现在位置:范文先生网>教案大全>数学教案>数学《二次函数》优秀教案

数学《二次函数》优秀教案

时间:2024-09-26 19:25:06 晓璇 数学教案 我要投稿

数学《二次函数》优秀教案(通用8篇)

  作为一位杰出的教职工,通常需要准备好一份教案,教案有助于学生理解并掌握系统的知识。怎样写教案才更能起到其作用呢?下面是小编帮大家整理的数学《二次函数》优秀教案,仅供参考,希望能够帮助到大家。

数学《二次函数》优秀教案(通用8篇)

  数学《二次函数》优秀教案 1

  一、教材分析

  本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a<0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

  二、学情分析

  本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

  三、教学目标

  (一)知识与能力目标

  1、 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;

  2、 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

  (二)过程与方法目标

  通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

  (三)情感态度与价值观目标

  1、 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;

  2、 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

  四、教学重难点

  1、重点

  通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

  2、难点

  二次函数y=ax2+bx+c(a≠0)的`图像的性质。

  五、教学策略与 设计说明

  本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

  六、教学过程

  教学环节(注明每个环节预设的时间)

  (一)提出问题(约1分钟)

  教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?

  学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

  目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。

  (二)探究新知

  1、探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)

  教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。

  学生活动:讨论解决

  目的:激发兴趣

  2、配方求解顶点坐标和对称轴(约5分钟)

  教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)

  =0.5(x2-12x+36-36+42)

  =0.5(x-6)2+3

  教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。

  学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。

  目的:即加深对本课知识的认知有增强了配方法的应用意识。

  3、画出该二次函数图像(约5分钟)

  教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。

  学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。

  目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。

  4、探究y=-2x2-4x+1的函数图像特点(约3分钟)

  教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。

  学生活动:学生独立完成。

  目的:研究a<0时一个具体函数的图像和性质,体会研究二次函数图像的一般方法。

  5、结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)

  教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a<0时,y随x的变化情况、抛物线与y的交点以及函数的最值如何。

  学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的变化情况。

  目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。

  6、简单应用(约11分钟)

  教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。

  教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。

  学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。

  目的:巩固新知

  课堂小结(2分钟)

  1、 本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题?

  2、 你对本节课有什么感想或疑惑?

  布置作业(1分钟)

  1、 教科书习题22.1第6,7两题;

  2、 《课时练》本节内容。

  板书设计

  提出问题 画函数图像 学生板演练习

  例题配方过程

  到顶点式的配方过程 一般式相关知识点

  教学反思

  在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

  我认为优点主要包括:

  1、教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

  2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

  3、板书字体端正,格式清晰明了,突出重点、难点。

  4、我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。

  所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:

  1、知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;

  2、一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;

  3、学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

  4、合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

  重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。

  数学《二次函数》优秀教案 2

  一、教材分析

  1、教材的地位及作用

  函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。本节内容的教学,在函数的教学中有着承上启下的作用。它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。

  2.教学目标

  (1) 掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。[知识与技能目标]

  (2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。[过程与方法目标]

  (3) 让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦,[情感、态度、价值观目标]

  3、教学的重、难点

  重点:二次函数的概念和解析式

  难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力

  4、 学情分析

  ①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。 ②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与 能力。

  ③初三学生程度参差不齐,两极分化已形成。

  二、教法学法分析

  1、教法(关键词:情境、探究、分层)

  基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法 为主进行教学。让学生在开放的情境中,在教师的 引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。

  2、学法(关键词:类比、自主、合作)

  根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。在各个环节中引导学生类比迁移,对照学习。以自主探索为主,学会合作交流,在师生互动、生生互动中让每个学生动口,动手,动脑,培养学生学习的主动性和积极性,使学生由“学会”变“会学”和“乐学”。

  3、教学手段

  采用多媒体教学,直观呈现抛物线和谐、对称的美,激发学生的学习 兴趣,参与热情,增大教学容量,提高教学效率。

  三、教学过程

  完整的数学学习过程是一个不断探索、发现、验证的过程,根据新课标要求,根据“以人为本,以学定教”的教学理念,结合学生实际,制订以下教学流程:

  (一)创设情境,温故引新

  以提问的形式复习一元二次方程的一般形式,一次函数,反比例函数的定义,然后让学生欣赏一组优美的有关抛物线的图案,创设情境:

  (1)你们喜欢打篮球吗?

  (2)你们知道:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?

