现在位置:范文先生网>教案大全>数学教案>六年级数学教案>六年级数学教案《分数除法》

六年级数学教案《分数除法》

时间:2024-04-04 08:47:52 六年级数学教案 我要投稿

六年级数学教案《分数除法》

  作为一名教师,可能需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么大家知道正规的教案是怎么写的吗?以下是小编为大家整理的六年级数学教案《分数除法》,供大家参考借鉴,希望可以帮助到有需要的朋友。

六年级数学教案《分数除法》

六年级数学教案《分数除法》1

  教学目标

  1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

  2.能正确熟练地解答稍复杂的分数应用题.

  3.培养学生分析问题和解决问题的能力.

  教学重点

  明确分数乘、除法应用题的联系和区别.

  教学难点

  明确分数乘、除法应用题的联系和区别.

  教学过程

  一、启发谈话,激发兴趣.

  在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

  时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

  二、学习新知

  (一)出示例8的4个小题.

  1.学校有20个足球,篮球比足球多 ,篮球有多少个?

  2.学校有20个足球,足球比篮球多 ,篮球有多少个?

  3.学校有20个足球,篮球比足球少 ,篮球有多少个?

  4.学校有20个足球,足球比篮球少 ,篮球有多少个?

  (二)学生试做.

  (略)

  (三)比较区别

  1.比较1、3题.

  教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有

  什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?

  就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.

  2.比较2、4题

  教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的`地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

  三、巩固练习.

  (一)请你根据算式补充不同的条件.

  学校有苹果树30棵,________________,桃树有多少棵,

  (二)分析下面的数量关系,并列出算式或方程.

  1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?

  2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?

  3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?

  4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?

  四、归纳总结.

  今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.

六年级数学教案《分数除法》2

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一:复习

  1、根据条件说出把哪个数量看作单位1。

  (1)棉田的面积占全村耕地面积的2/5。

  (2)小军的体重是爸爸体重的3/8。

  (3)故事书的本数占图书总数的1/3。

  (4)汽车速度相当于飞机速度的1/5。

  2、找单位1,并说出数量关系式。

  (1)白兔的只数占总只数的2/5。

  (2)甲数正好是乙数的3/8。

  (3)男生人数的1/3恰好和女生同样多。

  3、一个儿童体重35千克,他体内所含水分占体重的.4/5,他体内的水分有多少千克?

  集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)

  二、新授

  1、教学例1。一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童体重有多少千克?

  (1)指名读题,说出已知条件和问题。

  (2)共同画图表示题中的条件和问题。

  (3)分析数量关系式

  提问:根据水份占体重的4/5,可以得到什么数量关系式?

  学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。

  根据学生的回答,把线段图进一步完善。

  提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)

  让学生试列方程,并说出方程表示的意义。

  让学生把方程解完,并写上答案。

  出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)

  2、比较。

  提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?

  根据学生的回答,帮助学生整理出:

  (1)看作单位1的数量相同,数量关系式相同。

  (2)复习题单位1的量已知,用乘法计算;

  例1单位1的量未知,可以用方程解答。

  (3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。

  三、巩固练习

  1、做书P34做一做

  要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。

  2、做练习九第1题。

  先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。

  四、小测:(略)

  五、小结:这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?

  六、布置作业

  练习九第2题

  教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。

  再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

六年级数学教案《分数除法》3

  教学目标

  使学生掌握分数除法和加、减法混合运算的运算顺序,能正确进行运算,并根据具体情况合理计算,提高学生四则计算的能力。

  教学重难点

  能正确进行运算,并根据具体情况合理计算,提高学生四则计算的能力。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 复习引新

  二、教学新课

  三、课堂

  四、作业

  1、说说下面各题的运算顺序

  8÷2+9÷318÷(12-3)

  2、将上题中的数据改为分数,问运算顺序怎样?

  3、问:分数除法和加、减法的混合运算顺序和整数除法和加、减法的混合运算顺序是否一样?

  1、出示例1

  让学生自己独立完成,一人上黑板,集体说解题顺序。

  2、组织练习

  做“练一练”第1题

  3、教学例2

  出示例2

  问:先算什么,再算什么?

