现在位置:范文先生网>教案大全>数学教案>八年级数学下册教案

八年级数学下册教案

时间:2024-05-22 13:36:36 数学教案 我要投稿

八年级数学下册教案(汇编15篇)

  作为一位无私奉献的人民教师,常常需要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们该怎么去写教案呢?下面是小编精心整理的八年级数学下册教案,欢迎阅读与收藏。

八年级数学下册教案(汇编15篇)

八年级数学下册教案1

  一、学习目标

  二、学习过程

  阅读教材

  独立完成下列预习作业:

  1、观察下列算式:

  ⑴ ⑵

  请写出分数的乘除法法则:

  乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;

  除法法则:除以一个数等于乘以这个数的倒数.

  2、分式的乘除法法则:(类似于分数乘除法法则)

  乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的.分母;

  除法法则:除以一个数等于乘以这个数的倒数.

  3、分式乘方:即分式乘方,是把分子、分母分别乘方.

  三、合作交流,解决问题:

  1、计算:

  ⑴ ; ⑵

  2、计算:

  ⑴ ; ⑵ .

  4、计算:⑴ ⑵

  四、课堂测控:

  1、计算:

八年级数学下册教案2

  例题讲解

  引入问题:有甲乙两种客车,甲种客车每车能拉30人,乙种客车每车能拉40人,现在有400人要乘车,

  1、你有哪些乘车方案?

  2、只租8辆车,能否一次把客人都运送走?

  问题2;怎样租车

  某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:

  甲种客车乙种客车

  载客量(单位:人/辆)4530

  租金(单位:元/辆)400280

  (1)共需租多少辆汽车?

  (2)给出最节省费用的租车方案。

  分析;

  (1)要保证240名师生有车坐

  (2)要使每辆汽车上至少要有1名教师

  根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为_____。

  设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即

  y=400x+280(6-x)

  化简为:y=120x+1680

  讨论:

  根据问题中的.条件,自变量x的取值应有几种可能?

  为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x的取值为____。

  在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。

  方案一:

  4两甲种客车,2两乙种客车

  y1=120×4+1680=2160

  方案二:

  5两甲种客车,1辆乙种客车

八年级数学下册教案3

  一、教学目标

  1.掌握一元二次方程的定义,能够判断一个方程是否是一元二次方程.

  2.能够将一元二次方程化为一般形式并确定a,b,c的值.

  二、(重)难点预见

  重点:知道什么叫做一元二次方程,能够判断一个方程是否是一元二次方程. 难点:能够将一元二次方程化为一般形式并确定a,b,c的值.

  三、学法指导

  结合教材和预习学案,先独立思考,遇到困难小对子之间进行帮扶,完成学习任务.

  四、教学过程

  开场白设计:

  一元二次方程是初中数学中非常重要的内容,它在实际生活中有着非常广泛的应用.什么形式的方程是一元二次方程?这样的方程怎么解答呢?它又能解决哪些问题呢?带着这些问题,让我们一起学习《一元二次方程》这一章,今天我们来学习第一节课,同学们肯定有很多新的收获.

  1、忆一忆

  在前面我们曾经学习了什么叫做一元一次方程?一元指的是什么含义?一次呢?你能猜想什么叫做一元二次方程吗?

  学法指导:

  本节课学习一元二次方程先让学生回忆一元一次方程.学习四边形可以让学生回忆三角形,学习四边形的边、角、顶点,可以让学生回忆三角形的边、角、顶点,则可达到水到渠成的效果.

  2、想一想

  请同学们根据题意,只列出方程,不进行解答:

  (1)一个矩形的`长比宽多2cm,矩形的面积是15cm,求这个矩形的长和宽.

  (2)两个连续正整数的平方和是313,求这两个正整数.

  (3)直角三角形三边的长都是整数,它的斜边长为13cm,两条直角边的差为7cm,求两条直角边的长.

  预习困难预见:

  (1)学生在列方程时没有搞清楚“平方和”与“和的平方”的区别,以至于把方程列错了.

  (2)学生在解答第(3)题时,设未知数时忘记带单位.

  (3)还有的同学没有注意只列方程,以至于学生列出方程后尝试着解方程,导致耽误了一些时间.

  改进措施:

  教师巡视指导,发现失误及时引导;小组内互查,辩论,质疑.

  3、议一议

  请同学们将上面的方程按照以下要求进行整理:

  (1)使方程的右边为0(2)方程的左边按x的降幂排列.我们会得到:

  ① ② ③

  你能发现上面三个方程有什么共同点?