  从而引出课题《二次函数》,导入新课

  (二)合作学习,探索新知

  为了更贴近生活,我先设计了两个和实际生活有关的练习题。鼓励学生积极发言,充分调动学生的主动性。然后出示课本上的两个问题,在这个环节中,我让学生在教师的引导下,先独立思考,再以小组为单位交流成果,以培养学生自主探索、合作探究的能力。四个解析式都列出来后。让学生通过观察与思考,这些解析式有什么共同特征,启发学生用自己的语言总结,从而得出二次函数的概念,并且提高了学生的语言表达能力。

  学生在学习二次函数的概念时要求学生既要知道表示二次函数的解析式中字母的意义,还要能根据给出的函数解析式判断一个函数是不是二次函数

  (三)当堂训练,巩固提高

  由于学生层次不一,练习的设计充分考虑到学生的个体差异,满足不同层次学生的学习需求,实现有“差异的”发展。让每一个学生都感受成功的喜悦。我设计了3道练习题,其难易程度逐步提高,第一道题面对所有的学生,学生可以根据二次函数的概念直接判断,但需要强调该化简的必须化简后才可以判断。第二道题让学生逆向思维,根据条件自己写二次函数,从而加深了对二次函数概念的理解。最后一道题综合性较强,可以提高他们的综合素质。

  (四).小结归纳,拓展转化

  让学生用自己的`语言谈谈自己的收获,可以将这一节的知识条理化,进一步掌握二次函数的概念。

  (五)布置作业,学以致用

  作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。同时,选做题具有总结性,可引导学生研究二次函数,一次函数,正比例函数的联系.

  四、评价分析

  本节课的教学从学生已有的认知基础出发,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。整节课注重学生能力的培养和习惯的养成。由于学生的层次不一,我全程关注每一个学生的学习状态,进行分层施教,因势利导,随机应变,适时调整教学环节,实现评价主体和形式的多样化,把握评价的时机与尺度,激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。

  五、教学反思

  1.本节课通过学生合作交流,自己列出不同问题中的解析式,并通过观察他们的共同特征,成功得出了二次函数的概念。

  2.本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生的语言表达能力。同时不断激发学生的探索精神,提高了学生分析和解决问题的能力。使学生有成功体验。

  数学《二次函数》优秀教案 3

  【教学目标】

  【知识与技能】

  1.会用描点法画二次函数y=ax2+bx+c的图象.

  2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.

  3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.

  【过程与方法】

  1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.

  2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.

  【情感态度】

  进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.

  【教学重点】

  ①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.

  【教学难点】

  能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.

  一、情境导入,初步认识

  请同学们完成下列问题.

  1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.

  2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.

  3.画y=-2x2+6x-1的图象.

  4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的`图象.

  5.二次函数y=-2x2+6x-1的y随x的增减性如何?

  【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.

  二、思考探究,获取新知

  探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?

  一般分为三步:

  1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.

  2.列表,描点,连线画出对称轴右边的部分图象.

  3.利用对称点,画出对称轴左边的部分图象.

  探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?

  数学《二次函数》优秀教案 4

  【教学目标】

  【知识与技能】

  1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.

  2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.

  【过程与方法】

  经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

  【情感态度】

  通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.

  【教学重点】

  1.会画y=ax2(a>0)的'图象.

  2.理解,掌握图象的性质.

  【教学难点】

  二次函数图象及性质探究过程和方法的体会。

  【教学过程】

  一、情境导入,初步认识

  问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?

  问题2 如何用描点法画一个函数图象呢?

  【教学说明】

  ①略;

  ②列表、描点、连线.

  二、思考探究,获取新知

  探究1 画二次函数y=ax2(a>0)的图象.

  画二次函数y=ax2的图象.

  【教学说明】

  ①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.

  ②从列表和描点中,体会图象关于y轴对称的特征.

  ③强调画抛物线的三个误区.

  误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.

  误区二:并非对称点,存在漏点现象,导致抛物线变形.

  误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.

  数学《二次函数》优秀教案 5

  教学目标

  知识与技能

  1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间 的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.

  2.会利用二次函数的图象求一元二次方程的近似解.

  过程与方法

  经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  情感态度价值观

  通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.

  教学重点和难点

  重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.

  难点:二次函数与x轴交 点的个数与一元二次方程的根的 个数之间的关系.

  教学过程设计

  (一)问题的'提出与解决

  问题 如图,以40m/s的速度将 小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线. 如果不考虑空气阻力,球的飞行高度h( 单位:m)与飞行时间t(单位:s)之间具有关系

  h=20t—5t2

  考虑以下问题

  (1)球的飞行高度能否达到15m?如能,需要多少飞行时间?

  (2)球 的飞行高度能否达到20m?如能,需要多少飞行时间?

  (3)球的飞行高度能否达到20.5m?为什么?

  (4)球从飞出到落地要用多 少时间?

  分析:由于球的飞行高度h与飞行时间t的关系是二次函数

  h=20t-5t2.

