人教版数学教案15篇【必备】
作为一位杰出的教职工,时常会需要准备好教案,编写教案有利于我们科学、合理地支配课堂时间。来参考自己需要的教案吧!以下是小编为大家整理的人教版数学教案,仅供参考,欢迎大家阅读。
人教版数学教案1
教学目标
1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2。初步学会用负数表示一些日常生活中的实际问题。
3。能借助数轴初步理解正数、0和负数之间的关系。
重点难点
负数的意义和数轴的意义及画法。
教学指导
1。通过丰富多彩的生活情境,加深学生对负数的认识。
负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。
2。把握好教学要求。
对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。
3。培养学生多角度观察问题,解决问题的能力。
教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。
课时安排
共分3课时
教学内容
负数的.初步认识
(1)(教材第2页例1)。
教学目标
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
重点难点体会负数的重要性。
教学准备多媒体课件。
情景导入
1。教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)
2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)
3。引出课题并板书:负数的初步认识
(1) 新课讲授教学教材第2页例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢用手势告诉大家好吗
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。
课堂作业
完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。
答案:—18℃温度低。
课堂小结
通过这节课的学习,你有什么收获
课后作业
完成练习册中本课时的练习。
人教版数学教案2
设计说明
“百分数的意义和读写法”是在学生学习了整数、小数以及分数的基础上进行教学的,百分数与分数有着密切的联系。基于以上认识,教学设计主要突出以下几点:
1.以实际生活情境为载体,感知百分数的意义,培养学生的思维能力。
数学知识来源于生活,又服务于生活。百分数的知识与现实生活有着密切的联系,所以,在引入课题和百分数意义的教学中,教学内容的选择都要紧密联系学生的生活实际,而且通过课前对百分数的收集,使学生认识到百分数在生产、生活中的广泛应用。同时,以实际生活情境为载体,充分挖掘学生学习的潜能,使学生积极地参与到数学活动中去,培养学生的思维能力。
2.注重新旧知识的对比和迁移,体现类比的思想方法。
对比和迁移能使学生容易接受新知识,防止新旧知识混淆,提高学生的辨别能力,从而扎实有效地掌握数学知识。教学百分数的意义是在学生已掌握了分数的意义的基础上进行的,教学设计中通过与分数的意义进行对比,明确分数的意义与百分数的意义的区别,更加突出百分数的意义是表示一个数是另一个数的百分之几的数,表示的是两个数之间的倍比关系。
课前准备
教师准备 PPT课件
学生准备 学生课前收集的`生活中有关百分数的资料
教学过程
⊙情境导入
1.出示课件。
师:同学们,看了这段资料,你发现了什么?你有什么感想?
引导学生发现百分数的同时,让学生感受到我们国家的经济发展水平正在逐步提高。
师:你知道这些数叫什么数吗?还在哪些地方见过这样的数?
学生讨论后,教师明确:像上面这样的数,如14%、65.5%、120%……叫做百分数。
2.引导学生交流课前收集到的百分数的资料。
师:同学们收集到的百分数资料可真多啊!看来百分数在生产、生活中的应用非常广泛。那人们为什么喜欢用百分数?用百分数有什么好处?百分数有什么含义呢?带着这样的问题,让我们一起走进今天的数学课堂
人教版数学教案3
新课标人教版六年级数学上册全册教案
一、教材分析:
新课标六年级人教版这一册教材主要包括以下内容:《位置》,《分数乘法》,《分数除法》,《圆》,《百分数》,《统计》,《数学广角》和《数学实践活动》等。分数乘法和除法,圆,百分数等是本册教材的重点教学内容。在数与代数方面,这一册教材安排了分数乘法、分数除法、百分数三个单元。分数乘法和除法的教学是在前面学习整数、小数有关计算的基础上,培养学生分数四则运算能力以及解决有关分数的实际问题的能力。分数四则运算能力是学生进一步学习数学的重要基本技能,应该让学生切实掌握。百分数在实际生活中有着广泛的应用,理解百分数的意义、掌握百分数的计算方法,会解决简单的有关百分数的实际问题,也是小学生应具备的基本数学能力。在空间与图形方面,这一册教材安排了位置、圆两个单元。位置的教学在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生经历初步的数学化的过程,理解并学会用数对表示位置;通过对曲线图形——圆的特征和有关知识的探索与学习,初步认识研究曲线图形的基本方法,促进学生空间观念的进一步发展。在统计方面,本册教材安排的是扇形统计图。在前面学习条形统计图和折线统计图的基础上,学会看懂扇形统计图,认识扇形统计图的特点,进一步体会统计在生活和解在用数学解决问题方面,教材一方面结合分数乘法和除法、百分数、圆、统计等知识,教学用所学的知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用假设的方法解决问题的有效性,进一步体会用代数方法解决问题的优越性,感受数学的魅力,发展学生解决问题的能力。本册教材根据学生所学习的数学知识和生活经验,安排了两个数学综合应用的实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学应用意识和实践能力。决问题中的作用,发展统计观念。
二、教学目标
本册教材的教学目标是,使学生:
1.理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。
2.理解倒数的意义,掌握求倒数的方法。
3.理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。
4.掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。
5.知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。
6.能在方格纸上用数对表示位置,初步体会坐标的思想。
7.理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分
数的简单实际问题。
8.认识扇形统计图,能根据需要选择合适的统计图表示数据。
9.经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
10.体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。
11.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
12.养成认真作业、书写整洁的良好习惯。
三、教学重点:分数乘法和除法、圆、百分数。
四、教学难点:分数乘法和除法、鸡兔同笼问题。
五、课时安排:
各部分教学内容教学课时大致安排如下,教学时可以根据本班具体情况适当灵活掌握。
1、位置(2课时)
2、分数乘法(12课时)
3、分数除法(13课时)
4、圆(8课时)
5、百分数(15课时)
6、统计(2课时)
7、数学广角(2课时)
8、总复习(4课时)
第一单元位置
单元目标:
1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。
2.使学生能在方格纸上用数对确定位置。
单元重点:能用数对表示物体的位置。
单元难点:能用数对表示物体的位置,正确区分列和行的顺序。
1、位置
教学目标:
1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。
2.使学生能在方格纸上用数对确定位置。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的位置,正确区分列和行的顺序。
一、导入
1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中
的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新授
1、教学例1
(1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的
方法来表示其他同学的位置吗?