  _____________________叫做一元二次方程.在定义中着重强调了几点?哪几点?如果给你一个方程,让你判定它是否是一元二次方程,你关键看哪几方面?

  学法指导

  学习一元二次方程的概念,让同学们剖析定义,总结判定一个方程是否是一元二次方程的方法.

  4、试一试

  下面方程是一元二次方程吗?为什么?

  ①ax-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0

  方法提升:

  由一元二次方程的定义可知,只有同时满足下列三个条件:①整式方程;②只含有一个未知数;③未知数的最高次数是2,这样的方程才是一元二次方程,否则缺少其中任何一个条件的方程都不是一元二次方程.

  口诀生成:

  判断一元二次方程并不难,三个条件要找全:一元,二次,整式判,正确答案就出现.

  5、学一学

  一元二次方程都可以化为ax+bx +c =0(a,b,c为常数,a≠0)的形式,称为一元二次方程的一般形式,其中ax,bx,c 分别称为这个方程的二次项,一次项和常数项,a,b分别称为二次项系数,一次项系数.你能指出下列方程的二次项系数,一次项系数,常数项吗?请你用a,b,c表示出来.

八年级数学下册教案4

  教学目标:

  1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。

  2、能利用它们的性质和判定进行推理和计算。

  3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。

  教学重点、难点:

  重点:掌握特殊平行四边形性质与判定。

  难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。

  教学过程:

  一、梳理知识:

  1.特殊平行四边形的性质.

  1)如图所示:在矩形ABCD中,对角线AC、BD相交于O点,已知AB=3cm,AC=5cm

  则BC=_____cm,△BOC的周长=_____cm

  2)如图所示:在菱形ABCD中,对角线AC、BD相交于O点,已知AB=5cm,AC=6cm,

  则你能求出哪些线段的长度?

  3)如图所示:在正方形ABCD中,对角线AC、BD相交于O点,已知OA=3cm,

  则AB=_____cm,△BOC的'周长=_______cm.

  小结:特殊平行四边形的性质(PPT呈现)

  2.特殊平行四边形的判定.

  要使平行四边形ABCD成为矩形,需要增加的条件________.

  要使平行四边形ABCD成为菱形,需要增加的条件________.

  要使矩形ABCD成为正方形,需要增加的条件________.

  要使菱形ABCD成为正方形,需要增加的条件________.

  小结:特殊平行四边形的判定(PPT呈现)

  二、深化提高:

  1.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

  (1)求证:四边形ADCE为矩形;

  (2)当△ABC满足什么条件时,

  四边形ADCE是一个正方形?并给出证明.

  2.如图,矩形ABCD的对角线AC、BD交于点O,

  过点D作DP∥OC,过C点作CP∥DO,交DP于点P,

  试判断四边形CODP的形状.

  变式1:如果题目中的矩形变为菱形,(图一)结论应变为什么?

  变式2:如果题目中的矩形变为正方形,(图二)结论又应变为什么?

  3.如图,在中,是边的中点,分别是及其延长线上的点,.

  (1)求证:.

  (2)请连结,试判断四边形的形状,并说明理由.

  (3)若四边形是菱形,判断的形状。

  三、拓展提高

  1.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、

  △BCE、△ACF,

  (1)四边形ADEF是什么四边形?并说明理由

  (2)当△ABC满足什么条件时,四边形ADEF是菱形?

  (3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.

  2.如图,已知⊿ABC是等腰三角形,顶角∠BAC=,(<60°)D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.

  (1)求证:BE=CD;

  (2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明,

  四、课堂小结

  五、作业

  1.如图,在正方形ABCD中,P为对角线BD上一点,

  PE⊥BC,垂足为E,PF⊥CD,垂足为F。

  求证:EF=AP

  2.如图,正方形ABCD中,E是对角线BD上的点,且BE=AB,

  EF⊥BD,交CD于点F,DE=2.5cm,求CF的长。

  3.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,

  DH⊥AB于H,求:DH的长。

八年级数学下册教案5

  1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?

  2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)

  3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.

  矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).

  矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.

  【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.

  ①随着∠α的变化,两条对角线的长度分别是怎样变化的?

  ②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?

  操作,思考、交流、归纳后得到矩形的性质.

  矩形性质1 矩形的四个角都是直角.

  矩形性质2 矩形的对角线相等.

  如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.

  例习题分析

  例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.

  分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.

  解:∵ 四边形ABCD是矩形,

  ∴ AC与BD相等且互相平分.

  ∴ OA=OB.

  又∠AOB=60°,

  ∴△OAB是等边三角形.

