六年级上册数学《比的应用》教案[共15篇]
作为一名为他人授业解惑的教育工作者,有必要进行细致的教案准备工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么问题来了,教案应该怎么写?下面是小编为大家整理的六年级上册数学《比的应用》教案,欢迎阅读,希望大家能够喜欢。
六年级上册数学《比的应用》教案1
教学目标:
1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。
2、根据题意,能画线段图分析图意。
3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。
教学过程:
一、巩固旧知,过渡引入
1、根据题意,判断谁是单位1,并写出各题的数量关系。
(1)故事书本的2/5 等于连环画的本数。
(2)梨重量的7/8 是840千克。
(3)男生人数是全班人数的2/3 。
2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?
[这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]
二、学习新知
1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?
(1)读题,找出已知条件和问题。
(2)根据题意与线段图理解题中的条件和问题。
(3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。
体重× 4/5 =体内水分重量
师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?
(4)学生尝试练习方程解答,个别板演,教师点评。
(1)解:设这个儿童体重χ千克
(2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5
χ=35 答:这个儿童体重35千克。
(5)让学生自己检验,分两步检验
①把χ=35代入原方程,左边=35×4/5=28,右边=28,左边=右边,所以χ=35是原方程的解。
②35千克的等于28千克,正好是水分的重量,所以35千克符合题意。
(6)说说解题思路。
[新的教学理念就要以学生为主体,让学生主动参与学习,通过找条件、问题、对比线段图理解题意,能激起学生欲望和学习兴趣。]
2、迁移类推,尝试学习,教学例2:小明的爸爸体重是多少千克?
(1)读题,明确条件和问题。
(2)引导题意和线段图对比。
①题中有两个量相比较,需要画两条线段来表示两个量的数量关系。
②题里的已知条件“
小明的体重
”明确把小明的爸爸体重看作单位“1”。
③根据题里的数量关系怎样表示出数量间的相等关系?
爸爸体重×7/15=小明的体重
④学生解答,教师巡视点拨。
[尝试学习,学生的主体地位得到尊重,在学习过程中,进行独立思考,在相互交流中积累知识。]
三、巩固练习:(要求画线段图)
1、课本第35页的“做一做”,教师点评。
2、修路队修一条公路,已修了35千米,占全长的5/8,这条公路有多少千米?
3、兴丰小学六年级有女生25人,正好是三、四年级女生人数的1/4 ,4、四年级女生有多少人?
[练习题要有针对性,要少而精,既让学生巩固所学知识,又培养学生的思维解题能力。]
四、总结、拓展延伸
今天的学习内容都是单位“1”的量没有告诉我们,可以用设χ的方法,把χ当作已知数列出方程,求出方程的'解后并检验。同学们能根据题意用算术法解答吗?
五、布置作业
板书设计:
分数除法应用题
例1 解:设小明的体重是x千克
4/5x = 28 X = 28÷4/5 X = 35 答:小明体重是35千克。
设计说明:
分数除法应用题是分数乘法应用题的逆运算题。教案在设计中由“求一个数的几分之几是多少”的应用题引入,又通过和这类题进行对比,引导学生深刻地理解知识间的内在联系,抓住数量关系相同的特点,顺利地根据分数乘法的意义列出方程。这样做使学生明确思维方向,有助于学生思维的发展。教案重视解题思路和解题步骤的归纳,通过层层深入地提问,简单明确的图示,帮助学生找到解题的关键——找准单位“1”,既加深了学生对数量关系的理解,又培养了学生分析问题解决问题的能力。
六年级上册数学《比的应用》教案2
教学内容:
北师大版六年级数学上册第55页、第56页。
教学目标:
1、能运用比的意义解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,提高解决问题的能力。
3、培养学数学的兴趣,养成良好的思维品质。
教学重点:
理解和掌握按一定的比进行分配的意义,并进行实际应用。
教学难点:
把比熟练地转化成分数,将分数知识横向迁移。
教学准备:
多媒体课件。
教学过程:
一、复习牵引(课件出示)
同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某班男生和女生的人数比是5:4”,从这组比中,你能推断出什么信息呢?(课件出示题目)
学生自由发言,预设推断如下
1、全班人数是9份,男生占其中的5份,女生占其中的4份。
2、以全班为单位“1”,男生是全班的(),女生是全班的()。
3、以男生为单位“1”,女生是男生的(),全班是男生的()。
4、以女生为单位“1”,男生是女生的(),全班是女生的()。
5、女生比男生少(或20%)。
6、男生比女生多(或25%)。
追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)
二、情境导入,引出课题(课件出示)
昨天我和王老师合伙买福利彩票,我出了30元,王老师出了50元,结果我们中了一个二等奖,奖金8000元。我想对半分,各分4000元,王老师说这不公平,你们认为呢?怎么分奖金才合理呢?