  学生口答、老师边板书边提问。

  指出:这道题在把除法改为乘法后,可以应用乘法分配律使计算简便。所以我们在混合运算时,每一步计算时,都要注意观察算式的特点,能用简便算法的一般用简便算法。

  4、组织练习

  做“练一练”第2题

  问:应用了什么定律,要怎样计算?

  指出:在除法转化成乘法后,要注意有一些题可以用乘法的运算定律使计算简便。

  这节课学习了分数除法和加、减法的混合运算。谁来说一说它的'运算顺序怎样?运算时要注意什么?

  练习十一第1~3题的第一行,第4、5题

  课后感受

  本节课的重点放在简便运算上,基本上同学们还是掌握的不错。

六年级数学教案《分数除法》4

  教学目标

  1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

  2.能正确熟练地解答稍复杂的分数应用题.

  3.培养学生分析问题和解决问题的能力.

  教学重点

  明确分数乘、除法应用题的联系和区别.

  教学难点

  明确分数乘、除法应用题的联系和区别.

  教学过程

  一、启发谈话,激发兴趣.

  在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

  时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

  二、学习新知

  (一)出示例8的4个小题.

  1.学校有20个足球,篮球比足球多 ,篮球有多少个?

  2.学校有20个足球,足球比篮球多 ,篮球有多少个?

  3.学校有20个足球,篮球比足球少 ,篮球有多少个?

  4.学校有20个足球,足球比篮球少 ,篮球有多少个?

  (二)学生试做.

  1.第一题

  解法(一)

  解法(二)

  2.第二题

  解:设篮球有 个.

  解法(一)

  解法(二)

  解法(三)

  3.第三题

  解法(一)

  解法(二)

  4.第四题

  解:设篮球 个.

  解法(一)

  解法(二)

  解法(三)

  (三)比较区别

  1.比较1、3题.

  教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有

  什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把足球看作单位1,单位1的量是已知的.,求篮球有多少个?

  就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.

  2.比较2、4题

  教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

六年级数学教案《分数除法》5

  一、复习引新

  1.说出下面各数的倒数。

  0.36

  2.已知12645=5670,直接说出567045和5670126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)

  3.引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法。(出示课题)

  二、新授教学

  (一).教学分数除法的意义(课件一下载)

  ①每人吃半块月饼,4个人一共吃多少块月饼?

  半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()

  ②两块月饼,平均分给4人,每人分得多少块?怎样列式?

  列式:24

  ③两块月饼,分给每人半块,可以分给几个人?

  列式后,说一说结果是多少?你是如何得出结果的.?

  ④组织学生讨论:分数除法的意义。

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  ⑤练习反馈。

  根据:,写出,(二).教学分数除以整数

  1.出示例1、把米铁丝平均分成2段,每段长多少米(课件二下载)

  ①求每段长多少米怎样列算式?②以小组为单位讨论一下得多少呢?

  米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。

  ③、教师板书整理。

  (米)

  2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?

  也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:把米铁丝平均分成6段,就是求米的是多少,列式是:3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?(米)

  为什么采用转化成分数乘法这种方法比较好呢?

  组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。

  4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。

  三、巩固练习

  1.计算下面各题:

  学生独立完成,教师巡视,进行个别辅导。

  2.请同学求未知数①②3.判断。

  ①分数除法的意义与整数除法的意义相同。()

  ②已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()

  ③()

  ④()

  ⑤()

  4.解答下面各题。

  ①把平均分成4份,每份是多少?

  ②什么数乘以6等于?

  ③一个正方形的周长是米,它的边长是多少米?

  四、课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  五、课后作业

  练习七1、2、3、4

  六、板书设计

六年级数学教案《分数除法》6

  练习目标:

  1在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;

  2运用所学的分数除法的知识,解决相应的实际问题.

  练习过程:

  一、基础知识练习:

  1、计算:

  ⑴2/1328/943/1035/11522/232

  ⑵3/10223/242617/21518/9713/154

  (学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的.)

  2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的地方?

  引导学生小结:除以一个不等于0的数,等于H这个数的倒数.

  二深入练习

  1、计算下面各题,比较它们的计算方法.

