现在位置:范文先生网>教案大全>数学教案>高一数学教案>高一数学教案北师版文案

高一数学教案北师版文案

时间:2024-01-03 07:20:56 高一数学教案 我要投稿
  • 相关推荐

高一数学教案北师版文案

  无论在学习、工作或是生活中,越来越多人会在社交平台上发布文案,文案用以分享自己的喜怒哀乐。那什么样的文案才是经典的呢?下面是小编精心整理的高一数学教案北师版文案,希望能够帮助到大家。

高一数学教案北师版文案

高一数学教案北师版文案1

  一、目的要求

  1.通过本章的引言,使学生初步了解本章所研究的问题是集合与简易逻辑的有关知识,并认识到用数学解决实际问题离不开集合与逻辑的知识。

  2.在小学与初中的基础上,结合实例,初步理解集合的概念,并知道常用数集及其记法。

  3.从集合及其元素的概念出发,初步了解属于关系的意义。

  二、内容分析

  1.集合是中学数学的一个重要的基本概念。在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  2.1.1节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的`常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  3.这节课主要学习全章的引言和集合的基本概念。学习引言是引发学生的学习兴趣,使学生认识学习本章的意义。本节课的教学重点是集合的基本概念。

  4.在初中几何中,点、直线、平面等概念都是原始的、不定义的概念,类似地,集合则是集合论中的原始的、不定义的概念。在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识。教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集。”这句话,只是对集合概念的描述性说明。

  三、教学过程

  提出问题:

  教科书引言所给的问题。

  组织讨论:

  为什么“回答有20名同学参赛”不一定对,怎么解决这个问题。

  归纳总结:

  1.可能有的同学两次运动会都参加了,因此,不能简单地用加法解决这个问题.

  2.怎么解决这个问题呢?以前我们解一个问题,通常是先用代数式表示问题中的数量关系,再进一步求解,也就是先用数学语言描述它,把它数学化。这个问题与我们过去学过的问题不同,是属于与集合有关的问题,因此需要先用集合的语言描述它,完全解决问题,还需要更多的集合与逻辑的知识,这就是本章将要学习的内容了。

  提出问题:

  1.在初中,我们学过哪些集合?

  2.在初中,我们用集合描述过什么?

  组织讨论:

  什么是集合?

  归纳总结:

  1.代数:实数集合,不等式的解集等;

  几何:点的集合等。

  2.在初中几何中,圆的概念是用集合描述的。

  新课讲解:

  1.集合的概念:(具体举例后,进行描述性定义)

  (1)某种指定的对象集在一起就成为一个集合,简称集。

  (2)元素:集合中的每个对象叫做这个集合的元素。

  (3)集合中的元素与集合的关系:

  a是集合A的元素,称a属于集合A,记作a∈A;

  a不是集合A的元素,称a不属于集合A,记作。

  例如,设B={1,2,3,4,5},那么5∈B,注:集合、元素概念是数学中的原始概念,可以结合实例理解它们所描述的整体与个体的关系,同时,应着重从以下三个元素的属性,来把握集合及其元素的确切含义。

  ①确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  例如,像“我国的小河流”、“年轻人”、“接近零的数”等都不能组成一个集合。

  ②互异性:集合中的元素是互异的,即集合中的元素是没有重复的。

  此外,集合还有无序性,即集合中的元素无顺序。

  例如,集合{1,2},与集合{2,1}表示同一集合。

  2.常用的数集及其记法:

  全体非负整数的集合通常简称非负整数集(或自然数集),记作N,非负整数集内排除0的集,表示成或;

  全体整数的集合通常简称整数集,记作Z;

  全体有理数的集合通常简称有理数集,记作Q;

  全体实数的集合通常简称实数集,记作R。

  注:①自然数集与非负整数集是相同的,就是说,自然数集包括数0,这与小学和初中学习的可能有所不同;

  ②非负整数集内排除0的集,也就是正整数集,表示成或。其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成或。负整数集、正有理数集、正实数集等,没有专门的记法。

  课堂练习:

  教科书1.1节第一个练习第1题。

  归纳总结:

  1.集合及其元素是数学中的原始概念,只能作描述性定义。学习时应结合实例弄清其含义。

  2.集合中元素的特性中,确定性可以用于判定某些对象是否是给定集合的元素,互异性可用于简化集合的表示,无序性可以用于判定集合间的关系(如后面要学习的包含或相等关系等)。

  四、布置作业

  教科书1.1节第一个练习第2题(直接填在教科书上)。

高一数学教案北师版文案2

  教学目的:

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  教学重点:集合的基本概念及表示方法

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示

  一些简单的集合

  授课类型:新授课

  课时安排:1课时

  教具:多媒体、实物投影仪

  内容分析:

  1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

  这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念

  集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明

  教学过程:

  一、复习引入:

  1.简介数集的发展,复习公约数和最小公倍数,质数与和数;

  2.教材中的章头引言;

  3.集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的'有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N_或N+

  (3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括

  数0

  (2)非负整数集内排除0的集记作N_或N+Q、Z、R等其它

  数集内排除0的集,也是这样表示,例如,整数集内排除0

  的集,表示成Z_

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

  元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写

  三、练习题:

  1、教材P5练习1、2

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数(不确定)

  (2)好心的人(不确定)

  (3)1,2,2,3,4,5.(有重复)

  3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__

  4、由实数x,-x,|x|,所组成的集合,最多含(A)

  (A)2个元素(B)3个元素(C)4个元素(D)5个元素

  5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:

  (1)当x∈N时,x∈G;

  (2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G

  证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,则x=x+0_=a+b∈G,即x∈G

  证明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

  ∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

  ∵a∈Z,b∈Z,c∈Z,d∈Z

  ∴(a+c)∈Z,(b+d)∈Z

  ∴x+y=(a+c)+(b+d)∈G,又∵=

  且不一定都是整数,∴=不一定属于集合G

  四、小结:本节课学习了以下内容:

  1.集合的有关概念:(集合、元素、属于、不属于)

  2.集合元素的性质:确定性,互异性,无序性

  3.常用数集的定义及记法

  五、课后作业:

  六、板书设计(略)

  七、课后记:

  八、附录:康托尔简介

【高一数学教案北师版文案】相关文章:

数学教案-北师大版08-17

数学教案-教室 - 北师大版08-16

数学教案-乘车 - 北师大版08-16

数学教案-玩具 - 北师大版08-16

数学教案-轻重 - 北师大版08-16

数学教案-搭积木 - 北师大版08-16

数学教案-飞行表演 - 北师大版08-16

数学教案-买铅笔 - 北师大版08-16

数学教案-快乐的家园 - 北师大版08-16

数学教案-小猫钓鱼 - 北师大版08-16