(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。
按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、小结例1:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。
如果这两个数据的顺序不同,那么表示的位置也就不同。
3、练习:
(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
4、教学例2
(1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看
在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的.位置。
(2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(3)同桌讨论说出其他场馆所在的位置,并指名回答。
(4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”
的位置。(投影讲评)
三、练习
1、练习一第4题
(1)学生独立找出图中的字母所在的位置,指名回答。
(2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。
2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置
3、练习一第6题
(1)独立写出图上各顶点的位置。
(2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向
上平移5个单位,位置在哪里?哪个数据也发生了改变?
(3)照点A的方法平移点B和点C,得出平移后完整的三角形。
(4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是
第一个数据发生改变,上移时行也就是第二个数据发生改变)
四、总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?
五、作业
练习一第1、2、5、7、8题。
教学反思:
第二单元分数乘法
单元目标:
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
4、使学生理解倒数的意义,掌握求倒数的方法。
单元重点:
分数乘法的意义和计算法则。
单元难点:
1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、分数乘法计算法则的推导。
1、分数乘法
(1)分数乘整数
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分
数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生
的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步
感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。教学难点:引导学生总结分数乘整数的计算法则。
教学过程:
一、复习
1.出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
人教版数学教案4
教学目标
1.知识与技能
领会运用完全平方公式进行因式分解的方法,发展推理能力.
2.过程与方法
经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.
3.情感、态度与价值观
培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的'应用能力.
重、难点与关键
1.重点:理解完全平方公式因式分解,并学会应用.
2.难点:灵活地应用公式法进行因式分解.
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的
教学方法
采用“自主探究”教学方法,在教师适当指导下完成本节课内容.
教学过程
一、回顾交流,导入新知
【问题牵引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知识迁移】
2.计算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【学生活动】从逆向思维的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例学习,应用所学
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.
三、随堂练习,巩固深化
课本P170练习第1、2题.
【探研时空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、课堂总结,发展潜能
由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在运用公式因式分解时,要注意:
(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.
五、布置作业,专题突破
人教版数学教案5
一、学习目标:
让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重点:能观察出多项式的公因式,并根据分配律把公因式提出来
难点:让学生识别多项式的公因式.
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的
课堂练习
1.写出下列多项式各项的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的'一般步骤.:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的
注意:(a-b)2=(b-a)2
六、作业
1、教科书习题
2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
人教版数学教案6
教学目标
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
教学重点及难点
会利用轴对称的知识画对称图形。
教学手段及方法
1、创设情景,引发思维。
2、组织讨论,深化思维。
3、加强练习,发展思维。
预习作业
1.欣赏P1的图片,你发现了这些图形有什么相同点和不同点?
2.同桌互相说说什么样的图形叫作轴对称图形?
3.仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?
4.试着在例2的格子图片上画一画
5.你能用预习到的知识用纸来折、剪出一个轴对称图形吗?
教学过程(集体备课可以用不同颜色笔在相应区域书写即可)
教师活动学生活动设计意图
一、复习引入:
(3)轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
二、例题1:
你能发现什么规律。
三、交流
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
四、教学画对称图形。
例题2:
(2) 在研究的基础上,让学生用铅笔试画。
(3) 通过课件演示画的全过程,帮助学生纠正不足。
五、练习:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流
你们还见过哪些轴对称图形?
用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,
(1)思考:
A、怎样画?先画什么?再画什么?
B、每条线段都应该画多长?
1.课内练习一 -----第1、2题。
2.课外作业: 通过丰富的轴对称图形与轴对称的`实例,让学生欣赏并体会轴对称,发展学生的审美能力、鉴赏能力,更激发了学习数学的兴趣
《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数
学学习活动的重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。
板书设计
轴 对 称
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
教学反思或后记(教学的成败得失、学生的信息反馈、今后的教学建议)
人教版数学教案7
设计说明
本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:
1、把新知融入到有趣的情境中,激发学生的学习兴趣。
在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的.学习兴趣,又达到了巩固强化的目的。
2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。
在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。
设计意图:
在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。
课前准备
教师准备PPT课件长方形纸
教学过程
(1)复习巩固,情境导入,激发兴趣
1、求下面每组数的公因数。
42和50 15和5 8和21 18和12
2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。
(2)认识约分
1、尝试“变分数”。
课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。
让学生了解“变化”的要求:
①这个分数要与的大小相等。
②这个分数的分子、分母要比的分子、分母小。
2、了解约分的概念。
①所变出的分数与原分数有什么关系?
②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
③请学生说一说所变的分数是怎样得来的。
观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。
3、认识最简分数。
①约分后的分子、分母能否再变小了?为什么?
②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。
4、说出几个最简分数,强化最简分数的概念。
(3)合作交流,总结方法
1、讨论:你能根据我们化简的过程找到约分的方法吗?
