习1、2。

  六、小结

  运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。

  七、作业

  教科书第16页,习题6.3.1第1、2、3。

初一数学教案15

  一、教学目标

  (一)知识教学点

  1.了解;方程算术解法与代数解法的区别。

  2.掌握:代数解法解简易方程。

  (二)能力训练点

  1.通过代数解法解简易方程的学习使学生认识问题头脑不僵化,培养其创造性思维的能力。

  2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。

  (三)德育渗透点

  1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。

  2.渗透化“未知”为“已知”的化归思想。

  (四)美育渗透点

  通过用新的方法解简易方程,使学生初步领略数学中的方法美。

  二、学法引导

  1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。

  2.学生学法:识记→练习反馈

  三、重点、难点、疑点及解决办法

  1.重点:代数解法解简易方程。

  2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。

  3.疑点:代数解法解简易方程的依据。

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片。

  六、师生互动活动设计

  教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。

  七、教学步骤

  (一)创设情境,复习导入

  (出示投影1)

  引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?

  师:该问题如何解决呢?请同学们考虑好后写在练习本上.

  学生活动:解答问题,一个学生板演.

  师生共同订正,对照板演学生的做法,师问:有无不同解法?

  学生活动:回答问题,一个学生板演,其他学生比较两种解法.

  问;这两种解法有什么不同呢?

  学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).

  师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法.小学学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着学习的逐步展开,遇到的`问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来学习.当然,在开始学习方程时,还是要从简单的方程入手,即简易方程.引出课题.

  [板书]1.5简易方程

  (二)探索新知,讲授新课

  师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?

  学生活动:踊跃举手,回答问题。

  [板书] 含有未知数的等式叫方程

  接问:你还知道关于方程的其他概念吗?

  学生活动:积极思考并回答。

  [板书] 方程的解;解方程

  追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,

  师:好!这是小学学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。

  [板书]

  学生活动:相互讨论达成共识(合理。因把x=5 代入方程3x+9=24 ,左边=右边,所以x=5是方程的解)

  【教法说明】先复习小学有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。

  师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。

  (三)尝试反馈,巩固练习

  例1 解方程(x/2)-5=11

  问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?

  学生活动:思考并回答.(师板书)

  问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?

  学生活动:思考并回答(师板书)

  解:方程两边都加上5,得

  (x/2)-5+5=11+5

  x/2=16

  (x/2)*2=16*2

  x=32

  问:这个结果正确吗?请同学们自己检验.

  学生活动:练习本上检验并回答问题.(正确)

  师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.

  学生活动:回答这两个问题.

【初一数学教案】相关文章:

初一数学教案11-04

初一数学教案04-27

【荐】初一数学教案12-04

【推荐】初一数学教案12-03

【热门】初一数学教案12-12

初一数学教案【荐】12-13

初一数学教案【推荐】12-11

【热】初一数学教案12-12

初一数学教案【精】12-14