  5/6+2/35/6-2/35/62/35/62/3

  2、

  (让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)

  根据学生的.回答,教师作如下板书:

  一个数除以小于1的数,商大于被除数;

  一个数除以1,商等于被除数;

  一个数除以大于1的数,商小于被除数。

  三、解决问题:

  练习八第7至8题。

  第7题学生独立解答。

  第8题学生解答时提示学生需要先统一单位。

  小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

  四、作业练习:

  1、33页第5、9题。

  2、一个商店用塑料袋包装120千克水果糖.如果每袋装1/4千克,这些水果糖可以装多少袋?

  五、教学反思:

六年级数学教案《分数除法》7

  教学内容

  复习分数除法的意义和计算

  教材第46、第47页的内容。

  教学目标

  1.使学生进一步明确本单元的知识体系,加深对分数除法的意义和计算方法的理解。

  2.熟练掌握分数除法的计算法则,提高灵活解题的能力。

  3.在整理知识体系的过程中,帮助学生掌握复习的方法。

  重点难点

  重点:概念和计算法则的.整理。

  难点:运用所学概念,灵活解决问题。

  教具学具

  练习题投影片。

  教学过程

  一、整理本单元的知识

  1.课前布置作业,学生自己整理本单元的知识点。

  2.展示学生的知识结构图。

  二、复习分数除法的意义和计算法则

  1.回忆。

  分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法,小组讨论。

  2.根据学生的汇报整理成下表。

  三、课堂作业新设计

  四、思维训练参考答案

六年级数学教案《分数除法》8

  教学目标:

  1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:弄清单位1的量,会分析题中的数量关系。

  教学难点:分析题中的数量关系。

  教学过程:

  一、复习

  小红家买来一袋大米,重40千克,吃了,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授

  1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

  (1)吃了是什么意思?应该把哪个数量看作单位1?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的'重量=剩下的重量

  (4)指名列出方程。解:设买来大米X千克。x-x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。解:设航模小组有人。

  三、小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

  教学追记:

  本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。

六年级数学教案《分数除法》9

  教学目标:

  1、通过具体的问题情境,探索并理解分数除法的计算方法。

  2、能正确得进行分数除法的计算。

  3、培养学生分析、推理能力。

  教学过程:备注

  活动一:创设情境

  1、教师出示例3:小明2/3小时走了2千米,小红5/12小时走了5/6千米谁走的快些?

  (1)、读题,理解题意。

  (2)、列出算式,说明列式根据什么数量关系。

  2、探索计算方法。

  (1)、2/2/3如何计算?让我们画线段图看看。

  (2)、先画一条线段表示1小时走的路程,怎样表示2/3小时走了2千米这个条件?

  (3)、指着图启发:已知2/3小时走了2千米,要求1小时走了多少千米?可以先算什么?再算什么?把你的想法与小组成员交流讨论以下。

  (4)、找出计算方法。

  观察:除法转化成了什么运算?什么没变化?什么变了?是怎样变的?

  强调:被除数没有变,除号变乘号,除数变成了它的倒数。

  (5)、小结:从上面这个推算过程中我们找到了分数除法的计算方法是:除以一个不等于0的'分数等于乘这个数的倒数。

  活动二:巩固练习。

  1、完成31页做一做

  2、33页4题

  3、活动三:质疑问难

  板书设计

  课题:分数除法31课时上课时间:_年_月_日

  教学目标:

  1、掌握分数除法混合运算的计算方法。

  2、培养学生的计算能力。

  教学过程:备注

  活动一:创设情境

  出示例4:小红用长8米的彩带做了一些花,每朵花用了米的彩带。她把其中的4朵送给了同学,还剩几多花?

  1、读题理解题意

  2、怎样列式

  8/2/3-4=

  3、怎样计算?先计算什么?