2、小结。
教师板书约分时一般采用的两种方法:
①逐步约分法。
如约分时,依次用12,18的公因数2和3去除,最后约分成。
②一次约分法。
如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。
3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。
人教版数学教案8
教学目标
1.通过具体的活动,认识方向与距离对确定位置的作用。
2.能根据任意方向和距离确定物体的位置。
3.发展学生的空间观念。
教学重点
用方向和距离描述物体的位置。
教学难点
对任意角度具体方向的准确描述。
教学过程
一、创设情境 生成问题
春季是运动的最好时节,我们同学们都很爱好运动,不久我校就会举行一次越野比赛,现在老师将越野图展现给大家。
二、探索交流 解决问题
1.出示越野图的.起点和终点位置。
2.如果你是一名运动员,你将从起点向什么方向行进?(方向标)加方向标有什么好处?为什么方向标画在起点的位置?(以起点为观测点)
3.自主探究,小组讨论,合作交流
例1的学习是让学生明确可以根据方向和距离两个条件确定物体的位置。教学时,可以与主题图的教学结合进行,通过情境使学生明确需要方向和距离两个条件才能确定物体的位置。活动中确定方向的具体方法可以让学生小组合作进行探索。
知道在出发点的东北方向就可以出发吗?如果这样会发生什么情况?这样确定方向准确吗?怎么样走会更加的准确?
准确的可以说是东偏北30°,那可以用北偏东60°这样表示吗?在说具体位置时,一般先说与物体所在方向离得较近(夹角较小)的方向。——靠近哪个方向就把那个方向放在前面。
(距离 1千米)如果没有距离又会怎样?
1号点在起点的东偏北30°的方向上,距离是 1千米。你学会表示了吗?
三、巩固练习 内化提高
做一做呈现了小明家附近几处建筑物的位置示意图,通过方向与距离的确定,使学生进一步明确确定方向的具体方法。
练习三第1、2题是相应的在地图上确定方向的练习。
四、回顾整理 反思提升
我们可以根据题目提供的方向和距离这两个条件来确定物体的位置。首先要确定方向标。
人教版数学教案9
【教学目标】
1.通过整理与复习,使学生进一步掌握三位数乘两位数的口算、估算、笔算方法,提高学生的计算能力。
2.通过整理和复习,培养学生在具体的问题情境中,能选择合适的算法进行计算,进一步发展学生的数感,培养学生自觉整理数学知识的`习惯和能力。
3.进一步发展学生综合应用三位数乘两位数的知识解决简单的实际问题的能力。
【教学重难点】
乘法口算、估算和笔算等计算方法的联系,并能根据具体情境选择合适的算法进行计算。
【教具学具准备】
多媒体课件、视频展示台。
【教学过程】
一、梳理知识,沟通联系
1.教师:本单元我们学习了什么?你有哪些收获?小组内说一说。
学生分组交流,完成后全班汇报,教师根据学生的汇报逐步形成如下板书:
2.结合以上知识整理,边整理知识,边完成数学书88页1-4题。(课件依次出示以下各题及答案)
(1)出示教科书第88页第1题。
抽学生口答,并要求说出算法。最后让学生说说怎样口算最简便,引导学生说出:整百数乘整十数,只把0前面的数相乘,再看因数的末尾一共有几个0,就在乘得的积的末尾添上几个0。(课件显示)
(2)出示教科书第88页第2题。
指名学生口答,并说出估算方法,教师用课件显示相应内容。最后让学生说说三位数乘两位数怎样估算。(学生回答后,课件显示。)
(3)完成教科书第88页第3题。
学生独立完成后(可指名上台板演),课件显示答案,学生核对,并让学生说说每个题计算的时候要注意什么?(学生汇报后,课件显示计算方法)
(4)完成教科书第88页第4题。
先分别让活到说说解题思路(根据学生的回答课件显示相应内容),再列式计算并汇报,教师板书。计算时注意提醒学生怎样算简便。
二、基本练习,巩固提高
1.完成教科书第89页第1、2题。(课件出示题目及答案)
学生独立口算,集体评议。第2题完成后,让学生说说积的变化规律。(课件显示规律)
2.完成教科书第89页第4题。(课件出示题目)
学生独立完成,教师巡视指导,集体交流。
教师:你是怎样估算他们大约走了多少米的?
学生1:我把187看成200,32看成30,由此得出他们大约走了6000m。
学生2:我把187看成200,32不变,由此得出他们大约走了6400m。
学生3:我把187看成190,32看成30,由此得出他们大约走了5700m。
(课件展示以上三种估算方法。)
3.完成教科书第89页第5题。(课件出示题目及估算方法)
学生估算:24×365,可以把24看成20,365看成360,350或400都可以。
三、拓展练习,促进发展
课件出示教科书第90页的思考题。
教师:请认真看图、审题,说一说从题中你获得了哪些信息?你觉得运费的多少会与哪些因素有关?
学生1:运费少和路程有关。
学生2:运费少还和运的质量有关。(课件显示:与运费少相关的因素)
教师:分组讨论一下,往哪些仓库运费用会少一些?为什么?
学生分小组讨论、分析,完成后指名汇报。
学生:如果把粮食运往3号和4号仓库,则运量大,费用肯定多。所以应把粮食往1号或2号仓库运输费用会少些。(课件显示)
教师:看来只要计算出运往1号仓库和2号仓库的总运量,就可以比较出谁了运费更少。怎样计算总运量呢?
学生:运输量可以用“运输吨数×路程”来计算。(如期学生不能说出,则由教师告知学生。)(课件显示)
教师:现在请同学们按这种方法在练习本上列式计算并比较。
学生独立计算后汇报。
学生1:如果运到1号仓库,总运量是40×10+30×20+20×30=1600
学生2:如果运到2号仓库,总运量是50×10+30×10+20×20=1200。所以运往2号仓库运费最少。
四、全课小结
教师:通过今天的整理和复习,你有什么新的收获?
五、布置作业
数学书89页3题,90页6、7、8题。
六、课外阅读
数学书91-92页:你知道吗?——奇妙的乘法。
人教版数学教案10
教学内容:
教材第8页例4、例5,“练一练”和练习二第1、2题。
教学目标:
1、经历初步认识“倍”的过程,联系实际问题初步理解“倍”的含义,建立“倍”的概念,理解“几个几”和“倍”的联系。
2、在认识“倍”的教学活动中发展数学思考,提高解决问题的能力,培养学习数学的积极情感和良好的学习习惯。
教学重点:
建立“倍”的概念
教学准备:
圆片数个,例5花图、线段图等。
教学过程:
一、动手操作,导入新课
1、根据老师的要求摆圆片。
(1)第一行摆3个圆片,第二行比第一行多摆4个,第二行摆几个圆片?