三、合作探索,解决矛盾
1、你能帮老师解决这个问题吗?请试试看,可以小组内交换意见、讨论想法。
2、说以说你的想法。组织反馈,逐一展示学生解题思路。
3、我们分到的奖金是否合理,该怎样检验?(两个数量和要等于8000,出资的比是3:5或5:3)
4、小结:像这样把8000元彩票奖金按照出资多少来进行分配的情况叫做按比例分配。(板书:按比例分配)
(出示课题:比的应用)
四、自主探索
1、课件出示教材(1),把一筐橘子分给大班和小班,大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?
学生商量分法,得出:按大班和小班的'人数来分比较合理。
2、大班人数和小班人数的比是3:2 学生分好后,交流分法,填表完成。
3、如果有140个橘子,按3:2分,可以怎样分?你会分吗?试着分一分。
学生试做。
4、与同学交流分的方法。分组讨论疑点,并试着在组内解决。
四、交流方法,老师精讲
1、班内交流,老师答疑
三种方法
(1)、方法一:借助表格分。
(2)、方法二:画图
发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。
140个
140÷(3+2)=28 大班:28×3=84(个)
小班:28×2=56(个)
追问:为什么要“140÷(3+2)”?
(3)、方法三:根据分数的意义解题。先求出一共分成几份,再求出大班和小班分的个数分别占橘子总数的几分之几,最后根据分数的意义解题。
3+2=5 140× = 84(个)
140× = 56 (个)
答:大班分84个,小班分56个,比较合理。
2、以上几种方法你最喜欢哪种?说明理由。引导学生小结方法⑶的思路。
⑴计算分配的总份数。
⑵计算各部分占总量的几分之几。
⑶根据分数乘法的意义解题。
五、巩固练习,深化认识
1、小清要调制2200克巧克力奶,巧克力和奶的质量比是2:9。需要巧克力和奶各多少克?
2、 3月12日是植树节,学校把种植60棵小树苗的任务分配给602班和603班,两班都是43人。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?
3、完成教材第56页练一练第3题合理搭配早餐。
六、总结评价
1、回顾这节课所学的知识,谈谈收获。
2、布置作业。
板书设计:
比的应用
3+2=5 140× = 84(个)
140× = 56 (个)
答:大班分84个,小班分56个。
六年级上册数学《比的应用》教案3
设计说明
根据本节课的内容进行如下设计:
1、创设有效情境,自然引入新课。
首先利用教材中的情境,让学生交流分橘子的方法,从而引出平均分的方法不公平,而按照学生人数的比来分橘子比较合理,将学生的思路自然而然地引入到本节课,即按一定的比进行分配的问题的探讨中来。
2、给学生提供了充分思考和活动的空间。
在新知的探究过程中,给学生提供充分的体验空间。让学生利用手中的小棒代替橘子,鼓励他们实际分配,并做好分配的记录,使学生在这一操作过程中进一步体会比的意义。有了上面的实际操作经验,在解决把140个橘子按3∶2进行分配时,给学生提供了充分的探究和交流的空间。在学生探究出不同的解决问题的策略后,组织他们将不同的策略进行比较,发现其中的共同点,让学生在比较的.基础上选择自己认为合理的策略解决问题。
课前准备
教师准备PPT课件
学生准备小棒
教学过程
导入新课
1、观察情境图,获取图中的信息。(课件出示)
从这幅图中你知道了哪些信息?(指名回答)
2、提出问题。
把这些橘子分给1班和2班,怎样分合理?