  4、同桌间说一说运算顺序

  小结:(略)

  活动二:

  巩固练习

  1、34页做一做

  板书设计

六年级数学教案《分数除法》10

  单元教材分析:

  本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。

  单元教学目标:

  1、理解并掌握分数除法的计算方法,回进行分数除法计算。

  2、回解答已知一个数的几分之几是多少求这个数的实际问题。

  3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值

  4、能运用比的知识解决有关的实际问题。

  学情分析:

  本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意义理解分数除法的意义。

  教学目标:

  1、让学生理解分数除法的`运算意义。

  2、掌握分数除以整数的计算方法。

  3、培养学生的计算能力和分析能力。

  教学过程:备注

  活动一:

  出示例1

  每盒水果糖重100克,3盒有多重?

  1、读题理解题意

  2、列式100*3=300

  3、把乘法算式改成两道除法算式

  300/3=100300/100=3

  4、用千克做单位怎样列式?

  1/10*3=3/10

  5、|用同样的方法改写成除法算

  小结:分数除法的意义

  活动二:

  出示例2

  把一张纸的4/5平均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算

  1、把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5

  2、把4/5平均分成3份,每份就是4/5的1/2,也就是4/5*1/2

  3、根据上面的折纸实验和算式,你发现什么规律?

  小结:(略)

  活动三:

  巩固练习:

  1、31页做一做1、2

  板书设计

六年级数学教案《分数除法》11

  教学目标:

  1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。

  2、根据题意,能画线段图分析图意。

  3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。

  教学过程:

  一、巩固旧知,过渡引入

  1、根据题意,判断谁是单位1,并写出各题的数量关系。

  (1)故事书本的2/5 等于连环画的本数。

  (2)梨重量的7/8 是840千克。

  (3)男生人数是全班人数的2/3 。

  2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?

  [这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]

  二、学习新知

  1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?

  (1)读题,找出已知条件和问题。

  (2)根据题意与线段图理解题中的条件和问题。

  (3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。

  体重× 4/5 =体内水分重量

  师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?

  (4)学生尝试练习方程解答,个别板演,教师点评。

  (1)解:设这个儿童体重χ千克

  (2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5

  χ=35 答:这个儿童体重35千克。

  (5)让学生自己检验,分两步检验

  ①把χ=35代入原方程,左边=35×4/5=28,右边=28,左边=右边,所以χ=35是原方程的解。

  ②35千克的等于28千克,正好是水分的重量,所以35千克符合题意。

  (6)说说解题思路。

  [新的教学理念就要以学生为主体,让学生主动参与学习,通过找条件、问题、对比线段图理解题意,能激起学生欲望和学习兴趣。]

  2、迁移类推,尝试学习,教学例2:小明的爸爸体重是多少千克?

  (1)读题,明确条件和问题。

  (2)引导题意和线段图对比。

  ①题中有两个量相比较,需要画两条线段来表示两个量的数量关系。

  ②题里的已知条件“

  小明的体重

  ”明确把小明的爸爸体重看作单位“1”。

  ③根据题里的数量关系怎样表示出数量间的相等关系?

  爸爸体重×7/15=小明的体重

  ④学生解答,教师巡视点拨。

  [尝试学习,学生的主体地位得到尊重,在学习过程中,进行独立思考,在相互交流中积累知识。]

  三、巩固练习:(要求画线段图)

  1、课本第35页的“做一做”,教师点评。

  2、修路队修一条公路,已修了35千米,占全长的5/8,这条公路有多少千米?

  3、兴丰小学六年级有女生25人,正好是三、四年级女生人数的`1/4 ,4、四年级女生有多少人?

  [练习题要有针对性,要少而精,既让学生巩固所学知识,又培养学生的思维解题能力。]

  四、总结、拓展延伸

  今天的学习内容都是单位“1”的量没有告诉我们,可以用设χ的方法,把χ当作已知数列出方程,求出方程的解后并检验。同学们能根据题意用算术法解答吗?