(2)第一行摆3个圆片,第二行要摆2个3,第二行摆几个圆片?
(3)第一行摆3个圆片,第二行摆的圆片个数是第一行的2倍,第二行摆几个圆片?
二、自主探索,学习新知
1、老师演示:第一行圆片摆了3个,第二行摆跟它同样多的3个,这时第二行的个数就是第一行圆片的1倍。请你也来摆一摆:第二行的个数是第一行的1倍。
2、学生动手操作,老师巡视指导,要求学生边摆边想:1倍该怎么摆?
3、题目要求我们第二行的个数是第一行的2倍,请你想一想接下去该怎么摆?(学生动手操作后)谁来说一说第二行圆片摆了()个()。
4、完整地说一说:第一行圆片有3个,第二行圆片的个数是第一行的2倍,第二行摆了2个3。
5、如果老师要求你们第二行圆片的个数是第一行的4倍,又该怎样摆呢?如果是6倍呢?1倍呢?(学生根据老师的要求摆圆片,并完整地复述:第一行圆片有3个,第二行圆片的个数是第一行的()倍,第二行摆了()个()。
6、巩固练习:
(1)第二行圆片的个数是第一行的4倍,
第二行摆()个(),第二行一共有()个圆片。
(学生先独立摆一摆,再说一说。)
(2)第二行圆片的个数是第一行的2倍。
第二行摆()个(),第二行一共有()个圆片。
(学生独立操作,并能完整地说一说。)
(3)第二行圆片的个数是第一行的()倍。
第二行摆了()个()。
(4)第二行圆片的个数是第一行的()倍。
第二行摆了()个()。
三、教学例4、例5
1、教学例5
(1)直接出示例5。
(2)谁来说一说:菊花的朵数是月季花的()倍。你是怎样想的?引导学生完整地说一说:月季花有2朵,菊花有3个2朵,菊花的朵数是月季花的3倍,菊花一共有6朵。
(3)学生独立完成练一练第1、2、3题。
2、教学例4
(1)出示例4。
(2)花带子的长是灰带子的几倍,你是怎样想的?
(3)谈话:如果我们把灰带子的长看作1份,花带子的.长就是这样的4份,(老师边讲边将花带子与灰带子进行比较)花带子的长是灰带子的4倍。
(4)在花带子的后面再添上一段,现在花带子的长有这样的几份,那么花带子的长是灰带子的几倍呢?再添上2段呢?
(5)在灰带子的后面加上一段。
我们把现在灰带子的'长看作1份,那么花带子的长就有这样的几份?现在花带子的长是灰带子的几倍?你是怎样想的?
(6)我们把现在灰带子的长看作是1份,那么花带子的长就有这样的几份?花带子的长是灰带子的几倍?你又是怎样想的?
四、应用拓展
1、白皮球
花皮球
花皮球的个数是白皮球的()倍。
2、学生独立思考说一说是怎样想的?
3、谈话:老师要求花皮球的个数是白皮球的2倍,你有什么办法?(可以拿去花皮球的2段,也可以给白皮球加上一段)
4、请你也来设计一道类似的题目,同桌一个人出题,另一人根据同桌的意思画一画,摆一摆,再说一说。
五、总结
这节课,你有哪些收获?你学到了什么新的本领?跟同桌交流一下你的想法。
人教版数学教案11
一、教学内容
1.比的意义
2.比的基本性质
3.比的应用
二、教学目标
1.使学生理解比的意义,知道比与分数、除法的关系。
2.使学生理解并掌握比的基本性质,会求比值、化简比,能解答按比分配的实际问题。
3.使学生在理解比的意义、探索比与分数和除法之间的关系以及比的基本性质的过程中,体会类比法、推理思想,积累数学活动经验,体会数学知识之间的内在联系,把握数学知识的本质。
4.使学生经历用比描述生活现象和解决实际问题的过程,感受数学知识在日常生活中的应用价值。
三、主要变化与具体编排
(一)主要变化
这一单元的内容与编排与实验教材基本一致。把这部分内容分拆出来另成单元,主要是为了突出“比和比例”的独立性、重要性。比不仅与分数除法有联系,与分数、除法等知识的联系更加紧密和重要。比的知识是学习比例相关知识的必要基础,把比单独设单元,能使学生从量与量之间的关系这一角度去认识比,而不仅仅从运算的角度去理解比,有利于学生代数思想的培养。
(二)具体编排
1.比的意义、各部分名称。
教材精心选取了“神舟”五号这一现实素材作为载体,既富有教育意义,又能比较自然地引出比的两种情形。例1的素材也是从中选取的,凸显情境的连续性和整体性。
教材先给出两面长方形小旗的数据,引导学生讨论长与宽的关系。除了可以用减法表示出它们之间的相差关系,还可以用除法表示它们的倍数关系。在此基础上直接指出:可以用比来表示它们之间的关系,由此引出同类量的比。如果仅从形式上看,比是除法关系的另一种表示方式,这为学生认识比和除法、分数之间的关系奠定了基础。
接下来,教材介绍飞船的运行路程与时间,用除法表示出飞船进入轨道后的速度。在此基础上,直接指出还可以用比来表示路程和时间的关系,引出非同类量的比。使学生进一步认识比的意义以及比和除法的关系。
教材在教学了可以用比来表示两个同类量或不同类量相除的关系的基础上,直接抽象出比的意义:两个数的比表示两个数相除。这一意义是后面求比值、推导比的基本性质的直接保证。
接下来,给出比的写法、各部分名称以及比值的概念,并根据分数和除法的关系,给出比的分数形式的写法。并根据小精灵的问题,进一步沟通比和除法、分数的联系。
2.比的基本性质。