  ∴矩形的对角线长AC=BD=2OA=2×4=8(cm).

  例2(补充)已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的.长及点A到BD的距离AE的长.

  分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法

八年级数学下册教案6

  学习目标

  1、能说出约分的意义和步骤。

  2、能说出最简分式的意义。

  3、能说出分式的乘、除和乘方法则,并能用式子表示。

  4、能熟练地进行分式的乘除和乘方运算。

  5、会归纳总结整数指数幂的运算性质。

  6、能熟练地运用幂的运算性质进行计算。

  主体知识归纳

  1、约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

  2、约分的步骤把分式的分子与分母分解因式,然后约去分子与分母的.公因式。

  3、最简分式一个分式的分子与分母没有公因式时,叫做最简分式。

  4、分式的乘法法则分式乘以分式,用分子的积做积的分子,分母的积做积的分母。

  5、分式的除法法则分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  6、分式的乘方(n为正整数)、就是说:分式的乘方是把分子、分母各自乘方。

  7、整数指数幂的运算性质可归纳如下

  (1)am·an=am+n(m、n都是整数);

  (2)(am)n=amn(m、n都是整数);

  (3)(ab)n=anbn(n是整数)、

  基础知识精讲

  1、正确理解分式约分的意义

  (1)约分的根据是分式的基本性质,约分的实质是一个分式化成最简分式,约分的关键是将一个分式的分子与分母的公因式约去。

  (2)进行约分的前提条件:分子、分母必须都为积的形式且有公因式。

  2、分式约分的步骤是:把分式的分子与分母分解因式,然后约去分子、分母和公因式、约分时应注意以下两点:

  (1)若分子、分母都是几个因式乘积的形式,应约去分子、分母中相同因式的最低次幂、当分子、分母的系数是整数时,还应约去它们的最大公约数。、

  (2)若分式的分子、分母是多项时,要先将分子、分母按同一字母降幂排列、首项为负,提取负号放到整个分式的前面,将分子、分母分解因式,然后再约分。、

  3、进行分式的乘除运算时,应注意以下几点:

  (1)分式的乘除运算,实际上是分式的乘法运算,根据法则应先把分子、分母相乘,化成一个分式后再进行约分,化为最简分式、但实际运算时,常常先约分再相乘,这样做既简单易行,又不易出错、

  (2)如果分式的分子、分母是多项式时,一般应先因式分解,再约分。

  (3)分式运算的结果必须化成最简分式,特别地,若分子(或分母)是公因式,约去公因式后,分子(或分母)是1而不是0。

  (4)要注意运算顺序,对于分式乘除法来说,它只含有同级乘除运算,所以只要没有附加条件(如括号等),就必须按照从左至右的顺序进行计算。

八年级数学下册教案7

  一、创设情境

  1.一次函数的图象是什么,如何简便地画出一次函数的图象?

  (一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).

  2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?

  (正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).

  3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?

  4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?

  二、探究归纳

  1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.

  2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.

  分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.

  解因为x轴上点的纵坐标是0,y轴上点的'横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.

  过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.

  所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.

  三、实践应用

  例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.

  分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.

  解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.

  例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.

  分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?

八年级数学下册教案8

  一、教学内容

  1、教学内容分析:二次根式是在数的开方的基础上展开的,是算术平方根的抽象与扩展,同时又为勾股定理和解一元二次方程打下基础.

  2、学生情况分析:本节课是二次根式的第一课时,是在学生学方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.对此班级中已初步形成合作交流、敢于探索与实践的良好学风,学生间互相提问的互动气氛较浓.

  二、教学设计理念

  根据基础教育课程改革的具体目标,结合我校初二学生的实际情况,改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,实施“三学六步”课堂改革教学模式.

  三、教学目标

  1、知识与技能:

  (1)了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围;

  (2)理解二次根式的非负性.

  2、过程与方法:通过对学、群学等方式培养学生分析、概括等能力.

  情感态度与价值观:培养学生认真参与、积极交流的主体意识和乐于探索、积极钻研的科学精神、合作精神,激发学生学习数学的兴趣.

  四、教学重点、难点

  1、教学重点:了解二次根式的概念,二次根式有意义的条件,并会求二次根式中所含字母的取值范围

  2、教学难点:理解二次根式的双重非负性

  五、教学方法、手段

  1、教学方法:探究法、讨论法、发现法

  2、教学手段:课件(ppt)

  六、教学过程

  (一)创设情境,导入新课

  问题1 你能用带有根号的的式子填空吗?