  五、布置作业

  板书设计:

  分数除法应用题

  例1 解:设小明的体重是x千克

  4/5x = 28 X = 28÷4/5 X = 35 答:小明体重是35千克。

  设计说明:

  分数除法应用题是分数乘法应用题的逆运算题。教案在设计中由“求一个数的几分之几是多少”的应用题引入,又通过和这类题进行对比,引导学生深刻地理解知识间的内在联系,抓住数量关系相同的特点,顺利地根据分数乘法的意义列出方程。这样做使学生明确思维方向,有助于学生思维的发展。教案重视解题思路和解题步骤的归纳,通过层层深入地提问,简单明确的图示,帮助学生找到解题的关键——找准单位“1”,既加深了学生对数量关系的理解,又培养了学生分析问题解决问题的能力。

六年级数学教案《分数除法》12

  教学目标

  使学生掌握分数除法和加减法混合运算的运算顺序,能正确地进行运算,并能具体情况采用合理的计算方法,提高学生四则计算的'能力。

  教学重难点

  运算顺序,简便运算。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、复习引新

  二、教学新课

  三、

  四、作业

  1、说说下面各题的运算顺序。

  8÷2+9÷318÷(12-3)

  2、引入新课

  1、教学例1

  这道题要先算什么,再算什么?

  上下练习。

  引导观察计算过程,说明递等式书写的规范过程,并说明理由。

  2、组织练习。

  练一练1

  说顺序后练习。

  3、例2

  说运算顺序,这里除法的两步按照计算法则要怎样算?

  观察转化成乘法后的算式,想一想,是不是可以简便运算?

  上下用简便算法。

  问:用了什么运算定律?

  4、练习;

  练一练2

  这里除一个数要怎样算?

  用简便算法。

  说说各运用了什么运算定律,是怎样算的?

  说说运算顺序,要注意什么?

  练习111~3、4、5

  课后感受

  混合运算学生做起来很简单,只是在简便运算上还要注意灵活运用。

六年级数学教案《分数除法》13

  本单元的教学内容主要是分数除法的计算法则和用分数除法解决实际问题,下表是内容的编排。

  计算法则

  分数除以整数(例1)

  整数除以分数(例2、例3)

  分数除以分数(例4)练习十一

  实际问题

  分数除法应用题(例5)

  两步计算/分数乘除混合运算(例6)练习十二

  “整理与练习”

  从上面的表格里,可以看到教材在编排上有三个特点。

  第一,计算内容编排成两段:一是计算法则,二是乘除两步计算。两段之间穿插解决实际问题,留出了巩固法则、形成计算能力的时空。这是考虑到从理解法则到掌握法则需要一段过程,教学应遵循这个规律。结合解决实际问题应用计算知识,能起巩固知识、熟练技能的作用。在此基础上才能比较轻松地进行分数乘除混合运算。

  第二,计算法则的教学编排细致,从分数除以整数到整数除以分数,再到分数除以分数,最后才形成包摄性强的法则。分数除法是转化成分数乘法计算的,转化的方法是乘除数的倒数,例1至例4都教学这样的转化。前两道例题在操作中开展形象思维,体会转化是合理的;后两道例题通过猜想与验证,理解转化是必然的。这样的编排循序渐进,使法则的教学不是被动接受,而是主动建构;不仅是形成知识技能,还是发展数学思考、培养解决问题策略的载体。

  第三,单独编排例题教学应用题。本单元教学分数除法应用题,是在分数乘法概念的基础上列方程解答的。它与分数乘法应用题,在数量关系上有一致的地方,也有不同的地方,有许多可以比较、需要区分的内容。由于解法比较特殊以及教学内容比较多,单独编排有利于教学。

  一、在图画上分——感悟算法。

  分数除以整数、整数除以分数,是分数除法中比较简单的情况。要从中初步体会,分数除法可以通过被除数乘除数的倒数进行计算。为了有利于体会,这两道例题都选择可以操作的素材。

  例1呈现了4/5升果汁的图画,让学生在图中分一分,算出结果。一部分学生在直观操作中会看到4/5平均分成2份,每份是2/5,列出算式4/5÷2=2/5。“兔子”卡通的思考和这部分学生的想法一致,它的“4个1/5平均分成2份”清楚地解释了4÷2/5的意思。另一部分学生在直观情境的支持下,从4/5平均分成2份推理,得出就是求4/5的1/2。“小鸟”卡通把这样的思考用式子的恒等变换表示出来,就是4/5÷2=4/5×1/2。教学例1要在鼓励独立探索和解决问题方法多样的前提下,突出“小鸟”卡通的方法。这是学生第一次感悟分数除法和分数乘法的联系,对继续教学分数除法有定向作用。