教材在前面“做一做”第3题对商不变性质和分数的基本性质进行了回顾,在此基础上,启发学生根据比和除法、分数的`关系思考:“在比中有什么样的规律?”首先通过比较比值,直接看出6:8和12:16这两个比相等,同时也能看出这两个比和3:4也是相等的。接下来,让学生探究两个比相等的内在原因。教材给出了根据比和除法的关系类推的过程,再让学生根据比和分数的关系自主探究。在此基础上,概括出比的基本性质。
3.例1。
本例教学运用比的基本性质化简比。第(1)题仍采用“神舟”五号的题材,给出两面旗的长和宽,要求这两面旗长和宽的最简整数比。其中15∶10的化简给出了完整的过程并启发学生思考为什么这样化简;180∶120的化简则让学生自己完成。化简的过程便于学生感悟化简的必要性,即能使量与量之间的关系更加简明、清晰。两个最简整数比相等,也渗透了图形按比例缩放的相似变换思想。第(2)题的两个比中的前、后项分别出现了分数和小数。教材同样提出了启发学生思考比的化简方法的问题,把前、后项不是整数的情况首先转化为前、后项都是整数的情况,再利用第(1)题的方法自行完成。
4.例2。
本例让学生解决按比分配的实际问题,这一类问题与“和倍问题”实质相同。教材创设了一个日常生活中比较常见的配制清洁剂稀释液的问题情境,便于学生理解。
教材按问题解决的三个步骤编排,旨在使学生经历问题解决的完整过程,尤其是养成审题和反思的习惯。在问题情境图中和解答过程中都采用直观图帮助学生清楚地看到量与量之间的关系,理解稀释瓶上标明的比表示的含义。
教材介绍了两种解法。一种是把比看成份数之比,先求出每份是多少,再求几份是多少。即把此问题转化为整数的“归一问题”来解决。另一种是根据直观图和比的意义,算出浓缩液和水分别占总体的几分之几,把问题转化为求一个数的几分之几是多少,用分数乘法来解决。
“回顾与反思”阶段,重新借助比的意义,看浓缩液与水的体积之比化简后是否与题目中所给信息相符。
四、教学建议
1.联系生活实际,使学生在情境中学习比的意义。
2.加强比与除法、分数的联系,促进知识的融会贯通。
人教版数学教案12
教学目标:
1、通过学生观察、操作等活动认识长方体,知道长方体的面、棱、顶点以及长、宽、高的含义,掌握长方体的基本特征,理解它们之间的关系。
2、学生在生活中进一步积累探索经验,增强空间观念,发展数学思维。
3、学生体会立体图形学习与实际生活的联系,感受其价值,增强数学的兴趣和学好数学的自信心。
教学重难点:
重点:探索长方体的特征。
难点:理解长方体面、棱、顶点之间的关系,建立空间想象。
教学准备:
每生准备一个长方体,长方体框架;师准备教学道具和课件。
教学过程:
一、导入
同学们,我们已经学过很多图形了,大家回想一下我们都学过哪些?现在老师在黑板上画出两个最简单的图形,请你们快速说出它们的名字。
(师在黑板上画出一个点,一条直线)
生:点、线
师:我的这个点和线都画在一个什么上?
生:黑板、面
师:对,都画在一个面上。现在请你们拿出身边的长方体,找一找长方体中的点、线、面。
师生摸一摸,指一指,说一说。
二、新授
师:长方体中的线有一个固定的名字叫做“棱”,长方体中的点也有一个固定的名字叫做“顶点”。
师:我们现在初步了解了长方体的面、棱、顶点。如果大家想更多的了解长方体,你能提出哪些问题呢?
生:长方体有几个面,几条棱,几个顶点……
师:大家提出的既有关于面、棱、顶点数量的问题,又有关于它们之间关系的问题。下面就请大家小组合作学习,解决课件中给出的这些问题。
小组合作学习,完成以下问题:
面1、长方体有几个面?
2、每个面是什么形状?
3、哪些面是完全相同的?
棱1、长方体有几条棱?
2、哪些棱长度相等?
顶点1、长方体有几个顶点?
你还有什么新的发现?棱是怎么形成的?顶点是怎么形成的?
师:我们先来解决一个最简单的问题,长方体有几个顶点?
生:8个
师:怎样有序地数?
生:可以先依次数上面的四个,再依次数下面的四个。
师:长方体有几个面呢?
生:6个
师:谁能有次序地数出这些面?
师:谁能用具体的方位名词有次序地数出来?
师:长方体有6个面,依次是前面、后面、左面、右面、上面、下面。
师:还可以怎么数?
师:我们在第一单元学习了观察物体,现在试着从一个角度观察我手中的长方体,你最多能看到几个面?
生:3个
师:这三个面的对面都看不到,所以用3乘2就是总数。用这样的方法也能数出长方体的面数。
师:每个面是什么形状?
生:长方形,有的长方体中也有正方形。
师:长方体的每个面都是长方形,特殊情况下有两个相对的面是正方形。
师:长方形哪些面是完全相同的?
生:前面和后面,左面和右面,上面和下面
师:你们说的前与后,左与右,上与下都是相对的'关系,所以简单说就是相对的面完全相同。你们是怎么得出这个结论的?
生:我们是看出来的。
师:生活中我们经常有看错人的时候,所以用眼睛看出来的不一定正确,你们有什么方法能证明自己的结论是正确的吗?
生:可以把长方体拆开,拿相对的面对比,如果完全重合,就说明相对的面完全相同。
师:你的方法真棒,那我们就一起来操作和证明一下。
师:相对的两个面放在一起完全重合了,说明大家的结论是正确的。
师:我们来理解一下什么是完全相同?完全相同的两个面,它们的面积相等,周长相等,长相等,宽也相等。
师:关于长方体的棱,你们知道有几条吗?