  (1)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系,如果用含有h 的式子表示 t ,则t= _____.

  (2)下球体过球心的横截面面积为S,则横截面圆形的半径r为 .

  (3)面积为3 的正方形的边长为_____,面积为S 的正方形的边长为_____.

  【师生互动】:学生独立思考,用算术平方根表示结果,教师适当引导和评价.

  【设计意图】:让学生在填空过程中初步感知二次根式与实际生活的`紧密联系,体会研究二次根式的必要性.

  探究新知,讲授新课

  1.抽象概括,形成概念

  问题2 上面所得的代数式:,它们的共同特点是什么?

  【师生互动】:学生独立思考并积极发言,教师归纳总结.

  【设计意图】:通过归纳总结引出二次根式的概念.

  问题3 根据以前所学知识,理解二次根式的定义,并且要注意什么.

  【师生互动】:学生小组讨论并且小组长做好记录,老师归纳总结.

  【设计意图】:加深对二次根式的理解.

  2.辨析概念,应用巩固

  问题4 (辩一辩) 判断给出式子是不是二次根式:①;

  ②;③;④;⑤;⑥

  【师生互动】:学生独立思考并积极发言,并对于他们的答案做出正确地评价,给予必要的鼓励.

  【设计意图】:该题是利用抢答来调动课堂气氛,理解二次根式的定义.

  问题5 根据要求编写二次根式:

  (1)请写出一个你喜欢的二次根式;

  请写出一个被开方数含x的二次根式.;

  请你写出一个被开方数含x,且当x为任何实数的二次根式.

  【师生互动】:学生独立思考并积极发言,其他同学来检验是否编写正确.

  【设计意图】:设计开放性题开拓学生思维,进一步加深对二次根式的理解.

  灵活运用,巩固提高

  问题6 当x是怎样的实数时,下列各式在实数范围内有意义:

  【师生互动】:

  (1)学生口答,老师板书规范解题格式,(2)(3)学生演板.学生完成之后小组讨论结果的正确性,同时对演板的同学做出评价,老师再适时补充,(2)(3)评价增加一道变式,让学生能灵活运用知识.最后再归纳这类式子有意义要注意:

  (1)二次根式的被开方数为非负数;

  (2)分母中含有字母时,要保证分母不为0.

  【设计意图】:本题强化学生对二次根式被开方数为非负数的理解,同时考查学生的灵活运用的能力,训练学生的思维.

  发散思维,拓展延伸

  问题7 已知实数x,y满足,求:

  (1)x的取值范围;

  (2)以x,y的值为两边长的等腰三角形的周长.

  【师生互动】:学生先独立思考,再小组合作,将答案写在白板上,并请小组两位成员上台展示,其他同学提出质疑,补充,老师适当引导点评.

  【设计意图】:本题第一问进一步加深学生对二次根式被开方数为非负数的理解;第二问渗透分类思想,通过小组合作,上台展示体现学生为主体,发挥学生的能动性.

  问题8 (走进中考)已知,则 p(x,y)是第 象限.

  【师生互动】:学生先独立思考讲解思路,老师适当点评.

  【设计意图】:本题主要考察

  课堂小结,盘点收获

  一路下来,我们结识了很多新知识,你能谈谈自己的收获吗?说一说,让大家一起来分享.

  【师生互动】:学生举手发言,老师点评并鼓励.

  【设计意图】:学生总结,互相取长补短,再一次突出本节课的学习重点,帮助学生把握知识要点,理清知识脉络,体会数学中的分类思想.

  作业设计,巩固提高

  必做题:1.下列各式中:①;②;③;④;⑤ ,其中是二次根式的有 .(写序号)

  代数式有意义,则字母x的取值范围是 .

  3.代数式的值为0,则a= .

  选做题:1.已知,则的值为 .

  2.若式子 有意义,则P(a,b)在第 象限.

  小组合作题:

  1.已知m,n满足 ,求:(1)m,n的值.

  (2)将m,n的值 代入并化简:

  (3)请选一个你喜欢的x的值代入求值.

  【设计意图】:气氛通过分层作业,教师能及时了解学生对本节知识的掌握情况.必做题和选做题如果上课有时间打算用砸金蛋的形式调动课堂.

  (六)板书设计

  16.1.1 二次根式 定义:形如 的式子叫做 二次根式 注:(双重非负性) (老师板书) (学生演板)

八年级数学下册教案9

  教学目标

  1.使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;

  2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;

  3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.

  教学重点和难点

  重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.