  第55页的“试一试”计算4/5÷3。表面上看,似乎只是把例1算式的除数“2”改成“3”,其实它的计算中有很丰富的思考内容。如果采用4÷3/5这种方法,商的分子不是整数,无论是表示还是化简都很麻烦。如果采用4/5×1/3这种方法,能很快得到结果。挖掘“试一试”里的思考内容,教学要注意三点:一是让学生算一算,在教材上通过填空得到结果;二是让学生想一想,这里用了“兔子”卡通的方法还是“小鸟”的方法,为什么不用另一种算法;三是让学生说一说,计算分数除以整数的策略与过程,初步学会算法。

  例2教学整数除以分数,这里的除数是1/2、1/3、1/4,这些分子都是1的分数。选择这样的除数,便于通过操作解决实际问题,感受整数除以分数的计算方法。这道例题的教学分三步进行:第一步在“4个橙子可以分给几人”的问题情境中引出整数除以分数的算式。先是每人吃2个橙子,求可以分给几人的算式是4÷2。再是每人吃1/2个、1/3个、1/4个,求可以分给几人的数量关系与4÷2相同,通过类比推理,列出4÷1/2、4÷1/3、4÷1/4等算式。第二步看图计算4÷1/2,初步感悟算法。由于每人吃1/2个橙子,因此教材把4个橙子按1/2个、1/2个……画,一共画了8个1/2。“小猴”卡通看图知道可以分给8人,即4÷1/2=8(人)。“小鸟”卡通看图时想:1个橙子可以分给2人,4个橙子可以分给4×2=8(人)。4÷1/2和4 ×2都是求4个橙子可以分给几人的算式,得数都是8,它们能组成等式4÷1/2=4×2。教材里的“想一想,1/2与2有什么关系”在引导学生观察等式,研究等式从左边到右边的变化,初步发现整数除以分数可以变成这个整数乘分数的倒数,感受这可能是计算分数除法的策略和方法。因此说,4÷1/2的教学要领是建立等式、研究变化、领悟算法。第三步通过画图操作,计算4÷1/3和4÷1/4。这一步以4÷1/2的活动经验为基础,要求学生独立进行。在计算4÷1/3时,把代表1个橙子的圆三等分,表示出每人吃1/3个。通过画图看出1个橙子给3人吃,4个橙子给4×3=12(人)吃。据此写出等式4÷1/3=4×(3)。用同样的操作和思考,还能写出等式4÷1/4=4×(4)。寻找整数除以分数的算法是例题的教学任务,教材要求学生思考“括号里的数与除数有什么关系”,引导他们再次感受整数除以分数改写成乘法的关键与要领。

  二、验证猜想——确认算法。

  例3仍然是整数除以分数,它的除数不是几分之一那样的分数,而是几分之几的分数。如果说例2是整数除以分数的特殊情况,那么例3就是一般情况了。例4是分数除以分数,能统摄前面教学的分数除以整数和整数除以分数,因而更具代表性。编排这两道例题,要得出分数除法的计算法则。

  两道例题都有示意图,从图画里看到除法算式的商。例3用一根线条表示4米彩带,其中的每1米都平均分成3份,还涂色表示出1个2/3米。学生就可以在表示4米的线条上数出一共有几个2/3米,得到4÷2/3=6(段)。例4画了量杯的图,看着上面的刻度能够知道9/10里面有3个3/10,9/10÷3/10=3。

  两道例题都要验证分数除法可以转化成分数乘法。例1计算分数除以整数,例2计算整数除以几分之一的分数,初步知道分数除法可以变成乘法来计算。例3加强对这种转化的体验,要求学生想一想等式4÷2/3=4×3/2成立吗?这个等式的出现,源自例1、例2的计算体验,是一个猜想。它是否成立?需要验证。其中左边的4÷2/3=6,在示意图中已经知道。右边的4×3/2,通过计算得到6。两道算式得数相同,表示等式成立,证实了猜想是正确的。教学例4的时候,学生对分数除法转化成分数乘法的心向比较明显和强烈了,教材让他们按这样的思路试着算一算,得到与示意图相同的得数,从而确认猜想成立。

