高一数学教案

时间:2023-11-30 07:19:58 高一数学教案 我要投稿

高一数学教案范文

  在教学工作者实际的教学活动中,总归要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。怎样写教案才更能起到其作用呢?以下是小编为大家收集的高一数学教案范文,欢迎大家借鉴与参考,希望对大家有所帮助。

高一数学教案范文

高一数学教案范文1

  一、教材分析

  本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。

  生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

  函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。

  二、学生学习情况分析

  函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:

  (一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;

  (二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;

  (三)高中用导数工具研究函数的单调性和最值。

  1.有利条件

  现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

  初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

  2.不利条件

  用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

  三、教学目标分析

  课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

  1.知识与能力目标:

  ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

  ⑵理解函数的三要素的含义及其相互关系;

  ⑶会求简单函数的定义域和值域

  2.过程与方法目标:

  ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

  ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

  3.情感、态度与价值观目标:

  感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

  四、教学重点、难点分析

  1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

  重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

  突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的'语言描述抓住概念的精髓。

  2.教学难点:

  第一:从实际问题中提炼出抽象的概念;

  第二:符号“y=f(x)”的含义的理解.

  难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

  突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

  五、教法与学法分析

  1.教法分析

  本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

  2.学法分析

  在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

高一数学教案范文2

  一、教材分析及处理

  函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域。

  对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。

  教学重点是函数的概念,难点是对函数概念的本质的理解。

  学生现状

  学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。

  二、教学三维目标分析

  1、知识与技能(重点和难点)

  (1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。

  (2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。

  (3)、掌握定义域的表示法,如区间形式等。

  (4)、了解映射的概念。

  2、过程与方法

  函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:

  (1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。

  (2)、面向全体学生,根据课本大纲要求授课。

  (3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。

  3、情感态度与价值观

  (1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识。

  (2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。

  三、教学器材

  多媒体ppt课件

  四、教学过程

  教学内容教师活动学生活动设计意图

  《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的'例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活

  知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫

  思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题

  对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识

  函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法

  注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点

  习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系

  映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫

  小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点

  五、教学评价

  为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。

  在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。

  虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。

高一数学教案范文3

  教学目标:①掌握对数函数的性质。

  ②应用对数函数的性质可以解决:对数的大小比较,求复

  合函数的定义域、值 域及单调性。

  ③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高

  解题能力。

  教学重点与难点:对数函数的性质的应用。

  教学过程设计:

  ⒈复习提问:对数函数的概念及性质。

  ⒉开始正课

  1 比较数的大小

  例 1 比较下列各组数的大小。

  ⑴loga5.1 ,loga5.9 (a>0,a≠1)

  ⑵log0.50.6 ,logЛ0.5 ,lnЛ

  师:请同学们观察一下⑴中这两个对数有何特征?

  生:这两个对数底相等。

  师:那么对于两个底相等的`对数如何比大小?

  生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

  师:对,请叙述一下这道题的解题过程。

  生:对数函数的单调性取决于底的大小:当0

  调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递

  增,所以loga5.1

  板书:

  解:Ⅰ)当0

  ∵5.1<5.9 loga5.1="">loga5.9

  Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

  ∵5.1<5.9 ∴loga5.1

  师:请同学们观察一下⑵中这三个对数有何特征?

  生:这三个对数底、真数都不相等。

  师:那么对于这三个对数如何比大小?

  生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板书:略。

  师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

  数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

  函数图象的位置关系来比大小。

  2 函数的定义域, 值 域及单调性。

高一数学教案范文4

  一、教学目标

  (1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

  (2)理解逻辑联结词“或”“且”“非”的含义;

  (3)能用逻辑联结词和简单命题构成不同形式的复合命题;

  (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

  (5)会用真值表判断相应的复合命题的真假;

  (6)在知识学习的基础上,培养学生简单推理的技能.

  二、教学重点难点:

  重点是判断复合命题真假的方法;难点是对“或”的含义的理解.

  三、教学过程

  1.新课导入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的`教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

  初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)

  (从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)

  学生举例:平行四边形的对角线互相平. ……(1)

  两直线平行,同位角相等.…………(2)

  教师提问:“……相等的角是对顶角”是不是命题?……(3)

  (同学议论结果,答案是肯定的.)

  教师提问:什么是命题?

  (学生进行回忆、思考.)

  概念总结:对一件事情作出了判断的语句叫做命题.

  (教师肯定了同学的回答,并作板书.)

  由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

  (教师利用投影片,和学生讨论以下问题.)

  例1 判断以下各语句是不是命题,若是,判断其真假:

  命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

  初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

  2.讲授新课

  大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

  (片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)

  (1)什么叫做命题?

  可以判断真假的语句叫做命题.

  判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0

  中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

  (2)介绍逻辑联结词“或”、“且”、“非”.

  “或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

  命题可分为简单命题和复合命题.

  不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

  由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.

  (4)命题的表示:用p ,q ,r ,s ,……来表示.

  (教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)

  我们接触的复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式.

  给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.

  对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q .

  在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

  3.巩固新课

  例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

  (1)5 ;

  (2)0.5非整数;

  (3)内错角相等,两直线平行;

  (4)菱形的对角线互相垂直且平分;

  (5)平行线不相交;

  (6)若ab=0 ,则a=0 .

  (让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

【高一数学教案】相关文章:

高一优秀数学教案09-28

高一数学教案11-08

高一数学教案11-05

高一数学教案模板11-08

高一数学教案优秀09-05

人教版高一数学教案06-10

【热门】高一数学教案11-26

高一数学教案【推荐】11-30

高一数学教案【精】11-29

【精】高一数学教案12-01