生:12条
师:谁能有次序地、不重不漏地数出来?
请学生来数
师:刚刚那位同学的数法我再来展示一下,同学们仔细观察,他是分成几组来数的?每组有几条?
生:三组,每组有4条。
师:为什么要这样数?
生:因为每一组中的棱长度是相等的。
师:哪些位置的棱长度相等呢?
生:位置相对的棱
师:我们用尺子量一量是否相等。
师:确实,相对的四条棱长度相等。
师展示长方体框架:假如这个框架中缺少了一条棱,你能想象出缺的这条棱的样子吗?为什么?
生:因为相对的棱长度相等,可以通过相对的棱想象缺的那条棱的样子。
师:如果在一组相对的棱中去掉三根,剩一根,你能想象出去完整的长方体的样子吗?为什么?
生:能,可以通过剩下的那根,想象出跟它相对的其他三条棱的样子。
师:按这样的道理,我们在每一组棱中都去掉三根,依然可以想象出完整的长方体的样子。我来试试去掉这些棱后,会是什么样子。
生:只剩下三根棱。
师:这三根棱有什么特殊?
生:它们相交于一个顶点。
师:对。这是三条非常特殊的棱,我们把它们分别称作长方体的“长”“宽”“高”。也就是说相交于一个顶点的三条棱分别叫做长方体的“长”“宽”“高”。在一个长方体中,我们通常把竖着的这条棱叫做“高”,正对着我们的棱叫做“长”,“长”旁边的那条是“宽”。大家来指一指我手中的这个长方体的长、宽、高。
拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,体会同一个长方体因摆放位置不同而引起的长宽高的变化。
师:根据相对的棱相等,所以“长”对面的棱也是“长”,“宽”对面的棱也是“宽”,“高”对面的棱也是“高”,由此可知,长方体有4条长,4条宽,4条高。共计12条。
师:如果让大家利用小木棒来制作一个长方体框架,思考一下需要几组木棒,共几根?在下面给出的木棒中你可以如何搭配来组建长方体,它们的长宽高分别是多少?
出示例题:
四根8厘米,八根3厘米,四根6厘米,两根5厘米。
生1:长8,宽3,高6
生2:长8,宽3,高3
生3:长6,宽3,高3
师:生2和生3搭建的长方体都是有两个相对的面是正方形的特殊长方体,想象一下,把长缩短到3厘米,这个长方体会变成什么样子?
生:变成了正方体
师:对,变成了长、宽、高都是3厘米的正方体,由此我们可以得出这样的结论:长、宽、高都相等的长方体是正方体,正方体是一种特殊的长方体
师:关于面、棱、顶点,它们之间有什么关系呢?棱和面有什么关系?棱和顶点有什么关系?
生:两个面相交的位置是棱,两条棱相交的位置是顶点。
巩固练习
书上例题1、2
小结
作业布置
练习册《长方体的认识》
人教版数学教案13
教学目标
1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2,能区分两种不同意义的量,会用符号表示正数和负数;
3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点:正确区分两种不同意义的量。
知识重点:两种相反意义的量
教学过程:(师生活动)设计理念
设置情境
引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多
地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴
趣,所以创设如下的问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的`理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习教科书第5页练习
小结与作业
课堂小结围绕下面两点,以师生共同交流的方式进行:
1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
本课作业教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。
作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要
本课教育评注(课堂设计理念,实际教学效果及改进设想)
密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的.
负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.
这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,
体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。
人教版数学教案14
【教学目标】
一、知识与技能:
1.通过创设一定的学习情境,引导学生对生活中熟悉的对称物体和直观图形的探讨和研究,使学生初步认识认识轴对称图形,找出轴对称图形的对称轴。
2.能够概括出轴对称图形的性质和特征。
二、过程与方法:
1.通过小组合作学习活动,培养学生合作意识,数学思考与语言表达能力。
2.培养学生的观察分析能力和动手操作能力,使学生的思维得到发展。
三、情感、态度价值观:
1.使学生在讨论、交流的学习过程中获得积极的情感体验,探索意识、创新意识得到发展。
2.在观察比较、动手操作中,培养学生勇于探索、自主学习的精神,感知数学来源于生活并用于生活,对数学产生亲切感,获得运用知识解决问题的成功体验。
【教学重难点】
1.找出轴对称图形的对称轴。
2.概括出轴对称图形的性质和特征。
3.判断一个图形是否是轴对称图形。
4.找出轴对称图形的对称轴。
【教学设计】
1.设计思想:
找准学生学习新知的“最近发展区”,在大背景下认识轴对称图形。同时加强直观教学,降低认知难度。学生自己动手实践,加深对轴对称图形的感知。
2.教材分析
(1)轴对称图形是图形运动教学的进一步深入。轴对称主要是体会轴对称图形不仅仅是把一个图形平均分成两半。通过数一数对应点到对称轴的距离,概括出轴对称图形的性质:对应点到对称轴的距离相等,对应点连线垂直于对称轴,从而对轴对称图形的认识从经验上升到理论。教学设计主要是联系学生亲身体验,联系学生生活实际,引导学生探究新知。此节内容的学习将为以后学习画轴对称图形,图形的平移和旋转做好铺垫。
(2)分析本课内容的组成部分:学生会判断轴对称图形;能找出轴对称图形的对称轴;认识到轴对称图形的特征。联系生活实际,激发学生的兴趣,学生动手实践操作,体验知识的建构过程。
(3)分析本课内容与小学教材相关内容的区别和联系:这部分内容是在学生已经体验过“图形运动”的基础上,进一步深入学习轴对称和平移。对轴对称图形的认识从经验上升到理论。
3.学情分析
学生已经初步感知生活中的对称和平移现象,初步认识了轴对称图形;又在前面研究了三角形、平行四边形和梯形的.特征。以上内容的学习为本单元的学习奠定了知识基础和经验基础。本单元将学习轴对称图形的平移,教学时要重视实践操作和探究学习,积累更加丰富的活动经验。通过动手操作,与同桌探讨交流找轴对称图形的对称轴,加深对轴对称图形的认识。
4.教学策略
在本节课的教学中,展示课件让学生观察轴对称图形,给学生一个直观的认识,引导学生认识轴对称图形,体会轴对称图形不仅仅是把一个图形平均分成两半;学生通过动手实践,感知轴对称图形的特征,引导学生概括出轴对称图形的性质。降低了对轴对称图形性质理解上的难度。特别是一个图形有多个对称轴时,学生之间相互交流找出所有的对称轴,促进了学生的交流与合作,助于学生从不同的角度思考问题,增强学生的合作意识。
【教学准备】
1.学生的准备:长方形、正方形纸片各一张;轴对称图形纸片。
2.教师的教学准备课前了解学生对轴对称图形的熟悉程度有多少。
3.教学准备的设计和准备:长方形、正方形、纸片各一张,轴对称图形纸片。
【教学过程】
一、 创设情境,导入新课
师:同学们,今天我给大家准备了许多有趣的图片,不知道你们有没有见过这些图片,我们一起来看看好吧。(出示课件)
同学们,刚才我们看了那么多有趣的图片,你们发现它们有什么共同的特点了么?