  两道例题都小结算法。例3从4÷1/2、4÷1/3、4÷1/4和4÷2/3,想想整数除以分数应该怎样计算。还可以相对于例1的分数除以整数的算法,体会分数除法变成乘法,应该用被除数乘除数的倒数。例4总结算法的视野比较开阔,要得出分数除法的计算法则。因此这里可以先小结分数除以分数的算法,再联系分数除以整数和整数除以分数的计算,找出这些分数除法在计算时有相同的策略与转化方法。然后用甲数和乙数分别表示被除数和除数,准确而简明地表达分数除法的计算法则。

  三、找数量关系式——列方程解题的关键。

  这道例题的教学重点是为什么用方程解答,以及怎样列出方程。体会列方程解的原因,就掌握了这类实际问题的特点。学会了列方程的方法,就把握了解题的关键。教材把这道例题编排在计算教学的后面,就是要突出上述的思想方法。这也是例题只到写出方程为止,把剩下的都留给学生的原因。

  分析数量关系是解决实际问题的一个重要步骤。解答分数应用题,要抓住分数的意义分析数量关系。“小熊”卡通提出的“大瓶和小瓶的果汁量有什么关系”,是引导学生仔细领会“小瓶的果汁量是大瓶的2/3”的含义。联系“求一个数的几分之几是多少,用乘法计算”这个概念,写出数量关系式。在“大瓶的果汁量×2/3=小瓶的果汁量”的.上面,小瓶果汁量已知,求大瓶的果汁量,显然可以列方程解答。

  理解这段教材,要注意“可以列方程解”是分析数量关系的结果。是通过在等量关系式上落实已知与未知后作出的决策。教学要详尽地展开“分析分数的意义→得出等量关系→选择解题方法”的过程,让学生知道应该怎样想,学会这样的思考。

  “试一试”和练习十二第1题,都要求学生先把数量关系式补充完整,再解答。在教学列方程解决实际问题的起始阶段,提出这样的要求是必要的。能进一步突出解决实际问题要分析数量关系,帮助学生掌握分析数量关系的方法,体会列方程解决实际问题的特点。在基本掌握了思考的要领和方法之后,只要把数量关系式想在脑中,没有必须写出来的规定。

  在练习十二里还安排了第三、四单元教学的分数应用题的对比练习,如第7、8题。“对比”既要比不同,准确地区分它们,也要比相同,在本质上把它们有机地联系起来。相同都表现在数量关系式上,即都要抓住分数的意义分析数量关系,而且都可以表示成数量关系式。不同也表现在数量关系式上。第三单元教学的分数应用题,已知条件都在数量关系式的左边,关系式右边的数量是要求的问题,因此根据数量关系式就能列出算式;第四单元教学的分数应用题,已知条件不集中在数量关系式的一边,而是分散在两边,要求的问题也不在数量关系式的右边,所以列方程解答比较方便。以第7题为例。

  我们的教学历来十分重视区别不同的分数应用题,过去把两类应用题对立起来,过分强调区别,往往收不到理想的效果。新教材在数量关系上求同存异,组织两类应用题的知识结构,用对立统一的观点处理两类应用题的关系,已经在教学实践中得到肯定和赞赏。

  四、计算两步式题——巩固分数除法法则。

  例6是乘除两步计算的实际问题,教学分数乘除混合或连除计算。例题可以列出不同的算式解答,两种解法都先分步解,其中有一步是分数乘法,另一步是分数除法。分步解答能够让学生明白,在计算分数除法时,要“乘除数的倒数”,在计算分数乘法时,不应这样做。这对计算综合式是十分有用的。另外,先分步解答还能降低列出综合算式的难度。

  列出的两道综合算式,教材已经计算了一道。示范了计算分数乘除混合式题,一般先转化成分数连乘,再约分、相乘。突出了只能把算式里的除法变成“乘除数的倒数”。教材把另一道综合算式留给学生计算。计算前应该想一想,怎样把这个分数乘除混合的算式变成分数连乘的算式。计算后应该比一比,两道综合算式在计算时有什么相同点,进一步突出计算的策略和转化的方法。