  难点:不等式的解集的概念.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)

  2.用不等式表示:

  (1)x的3倍大于1; (2)y与5的差大于零;

  (3)x与3的和小于6; (4)x的小于2.

  (3)当x取下列数值时,不等式x+3<6是否成立?

  -4,3.5,-2.5,3,0,2.9.

  ((2)、(3)两题用投影仪打在屏幕上)

  二、讲授新课

  1.引导学生运用对比的方法,得出不等式的解的概念

  2.不等式的解集及解不等式

  首先,向学生提出如下问题:

  不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?

  (启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3<6的解的数值-4,-2.5,0,2.9用实心圆点画出,将不是x+3<6的解的数值3.5,4,3用空心圆圈画出,好像是“挖去了”一样.如下图所示)

  然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3<6的解的关键值是“3”,用小于3的任何数替代x,不等式x+3<6均成立;用大于或等于3的任何数替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知数x的值是小于3的所有数,用不等式表示为x<3.把能够使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.简称不等式x+3<6的解集,记作x<3.

  最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)

  一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.

  不等式一般有无限多个解.

  求不等式的解集的过程,叫做解不等式.

  3.启发学生如何在数轴上表示不等式的解集

  我们知道解不等式不能只求个别解,而应求它的解集,一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x<3.那么如何在数轴上直观地表示不等式x+3<6的解集x<3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)

  在数轴上表示3的点的左边部分,表示解集x<3.如下图所示.

  由于x=3不是不等式x+3<6的解,所以其中表示3的点用空心圆圈标出来.(表示挖去x=3这个点)

  记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.

  例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.

  即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含x=-2,故其中表示-2的点用实心圆点表示.

  此处,教师应强调,这里特别要注意区别是用空心圆圈“。”还是用实心圆点“.”,是左边部分,还是右边部分.

  三、应用举例,变式练习

  例1 在数轴上表示下列不等式的解集:

  (1)x≤-5; (2)x≥0; (3)x>-1;

  (4)1≤X≤4; (5)-2<X≤3; (6)-2≤x<3.

  解(1),(2),(3)略.

  (4)在数轴上表示1≤x≤4,如下图

  (5)在数轴上表示-2<x≤3,如下图

  (此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视遇到问题,及时纠正)

  例2 用不等式表示下列数量关系,再用数轴表示出来:

  (1)x小于-1; (2)x不小于-1;

  (3)a是正数; (4)b是非负数.

  解:(1)x小于-1表示为x<-1;(用数轴表示略)

  (2)x不小于-1表示为x≥-1;(用数轴表示略)

  (3)a是正数表示为a>0;(用数轴表示略)

  (4)b是非负数表示为b≥0.(用数轴表示略)

  (以上各小题分别请四名学生生回答,教师板书,最后,请学生在笔记本上画数轴表示)

  例3 用不等式的解集表示出下列各数轴所表示的'数的范围.(投影,请学生口答,教师板演)

  解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

  (本题从另一例面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)

  练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x<0;③x>-1;④x≤-1.

  (2)在数轴上表示下列不等式的解集:

  ①x>3; ②x≥-1; ③x≤-1.5;

  ④0≤x<5; ⑤-2<x≤2; ⑥-2<x<.

  (3)用观察法求不等式<1的解集,并用不等式和数轴分别表示出来.

  (4)观察不等式<1的解集,并用不等式和数轴分别表示出来,它的正数解是什么?

  自然数解是什么?(*表示选作题)

  四、师生共同小结

  针对本节课所学内容,请学生回答以下问题:

  1.如何区别不等式的解,不等式的解集及解不等式这几个概念?

  2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.

  3.记号“≥”、“≤”各表示什么含义?

  4.在数轴上表示不等式解集时应注意什么?

  结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的唯一标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“。”和实心圆点“·”.

  五、作业

  1.不等式x+3≤6的解集是什么?

  2.在数轴上表示下列不等式的解集:

  (1)x≤1; (2)x≤0; (3)-1<x≤5;

  (4)-3≤x≤2; (5)-2<x<; (6)-≤x<.

  3.求不等式x+2<5的正整数解.

  课堂教学设计说明由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识.通过对方程的解的电义的回忆,对比学习不等式的解及解集.同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解.

  在数轴上表示数是数形结合的具体体现.而在数轴上表示不等式的解集则又进了一步.因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题.