生:学生七嘴八舌各抒己见(烘托课堂气氛,提高学生的学习积极性)老师抽学生进行表达。
师:同学们发现了他们的可以平均分成两份这一共同的特征,但它们还有一些别的特征,同学们发现没有?我希望通过我们今天的学习,同学们都能发现这一特征。那么我们就一起来探究轴对称图形。
板书:轴对称图形
二、联系学生生活实际,探究新知
1.系统认识轴对称图形,找出对称轴
师:那么什么是轴对称图形呢?老师这准备了一个小实验,请同学们观察这个实验。课件展示小实验。(观察轴对称图形的特征),指导学生用双手体会轴对称图形。
引导学生归纳出轴对称图形,指出对称轴。
板书:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
师:同学们,现在给你们一个图形,你们会不会对折?请同学们拿出准备好的长方形纸片,对折一下,看能不能完全重合。同桌之间相互说说你是怎么对折的。
生:学生分组实践、讨论和交流。
师:走近学生,观察和指导学生进行探究。
生:(小组交流,全班汇报)将本小组实践的结果向全班汇报。通过对折我们发现长方形对折后能完全重合,所以长方形是轴对称图形。
师:我发现同学们非常聪明,很快就得出了长方形是轴对称图形,那么正方形呢?怎么对折,你有几种方法?请同学们拿出正方形纸片对折,同桌相互说说,你是怎样对折的。
生:学生分组实践、讨论和交流。
师:走近学生,观察和指导学生进行探究。
生:(小组交流,全班汇报)将本小组实践的结果向全班汇报。通过对折我们发现正方形对折后能完全重合,所以正方形也是轴对称图形。
2.练习巩固
师:我们找到了正方形和长方形的对称轴。那么别的图形你会找么?请同学们拿出手中的纸片观察、对折,看看它是不是轴对称图形。 生:学生分组实践、讨论和交流。
师:走近学生,观察和指导学生进行探究。
生:(小组交流,全班汇报)将本小组实践的结果向全班汇报。 师:用手展示怎样快速的找出一个图形是不是轴对称图形。
生:学生先观察,然后自己动手实际操作,完成书上练习,之后集体订正。
三、探究轴对称图形的性质
四、展示课件,给出方格纸上的轴对称图形
师:同学们,请用刚才的方法判断,这个图形是不是轴对称图形。(课件展示情景图)
师:观察方格中的松树图,它是不是轴对称图形?是的话找出对称轴。
生:从图中可以发现,它是轴对称图形,DG就是它的对称轴。 师:通过对称轴对折能重合的点叫做对应点。从这幅图我们知道A和A'是一组对应点,B和B'也是一组对应点。那么请同学们观察,图中A和A'有怎样的关系?
生:点A和点A'分别在对称轴的两旁,点A到对称轴的距离是3,点A'到对称轴的距离也是3
师:那么请同学们看看点B和点B'。
生:点B和点B'到对称轴的距离都是2.
师:对应点A和A'到对称轴的距离是?相等么?对应点B和点B'到对称轴的距离是?相等么?
生:学生观察,并回答
板书:轴对称图形中的对应点到对称轴的距离相等。
师:连接图中点A和点A',你看对称轴和对应点的连线怎样? 连接B和点B',他们的连线和对称轴呢?
(小组讨论,全班交流)
生:点A和点A'的连线于对称轴垂直。
师:连接图中点B和点B',点E和点E'也是这样么?
生:(小结)对应点的连线都和对称轴垂直。
巩固新知
师:练习下面各题。
观察数字,哪些是轴对称图形,是的画出对称轴。
找出图形中的对应点(三组),分别说说,他们到对称轴的距离。(学生练习巩固新知)
五、知识小结
1.什么是轴对称图形,什么是对称轴?
2.轴对称图形中的对应点到对称轴的距离相等,对应点的连线都和对称轴垂直。
【板书设计】
轴对称图形
1.轴对称图形各对应点到对称轴的距离相等。
2.对应点的连线都和对称轴垂直。
人教版数学教案15
1、学习目标
1.经历探索3的倍数的过程,理解3的倍数的特征。
2.能判断一个数是不是3的倍数。
3.在探究过程中发展概括和归纳能力。
2、学情分析
学生已经学习了2、5的倍数的特征,但3的倍数的特征与2、5的倍数的特征有很大的区别,学生不能仅从一个数的个位加以观察、归纳来得出结论,因此对于孩子们来讲如何探索得出这个特征就较有难度,而对于一些学习能力较弱的孩子,能够正确掌握3的倍数的特征并加以正确运用都会有一定的难度。因此针对学生的这一认知难点,我在设计教学时更加突出学生的自主探索,是学生在找数——观察——讨论——验证——归纳的过程中,概括出3的倍数的特征。
3、重点难点
学习重点:经历探索并掌握3的倍数特征的过程。
学习难点:发现概括出3的倍数特征。
4、教学过程
4.1.2教学活动
活动1【导入】(一)游戏复习、激发兴趣
游戏复习、设疑导入
(一)游戏复习、激发兴趣
同学们,请举起你们的学号给老师看一看,每个人的学号里都隐藏着数学奥秘!(课件)孔子有句话“温故而知新”,根据老师的指令请中奖学号起立,高高举起你的学号,看谁反应快。小组同学判断,准备好了吗?