  在计算乘除混合式题时得到的体验会迁移到分数连除里去。教材在“试一试”之后让学生说说,分数连除或分数乘除混合运算可以怎样计算,促进迁移,发展认知结构,并在“练一练”中得到巩固。“练一练”的两道题分别是乘除混合和分数连除计算,在计算之后可以组织学生辨辨左题里的除数与乘数,比比右题里的整数与分数,说说计算的体会,使计算的思路更清楚、牢固,计算的技能更扎实、灵活。

六年级数学教案《分数除法》14

  练习目标:

  1、进一步掌握分数除法的计算方法,能够正确迅速地计算两、三步计算的分数四则运算式题,提高分数四则运算的能力。

  2、体会数学与生活的联系,提高学生综合运用知识解决问题的能力,能运用分数的知识解决一些实际问题。

  练习过程:

  一、基本练习:

  1、判断正误:

  ①3/5÷5=5/3×5()

  ②4分米的1/5等于5分米的1/4。()

  ③两数相除,商一定大于被除数。()

  2、

  学生计算后订正时,着重评讲第5小题至第7小题的解法,第5、6小题让学生说一说写出计算过程前是怎样想的,即0.375和0.6是怎样处理的.?第7小题可以分步计算也可以运用乘法分配律进行计算。

  3、

  订正时让学生说明解题依据。第四小题目可以在等号两边先乘以4再乘2/3,也可以一次同乘4与2/3的积。

  二、深入练习:

  1、选择正确答案的序号填在括号里:

  ①一根绳子剪去3米正好是1/3,这根绳子原来的长度是多少米?()

  A1B9C3

  ②与12÷4/5相等的式子是:()

  A12÷5×4B12÷4×5C12×0.4

  2、

  (此题中的60瓦是没有用的条件,可能会影响少数学生的正确列式,这里在学生审题之后指名分析已知条件和问题的关系,让学生明白列式中不需要这个条件。)

  3、

  (让学生先计算,再比较--你有什么发现?引导学生弄清楚:其原因是2/3、3/4的倒数与1/2的积正好是1。也就是除以2/3、3/4再乘上1/2,实际效果相当于除以或乘上1。)

  三、自主练习:

  1、

  2、

  四、思维体操:

  1、一根绳子每次剪去它的1/2,一共剪了4次,最后下这根绳子的几分之几?

  2、用汽车运一堆货物,每天运这堆货物的四分之一,几天可以运完?每天运这堆货物的七分之二,几天可以运完?

  五、策略说明:让全体学生都有较充分的练习机会,在这个过程中检验、评价了分数除法的认知结果。

六年级数学教案《分数除法》15

  教学目标

  1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

  2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

  教学重点

  找准单位1,找出等量关系.

  教学难点

  能正确的分析数量关系并列方程解答应用题.

  教学过程

  一、复习、引新

  (一)确定单位1

  1.铅笔的支数是钢笔的 倍.

  2.杨树的棵数是柳树的 .

  3.白兔只数的 是黑兔.

  4.红花朵数的 相当于黄花.

  (二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

  1.找出题目中的已知条件和未知条件.

  2.分析题意并列式解答.

  二、讲授新课

  (一)将复习题改成例1

  例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

  1.找出已知条件和问题

  2.抓住哪句话来分析?

  3.引导学生用线段图来表示题目中的.数量关系.

  4.比较复习题与例1的相同点与不同点.

  5.教师提问:

  (1)棉田面积占全村耕地面积的 ,谁是单位1?

  (2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

  (3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是 公顷.

  答:全村耕地面积是75公顷.

  6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

  (公顷)

  (根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

【六年级数学教案《分数除法》】相关文章:

数学教案-分数与除法08-16

《分数除法》数学教案01-02

《分数除法》数学教案15篇02-16

分数除法08-16

分数与除法08-16

数学教案-分数乘除法对比练习08-16

数学教案-分数除法应用题08-16

苏教版六年级上册《分数除法》数学教案01-17

数学教案-分数除法的意义和计算法则08-16

数学教案-分数乘、除法应用题对比08-16