八年级数学下册教案10

  教学目标

  知识与技能:

  1、能用描点法画出正比例函数的图象;

  2、初步了解正比例函数图象的性质。

  过程与方法:

  通过画正比例函数的图象,探索正比例函数图象的性质,培养观察能力,体会用数形结合的方式思考问题。

  情感态度与价值观:

  通过动手操作,培养严谨的学习态度,并养成善于观察、善于归纳的学习习惯。

  重点:正确理解正比例函数的图象及其性质。

  难点:通过对正比例函数图象的观察,发现正比例函数图象的性质。

  教学方法:

  1、演示法———发展观察力,想象力;

  2、启发法———培养学生主动学习能力;

  3、形成性学习法———培养观察、归纳思维能力;

  教学流程

  教学环节:

  教师活动——预设学生行为——学生活动

  复

  复习定义及画函数图像的步骤,学生快速回忆已学的概念及画函数图像的步骤(抢答),积极回答问题。

  例

  1、在同一坐标系中画出正比例函数,y=x,y=2x的图象

  解:(1)列表

  (2)描点

  (3)连线

  x … —3 —2 —1 0 1 2 3 …

  y=x y=2x仔细观察,认真分析,各自说出自己所发现的规律,最后达成共识。

  计算出正比例函数的值,认真观察图象。

  发

  观察思考:比较上面三个函数图象的相同点与不同点,三个函数图像有怎样的变化规律。

  共同点:

  (1)都是比例系数k>0

  (2)都是一条直线

  (3)都过原点和点(1,k)

  (4)都在一、三象限

  (5)都是从左向右上升

  不同点:上升的幅度不一样

  归纳总结:

  一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点及(1,k)直线,我们称它为直线y=kx。当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随x的增大y也增大;

  根据同学的发言与老师的归纳,修正自己的认识,逐渐理解正比例函数的性质以及画正比例函数图象的简单方法。发现正比例函数的性质。

  规

  应用两点法在同一坐标系中画出y=—1、5x,y=—4x的图象,利用两点法画出函数图象,能迅速找到两个点。

  发

  观察思考:比较上面二个函数图象的相同点与不同点,二个函数图像有怎样的变化规律。

  共同点:

  (1)都是比例系数k<0

  (2)都是一条直线

  (3)都过原点和点(1,k)

  (4)都在二、四象限

  (5)都是从左向右下降

  不同点:下降的幅度不一样

  归纳总结:

  一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点及(1,k)直线,我们称它为直线y=kx。当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随x的增大y反而减小;

  知识的迁移:用同样的'办法发现规律。

  课

  1、用你认为最简单的方法画出下列函数图象。

  (1)y=1、5x(2)y=-3x

  2、正比例函数y=-4x的图象是过()和()两点的一条直线,图象过象限,y随x的。

  3、正比例函数y=(m-1)x的图象过一、三象限,则m的取值范围是。

  A、m=1

  B、m>1

  C、m<1

  D、m≥1

  4、下列函数①y=5x ② y=-3x ③y= x ④y=-x中,y随x的增大而减小的是_____________。

  (能根据正比例函数性质解决问题、认真做题)

  小

  名称 解析式 图象特征 图象分布 函数变化情况 正比例函数

  y=kx(k≠0)是经过(0,0)和(1,k)的一条直线

  k>0,k<0;一、三象限Y随x的增大而增大

  k>0,k<0二、四象限Y随x的增大而减小

  板

  复习引入 描点法 画正比例函数图象 正比例函数图象性质

  规律应用 总结规律 练习小结

八年级数学下册教案11

  一、创设情境

  在学习与生活中,经常要研究一些数量关系,先看下面的问题.

  问题1如图是某地一天内的气温变化图.

  看图回答:

  (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.

  (2)这一天中,最高气温是多少?最低气温是多少?

  (3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?

  解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;

  (2)这一天中,最高气温是5℃.最低气温是-4℃;

  (3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.

  从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的`数量关系呢?

  二、探究归纳

  问题2银行对各种不同的存款方式都规定了相应的利率,下表是20xx年7月中国工商银行为“整存整取”的存款方式规定的年利率:

  观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.

  解随着存期x的增长,相应的年利率y也随着增长.

  问题3收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:

  观察上表回答:

  (1)波长l和频率f数值之间有什么关系?

  (2)波长l越大,频率f就________.

  解(1)l与f的乘积是一个定值,即

  lf=300000,

  或者说.

  (2)波长l越大,频率f就 越小 .

  问题4圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________.

  利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的面积,并将结果填入下表:

  由此可以看出,圆的半径越大,它的面积就_________.

  解S=πr2.

  圆的半径越大,它的面积就越大.

  在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable).

  上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值

八年级数学下册教案12

  教学准备

  教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.