  所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值.

  解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2= 3.

  当球飞行1s和3s时,它的高度为15m.

  (2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.

  当球飞行2s时,它的高度为20m.

  (3)解方程 20.5=20t-5t2. t2-4t+4.1=0

  因为(-4)2-4×4.1<0>(4)解方程 0=20t-5t2. t2-4t=0. t1=0,t2=4.

  当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出.4s时球落回地面

  播放课件:函数的图像,画出二次函数h=20t-5t2的图象,观察图象,体会以上问题的答案.

  从上面可以看出.二次函数与一元二次方程关系 密切.

  由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?

  例如:已知二次函数y =-x2+4x的值为3.求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值.

  一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.

  (二)问题的讨论

  二次函数(1)y=x2+x-2;

  (2) y=x2-6x+9;

  (3) y=x2-x+0.

  的图象如图26.2-2所示.

  (1) 以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?

  (2)当x取公共点的横坐标时,函数的值是多少?由 此,你能得出相应的一元二次方程的根吗?

  先画出以上二次函数的图象,由图像学生展开讨论,

  在老师的引导下回答以上的问题.

  可播放课件:函数的图像, 输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.

  可以看出:

  (1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0 .由此得出方程x2+x-2=0的根是-2,1.

  (2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.

  (3)抛物线y=x2-x+1与x轴没有公共点, 由此可知,方程x 2-x+1=0没有实数根.

  总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根.

  (三)归纳

  一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是 x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax 2+bx+c=0的一个根.

  (2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.

  由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由 于作图或观察可能存在误差,由图象求得的根,一般是近似的

  (四)例题

  例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

  解:作y=x2-2x-2的图象(图26.2-3),它与x轴的公共点的横坐标大约是-0.7,2.7.

  所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.

  播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.

  (五)小结

  总结本节的知 识点.

  (六)板书设计

  二次函数与一元二次方程

  抛物线y=ax2+bx+c与方程a x2+bx +c=0的解之间的关系

  数学《二次函数》优秀教案 6

  教学目标:

  1、使学生能利用描点法正确作出函数y=ax2+b的图象。

  2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。

  教学重点:

  会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。

  教学难点:

  正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系。

  教学过程:

  一、提出问题导入新课

  1.二次函数y=2x2的图象具有哪些性质?

  2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?

  二、学习新知

  1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较

  问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?

  同学试一试,教师点评。

  问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的`位置又有什么关系?

  让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。

  师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?

  小组相互说说(一人记录,其余组员补充)

  2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。

  3、做一做

  在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?

  三、小结

  1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?

  2、你能说出函数y=ax2+k具有哪些性质?

  四、作业: 在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像

  数学《二次函数》优秀教案 7

  教学目标:

  会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

  重点难点:

  重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

  难点:会运用二次函数知识解决有关综合问题。

  教学过程:

  一、例题精析,强化练习,剖析知识点

  用待定系数法确定二次函数解析式.

  例:根据下列条件,求出二次函数的解析式。

  (1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

  (2)抛物线顶点P(-1,-8),且过点A(0,-6)。

  (3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

  (4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

  学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

  教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)

  (2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)

  当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

  当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

  当已知抛物线与x轴的`交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)

  强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

  (1)若m为定值,求此二次函数的解析式;

  (2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

  二、知识点串联,综合应用

  例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交

  数学《二次函数》优秀教案 8

  一、教材分析

  1、教材的地位和作用

  二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式——定义域——图象——性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。

  2、教学的重点和难点

  教学重点:使学生掌握二次函数的概念、性质和图象;从函数的性质推断图象的方法。

  教学难点:掌握从函数的性质推断图象的方法。

  二、目标分析

  按照新课标指出三维目标,根据任教班级学生的实际情况,本节课我确定的教学目标是:

  1、知识与技能:掌握二次函数的性质与图象,能够借助于具体的二次函数,理解和掌握从函数的性质推断图象的方研究法。

  2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,掌握从函数解析式、性质出发去认识函数图象的高度理解和研究函数的方法。

  3、情感、态度、价值观:让学生感受数学思想方法之美、体会数学思想方法之重要;培养学生主动学习、合作交流的意识等。

  三、教法学法分析

  遵循“教师的主导作用和学生的主体地位相统一的教学规律”,从教师的角色突出体现教师是设计者、组织者、引导者、合作者,经过教师对教材的分析理解,在教师的组织引导和师生互动过程中以问题为载体实施整个教学过程;在学生这方面,通过自主探索、合作交流、归纳方法等一系列活动为主线,感受知识的形成过程,拓展和完善自己的认知结构,进而体现出教学过程中教师与学生的双主体作用。