(课件2的倍数)第一次中奖学号:是2的倍数起立。采访一下:2的倍数的特征是什么?(课件2的倍数特征:个位是0、2、4、6、8的数)(课件5的倍数)第二次学号中奖:是5的倍数起立。再采访一下:5的倍数的特征是什么?(课件5的倍数特征:个位是0或5的数)
小结:看来,快速判断一个数是不是2或5的倍数的秘诀是,只要看这个数的个位就行了。(课件圈出个位)
【设计意图:学生在中奖学号游戏中复习旧知,为新知做好准备。】
第三次学号中奖:是3的倍数起立。你是怎么知道的?大家来看看这个数是不是3的倍数? 如何快速地判断出是不是3的倍数?3的倍数有什么特征呢?今天我们就来探究3的倍数的特征。 (板书课题:3的倍数的特征)
活动2【活动】二、自主探究,感悟规律
1、请同学们拿出准备好的学具百数表,请在表中找出3的倍数,并圈起来。
2、学生活动后,教师组织学生进行交流,投影学生圈的百数表,并不断完善。
3、观察3的倍数,猜想一(横着看):判断一个数是不是3的倍数,只看个位行吗?
4、仔细观察这个百数表。猜想二(斜着看):判断一个数是不是3的倍数,看这个数各位上数的和行吗?
把你的发现与同桌交流一下。
活动3【讲授】学生摸索,教师讲解归纳
(三)举例验证规律
师:咱们发现的这个规律只适合100以内的数吗?能推广到更大的数吗?
小组合作学习二:验证、归纳3的倍数的特征
举例
各位上的数的和
是不是3的倍数
验证摆出的数
是不是3的倍数
两位数:
48
4+8=12
√
48÷3=16
√
37
3+7=10
×
37÷3 有余数
×
三位数:
四位数:
2、小组再次讨论总结。
3的倍数特征:
(四)、总结规律
下面小组的验证是否正确?
看来,通过我们的发现,进一步验证,归纳出3的倍数的特征是(板书:一个数各位上的数的和是3的倍数,这个数就是3的倍数。)
【注意】:与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。
【设计意图:汇报验证结果形成共识,得出结论。让孩子们验证此规律在100以外的数是否适用,体会“特殊—一般”的研究方法,培养孩子们研究数学的科学性和思维的严谨性。体会发现—验证—归纳的数学思想和方法。】
活动4【练习】三、闯关比赛:
闯关比赛:
3的倍数的特征相信你们已经掌握,闯关开始了,准备好了吗?
第一关:下面的数哪些是3的倍数,手势判断。
92 654 7203
71 164 20xx
老师质疑:7203为什么是3的倍数?如果打乱一下顺序,这个四位数还是3的倍数?你们有什么发现?(3的倍数与数字的顺序无关。)
【设计意图:换位探索——引导发现3的倍数与数字的顺序无关。】
第二关:在横线上填上合适的一个数,组成三位数并且是3的倍数。想想共有几种填法?
老师质疑:一共几种填法?有什么规律?(只要相差3就可以了)
【设计意图:通过小组合作学习了解到多角度思考问题,答案不唯一,纠正自己的认识,学生学以致用,有助于培养孩子们的发散思维的能力。】
活动5【测试】师生闯关
第三关:师生闯关:
同学们,老师也想和你们合作一下。请学号1-9的同学上讲台,赵老师没有学号,用0代替。和你们一起组成10位数,看看这么大的数是3的倍数吗?为什么?
请看,老师取走一个数,(9)这个9位数还是3的.倍数吗?
再看,老师再取走一个数,(6)这个8位数还是3的倍数吗?
猜猜看,这次取走哪数,(3)这个七位数还是3的倍数?
你们有什么发现?(划去单个数字是3的倍数,剩下的数还是3的倍数)
你能快速发现下面这个数是不是3的倍数?想好就起立。98763963
【设计意图:发散练习:学生体会划去的数字是3的倍数,剩下的数还是3的倍数。】
第四关:猜猜中奖学号
到目前为止,我们已经学习了2、3、5的数的倍数特征,看见今天最后一次中奖学号是谁呢?同时是2、3、5的倍数的学号。(30)老师期待下一个中奖学号就是你。
【设计意图:综合运用所学2、3、5的倍数的特征的知识,让学生深刻体会自己的学号里藏着的数学奥秘】
活动6【作业】延伸和总结
四、全课小结:
1、今天你学会了什么?通过小组合作学习你有什么收获?
2、我们是通过什么方法得出3的倍数的特征?
【设计意图:在课结束前适时总结,重在使同学们进一步体会到一些研究的方法,使孩子们掌握一些“学法”。】
五、作业(课后延伸)
课后可以运用今天所学的方法去探索研究9的倍数的特征。
【设计意图:让同学们把这种探究活动延伸到课外,进一步培养了同学们学习数学的兴趣。】
【数学教案】相关文章:
数学教案05-16
数学教案12-30
《等分》数学教案05-04
小学数学教案11-04
初中数学教案08-12
分类数学教案08-26
小学的数学教案03-24
小学数学教案04-29
《种花》数学教案04-21
人教版数学教案04-27