  学生准备:复习平行四边形性质;学具:课本“探究”内容.

  学法解析

  1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.

  2.知识线索:

  3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.

  教学过程

  一、回顾交流,逆向思索

  教师提问:

  1.平行四边形定义是什么?如何表示?

  2.平行四边形性质是什么?如何概括?

  学生活动:思考后举手回答:

  回答:1.两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)

  回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).

  教师归纳:(投影显示)

  平行四边形【活动方略】

  教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.

  学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:

  (1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;

  (2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的'顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.

  (3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

八年级数学下册教案13

  一、教学目标:

  1、会根据频数分布表求加权平均数,从而解决一些实际问题

  2、会用计算器求加权平均数的值

  3、会运用样本估计总体的方法来获得对总体的认识

  二、重点、难点:

  1、重点:根据频数分布表求加权平均数

  2、难点:根据频数分布表求加权平均数

  三、教学过程:

  1、复习

  组中值的定义:上限与下限之间的中点数值称为组中值,它是各组上下限数值的简单平均,即组中值=(上限+上限)/2。

  因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

  应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的最大好处是简化了计算量。

  为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

  2、教材P140探究栏目的意图

  ①、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

  ②、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

  这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

  3、教材P140的思考的意图。

  ①、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题。

  ②、帮助学生理解表中所表达出来的'信息,培养学生分析数据的能力。

  4、利用计算器计算平均值

  这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

  5、运用样本估计总体

  要使学生掌握在哪些情况下需要通过用样本估计总体的方法来获得对总体的认识;一是所要考察的对象很多,二是考察本身带有破坏性;教材P142例3,这个例子就属于考察本身带有破坏性的情况。

八年级数学下册教案14

  一、教学目标

  (一)教学知识点

  1.掌握三角形相似的判定方法2、3.

  2.会用相似三角形的判定方法2、3来判断、证明及计算.

  (二)能力训练要求

  1.通过自己动手并总结推出相似三角形的判定方法2、3,培养学生的动手操作能力,总结概括能力.

  2.利用相似三角形的判定方法2、3进行判断,训练学生的灵活运用能力.

  (三)情感与价值观要求

  1.通过探索相似三角形的判定方法2、3,体现数学活动充满着探索性和创造性.

  2.通过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理能力,领会分类思想.

  二、教学重难点

  教学重点:相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活运用.教学难点:判定方法的推导及运用

  三、教学过程设计

  (一)创设情境,引入新课

  投影片

  [生]有四对相似三角形,它们是△AEF∽△DEC,△AFB∽△ACD,△AEB∽△CED,△AEF∽△EBA.他们相似的理由都是用相似三角形的判定方法1.

  [师]现在我们已经有两种方法可以判定两个三角形相似,一种是定义,一种是判定方法1,除此之外,是否还有其他的办法来判定两个三角形相似?这一问题就是本节课我们需要研究的问题.

  (二)新课讲授

  [师]相似三角形的判定方法1是只从角的方面考虑的,下面我们只从边的方面去考虑.我们在学习全等三角形的判定方法中,也有只用边来进行判断的,即SSS公理.大家能不能用类比的方法,猜想只用边来判定三角形相似的方法呢?

  [生]三边对应成比例的两个三角形相似.

  [师]下面我们就来验证一下.

  1.相似三角形的判定方法2:三边对应成比例的两个三角形相似.

  投影片

  个组取一个相同的k值,不同的组取不同的k值,好吗?

  [生]好.

  [师]经过大家的亲身参与体会,你们得出的结论是什么呢?

  [生]结论为∠A=∠A′,∠B=∠B′,∠C=∠C′

  △ABC∽△A′B′C′,理由是:

  ∠A=∠A′,∠B=∠B′,∠C=∠C′

  根据相似三角形的定义可知:△ABC∽△A′B′C′.

  [师]其他组的同学的结论相同吗?

  [生]相同.

  [师]经过大家的探讨,我们又掌握了一种相似三角形的判定方法,即三边对应成比例的两个三角形相似.

  2.相似三角形的判定方法3.

  [师]前面两种判定方法我们都是只从角或只从边的方面去考虑的,下面我们要从两方面来考虑.还是要类比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我们就不用考虑了,因为我们已经有判定方法1、3,下面来验证SAS,大家还是先猜想,然后再验证.

  [生]两边对应成比例且夹角相等的两个三角形相似.

  [师]好,下面我们还是由大家自己推导吧.请看投影片

  [师]请大家按照上面的步骤进行,同时还要采取不同的.组取不同的值法.

