- 相关推荐
八年级数学教案:全等三角形的判定
作为一位兢兢业业的人民教师,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。教案要怎么写呢?以下是小编帮大家整理的八年级数学教案:全等三角形的判定,仅供参考,大家一起来看看吧。
八年级数学教案:全等三角形的判定1
教学目标:
1、知识目标:
(1)掌握已知三边画三角形的方法;
(2)掌握边边边公理,能用边边边公理证明两个三角形全等;
(3)会添加较明显的辅助线.
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力.
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过变式训练,培养学生“举一反三”的学习习惯.
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机
教学方法:自学辅导
教学过程:
1、新课引入
投影显示
问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?
这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得
问:通过上面问题的分析,满足什么条件的两个三角形全等?
让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)
公理:有三边对应相等的两个三角形全等。
应用格式: (略)
强调说明:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)
(3)、此公理与前面学过的`公理区别与联系
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
(5)说明AAA与SSA不能判定三角形全等。
3、公理的应用
(1) 讲解例1。学生分析完成,教师注重完成后的点评。
例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架
求证:AD⊥BC
分析:(设问程序)
(1)要证AD⊥BC只要证什么?
(2)要证∠1= 只要证什么?
(3)要证∠1=∠2只要证什么?
(4)△ABD和△ACD全等的条件具备吗?依据是什么?
证明:(略)
(2)讲解例2(投影例2 )
例2已知:如图AB=DC,AD=BC
求证:∠A=∠C
(1)学生思考、分析、讨论,教师巡视,适当参与讨论。
(2)找学生代表口述证明思路。
思路1:连接BD(如图)
证△ABD≌△CDB(SSS)先得∠A=∠C
思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD
(3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。
例3如图,已知AB=AC,DB=DC
(1)若E、F、G、H分别是各边的中点,求证:EH=FG
(2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上写出证明,然后选择投影显示。
证明:(略)
说明:证直线垂直可证两直线夹角等于 ,而由两邻补角相等证两直线的夹角等于 ,又是很重要的一种方法。
例4 如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,
求证:AC=2AE.
证明:(略)
学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。
5、课堂小结:
(1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)
在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。
(2)三种方法的综合运用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业:
a、书面作业P70#11、12
b、上交作业P70#14 P71B组3
八年级数学教案:全等三角形的判定2
【教学目标】:
1、帮助学生总结一般三角形全等的判定条件,使他们自觉运用各种全等判定法进行说理;
2、通过一般三角形全等判定条件的归纳,帮助学生认识事物间存在着的因果关系和制约的关系。
【重点难点】:
1、重点:让学生识别三角的哪些元素能用来确定三角形的形状与大小,因而可用来判定三角形全等。
2、难点:灵活应用各种判定法识别全等三角形。
【教学准备】:
卡纸剪出的图1、2中的六个三角形。
(图1)(图2)
【教学过程】:
一、复习
1、判定两个三角形全等的条件有哪些?
(有SAS、ASA、AAS、SSS。HL)
2、一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种判定法,还有其他的三角形全等判定法吗?比如说“SSA”、“AAA”能成为判定两个三角形全等的条件吗?
二、新授
1、演示
(1)演示图1中的I、II三角形,它们间有两边及一对角对应相等,这两个三角形能完全重合,是全等形。但再取出III的三角形与I叠在一起后,发现它们不重合不是全等形,因此我们进一点证实了:有两边和其中一边的对角对应相等的两个三角形不一定全等。“SSA”不是判定三角形全等的方法。
(2)演示图2中的I、II三角形,它们间有三个角对应相等,这两个三角形能完全重合,是全等形,但再取出III的三角形与I叠在一起后,发现它们不重合,不是全等形。因此我们进一步证实了:三个角对应相等的两个三角形不一定全等“AAA”也不是判定三角形全等的方法。
2、填下表(挂出小黑板,让学生思考、讨论,共同填答)。
两个三角形中对应相等的元素两个三角形是否全等依据的判定法反例
SSS√SSS
SAS√SAS
SSAX可举反例
ASA√ASA
AAS√AAS
AAAX可举反例
3、范例
例:如图,,,点F是CD的中点,吗?试说明理由。
教学要点:
(1)分析题目结论假定,可转化为,需证它们所在的两个三角形全等;
(2)观察图形,、中,并不在三角形中,为此添辅助线AC、AD;
(3)在△ACF与△ADF中,已知AF是公共边,CF= FD,尚缺一条件,它只能是AC与AD相等;
(4)为证AC与AD相等。又要找它们分别在的△ACB与△ADE;
(5)△ACB与△ADE,由已知条件可由SAS证它们全等;
(6)书写范例。
解:连结AC、AD,由已知AB=AE,,BC=DE
由SAS三角形全等判定法可知:
△ABC≌△AED
根据全等三角形的对应相等可知
由,,(公共边),根据SSS可知△ACF≌△ADF
根据全等三角形的对应角相等可知
又由于F在直线CD上,可得,即。
你们可有其他方法吗?
三、巩固练习
1、如图,在△ABC中,,,试说明△AED是等腰三角形。
2、如图,AB∥CD,AD∥BC,与,与相等吗?说明理由。
四、小结由学生对本节的学习过程进行总结。
五、作业
(一)、填空题:
1、有一边对应相等的两个三角形全等;
2、有一边和对应相等的两个三角形全等;3、有两边和一角对应相等的两个三角形全等;
4、如图,AB∥CD,AD∥BC,AC、BD相交于点O。
(1)由AD∥BC,可得=,由AB∥CD,可得=,又由,于是△ABD ≌△CDB;
(2)由,可得AD=CB,由,可得△AOD≌△COB;
(3)图中全等三角形共有对。
(二)、选择题:
1、若△ABC≌△BAD,A和B、C和D是对应顶点,如果,,,则BC的.长是()
A、 B、 C、 D、无法确定
2、下列各说法中,正确的是()
A、有两边和一角对应相等的两个三角形全等;
B、有两个角对应相等且周长相等的两个三角形全等;
C、两个锐角对应相等的两个直角三角形全等;
D、有两组边相等且周长相等的两个三角形全等。
(三)、解答题:
1 、如图,,,AC、BD交于点,图中共有几对长度相等的线段,你是通过什么办法找到的?
2、如图,,,(1)等于多少度?
(2)图中有哪几组平行线?
(3)与的和是定值吗?
【八年级数学教案:全等三角形的判定】相关文章:
三角形全等的判定说课稿11-19
三角形全等的判定教学反思03-17
《三角形全等的判定》教学反思04-29
直角三角形全等的判定教学反思03-28
数学全等三角形教案12-30
数学全等三角形教案03-20
全等三角形教学反思08-21
《三角形全等的复习》教学反思02-18
数学全等三角形教案10篇03-20