  四、教学过程分析

  根据新课标的理念,我把整个的教学过程分为六个阶段,即:创设情景、提出问题;师生互动、探究新知;独立探究,巩固方法;强化训练,加深理解;小结归纳,拓展深化;布置作业,提高升华。

  环节1本节课一开始我就让学生直接总结出二次函数的性质与图象形状,在学生回答后,以有必要再重复吗?编者的失误?还是另有用意呢?的设问来激发学生的求知欲,在学生感觉很疑惑的时候马上进入环节2:试作出二次函数

  的图象。目的是充分暴露学生在作图时不能很好的结合函数的性质而出现的错误或偏差问题,突出本节课的重要性。在学生总结交流的基础上教师指出学生的错误并以设问的方式提出本节课的目标:如何利用函数性质的'研究来推断出较为准确的函数图象,进而引导学生进入师生互动、探究新知阶段。

  在这个阶段,我引用课本所给的例题1请同学们以学习小组为单位尝试完成并作出总结发言。目的是:让学生充分参与,在合作探究中让学生最大限度地突破目标或暴露出在尝试研究过程中出现的分析障碍,即不能很好的把握函数的性质对图象的影响,不能把抽象的性质与直观的图象融会贯通,这样便于教师在与学生互动的过程中准确把握难点,各个击破,最终形成知识的迁移。在学生探讨后,教师选小组代表做总结发言,其他小组作出补充,教师引导从逐步完善函数性质的分析。其中,学生对于对称轴的确定、单调区间及单调性的分析阐述等可能存在困难。这时教师可以利用对解析式的分析结合多媒体演示引导学生得到分析的思路和解决的方法,在师生互动的过程中把函数的性质完善。之后进入环节3:再次让学生利用二次函数的性质推断出二次函数的图象,强化用二次函数的性质推断图象的关键。进而突破教学难点。让学生真正实现知识的迁移,完成整个探究过程,形成较为完整的新的认知体系.当然,在这个过程中可能会有学生提出图象为什么是曲线而不是直线等问题,为了消除学生的疑惑,进入第4个环节:教师要简单说明这是研究函数要考虑的一个重要的性质,是函数的凹凸性,后面我们将要给大家介绍,同学们可以阅读课本第110页的探索与研究。这样也给学生留下一个思考与探索的空间,培养学生课外阅读、自主研究的能力,增强学生学习数学的积极性.

  在以上环节完成后,进入第5个环节:让学生对利用解析式分析性质然后推断函数图象的研究过程进行梳理并加以提炼、抽象、概括,得出研究函数的具体操作过程,使问题得以升华,拓宽学生的思维,将新知识内化到自己的认知结构中去.最终寻求到解决问题的方法。

  教学的最终目标应该落实到每一个学生个体的内化与发展,由此让引导学生进入独立探究,巩固方法的阶段。例2在题目的设置上变换二次函数的开口方向,目的是一方面使学生加深对知识的理解,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.学生在例1的基础上将会目标明确地进行函数性质的研究,然后推断出比较准确的函数图象,使新知得到有效巩固.

  通过前面三个阶段的学习,学生应该基本掌握了本节课的相关知识。但对二次函数中系数a、b、c的对二次函数的影响还有待提高,为此我把课本中的例3进行改编,引导学生进入强化训练,加深理解阶段。一方面可以解决学生对奇偶性的质疑,另一方面也可以把学生对二次函数的认识提到新的高度。

  第五个阶段:小结归纳,拓展深化。为了让学生能够站在更高的角度认识二次函数和掌握函数的一般研究方法,教师引导学生从两个方面总结。在你对函数图象与性质的关系有怎样的理解方面教师要引导、拓展,明确今天所学习的方法实际上是研究函数性质图象的一般方法,对于一些陌生的或较为复杂的函数只要借助于适当的方法得到相关的性质就可以推断出函数的图象,从而把学生的认知水平定格在一个新的高度去理解和认识函数问题。

  最后一个阶段是布置作业,提高升华,作业的设置是分层落实.巩固题让学生复习解题思路,准确应用,以便举一反三.探究题通过对教材例题的改编,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力.

  以上六个阶段环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,并得以迁移内化。而最终的探究作业又将激发学生兴趣,带领学生进入对二次函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。总之,这节课是本着“授之以渔”而非“授之以鱼”的理念来设计的。

【数学《二次函数》优秀教案】相关文章:

二次函数数学教案[优秀]06-30

数学《二次函数》优秀教案(通用11篇)11-11

二次函数数学教案02-07

二次函数数学教案06-24

二次函数数学教案(荐)06-30

(优选)二次函数数学教案06-30

二次函数数学教案(15篇)03-01

二次函数数学教案15篇02-07

二次函数数学教案通用15篇03-01