  [生]按照要求作出的△ABC与△A′B′C′中,有∠B=∠B′,∠C=∠C′,因此根据判定方法1可知,△ABC∽△A′B′C′.

  [师]大家同意吗?

  [生]同意.

  [师]好,我们又探索出一个相似三角形的判定方法,即两边对应成比例且夹角相等的两个三角形相似.

  3.想一想

  107

  [师]下面验证SSA,即两边对应成比例,其中一边的对角对应相等,这两个三角形相似吗?

  在全等三角形的判定中SSA就不成立.大家还可以仿照上面的验证过程来进行推导,下面是小明和小颖分别画出的一个满足条件的三角形,由此你能得到什么结论?

  [生]从上面的图中可以得出结论:有两边对应成比例,其中一边的对角相等的三角形不相似.

  4.做一做

  [师]在这两节课中我们已经学完了一般相似三角形的判定方法,下面请大家总结一下有几种方法.

  [生]一共有四种方法.

  第一种:对应角相等,对应边成比例的两个三角形相似.即定义法.

  第二种:即判定方法1

  两角对应相等的两个三角形相似.

  第三种:即判定方法2

  三边对应成比例的两个三角形相似.

  第四种:即判定方法3

  两边对应成比例且夹角相等的两个三角形相似.

  [师]从这四种方法中我们可以看出,第一种判定方法比较麻烦,需要研究三对角、三对边,而后面的几种方法最多只需要研究三对边或角,因此定义法一般不利用.如果已知条件只涉及角,就用第二种判定方法;如果已知条件只涉及边,就用第三种判定方法;如果既有角又有边,则可考虑用第四种方法判断.

  5.议一议

  如图,△ABC与△A′B′C′相似吗?你有哪些判断方法?

  [生]解:△ABC∽△A′B′C′.

  判断方法有.

  1.三边对应成比例的两个三角形相似.

  2.两角对应相等的两个三角形相似.

  3.两边对应成比例且夹角相等.

  4.定义法.

  (三)巩固应用,拓展研究

  下面每组的两个三角形是否相似?为什么?

  生]解:(1)△ABC∽△DEF

  ∵

  ∴△ABC∽△DEF

  (2)在△ABC中

  AB=2,AC=6

  ∵∠A=∠A

  ∴△ABC∽△AEF

  (四)练习巩固,促进迁移

  依据下列各组条件,判定△ABC与△A′B′C′是不是相似,并说明为什么.

  (1)∠A=120°,AB=7 cm,AC=14 cm,

  ∠A′=120°,A′B′=3 cm,A′C′=6 cm,

  (2)AB=4 cm,BC=6 cm,AC=8 cm,

  A′B′=12 cm,B′C′=18 cm,A′C′=24 cm.解:

  又∵∠A=∠A′

  ∴△ABC∽△A′B′C′(两边对应成比例且夹角相等,两三角形相似)

  ∴△ABC∽△A′B′C′(三边对应成比例,两三角形相似)

  (五)回顾联系,形成结构

  本节课主要探讨了相似三角形的另两种判定方法,即三边对应成比例与两边对应成比例且夹角相等的两个三角形相似.培养了大家的探索精神,同时让学生懂得了数学活动充满着探索与创新,学习的目的是能运用学过的知识去解决问题,在这里就是能利用判定方法进行有关证明.

八年级数学下册教案15

  一、学习目标

  二、学习过程

  阅读教材

  独立完成下列预习作业:

  1、填空:

  ①与的相同,称为分数,+ =,法则是;

  ②与的不同,称为分数,+ =,运算方法为;

  2、与的'相同,称为分式;与的不同,称为分式.

  3、分式的加减法法则同分数的加减法法则类似

  ①同分母分式相加减,分母,把分子;

  ②异分母分式相加减,先,变为同分母的分式,再.

  4.,的最简公分母是.

  5、在括号内填入适当的代数式:

  三、合作交流,解决问题:

  1、计算:⑴ + ⑵ - ⑶ +

  2、计算:⑴ ⑵ +

  ⑶ ⑷ + +

  3、计算:

  四、课堂测控:

  3、计算:⑴ ⑵

【八年级数学下册教案】相关文章:

八年级数学下册教案05-16

八年级数学下册教案01-10

数学下册教案03-16

人教版八年级数学下册教案04-27

八年级下册数学教案01-01

八年级数学下册教案[优选]05-19

八年级数学下册教案【热门】05-19

八年级数学下册教案【优秀】05-22

八年级数学下册教案(15篇)02-20

八年级下册数学教案优秀02-29