3、讨论分配方案。
请同学们想一想,说一说你的分法。
(1)学生思考,同桌交流。
(2)指名汇报,说明理由。
预设
生1:可以每个班各分一半。
生2:按1班和2班人数的比来分配。
引导学生说出两个班的人数不一样,平均分看似公平,其实并不公平,而根据两个班人数的比3∶2来分比较合理。
4、引入课题。
像这样,把一个数量按一定的比进行分配的问题在生活中常常会遇到,今天我们就来共同学习这类问题的解决方法。(板书课题:比的应用)
设计意图:通过具体情境,使学生体会到数学与生活的密切联系,激发学生的学习兴趣,引导学生分析情境中的数学信息,为后面的动手操作、分析推导解题方法奠定基础。
探究新知
(一)初探新知。
要把这筐橘子按3∶2分给1班和2班的小朋友,应该怎样分?我们用小棒代替橘子分一分。
1、小组交流后学生动手分配。
引导学生明确1班占3份,2班占2份。
2、记录分配的过程。
引导学生在记录过程中发现6∶4,30∶20……都等于3∶2,为寻找解决问题的策略奠定基础。
3、各小组汇报,说说自己的分法。
引导学生不断调整每次分配的数量,明确1班占3份,2班占2份。
4、在这次分小棒的过程中,你有什么发现?说说感受。
(每次分的小棒的根数比都是3∶2)
设计意图:在分小棒的操作活动中,进一步体会比的意义,在观察记录的过程中发现6∶4,30∶20……都等于3∶2,巩固了化简比的内容。另外,学生不断地调整每次分配的数量,不断地产生新的解题策略,理解按一定的比进行分配的意义。
六年级上册数学《比的应用》教案4
教学目标:
1.能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
2.引导学生通过实际操作、画图、计算等方法探索新知。
3.在解决问题的过程中体会比与现实生活的密切联系。
4.在交流算法的过程中体会解决问题策略的多样性。
重点难点:
1.能运用比的意义解决按照一定的比进行分配的实际问题。
2.引导学生通过操作、讨论和交流探索新知
教学方法:
操作
小组合作交流
自主探究
教学过程:
一、组织教学。
1、复习
师:同学们,今天与我们平时上课有什么不同?
紧张吗?(有的说紧张有的说不紧张)
咱们来统计一下,紧张的同学请举手,(生举手)
师数一数,并记录其数据(紧张的有15人,不紧张的有20人)。
你能根据这15人和20人用比的知识或分数的知识说一句话吗?
生可能会有以下几种说法:
(1)紧张的人数与不紧张的人数比是3:4;
(2)紧张的人数是不紧张的人数的3/4;
(3)紧张的人数与全班总人数的比是3:7;
(4)紧张的人数是全班总人数的3/7;
(5)紧张的人数比不紧张的人少1/4;
2、引入课题
师:大家说的真好,可见数学在我们的生活中随处可见,以前我们体验过分数在生活中的应用,今天我们再来体会一下比在我们生活中的应用价值。板书课题:比的应用。
二、探索新知
(一)解决问题一:怎样分合理?
1.提出问题。
师:其实只要有心,随时都可以发现一些数学问题,今天,我们的好朋友笑笑就遇到了一些问题,我们一起来看看她遇到了什么问题。(多媒体出示教学情境图。)
师:根据这幅情境图,你能获得哪些信息?
指名回答,引导学生找出图中所提供的信息,明确所提出的问题:把这些橘子分给一班和二班,怎样分合理?
学生独立思考
2.组织讨论。
让学生先在小组内进行讨论。然后,教师组织学生进行全班交流。
全班交流时,学生可能会提供以下两种分配方案。
方案一:每个班分这筐橘子的一半。
方案二:按一班和二班的人数比来进行分配。
启发学生明确:平均分就是按1:1的比例来分的;在实际生活中有时并不是把一个量平均分,而是要按不同的份量(一定的比例)来进行分配,像这样把一个量按一定的比例进行分配,就叫按比例分配。
师:这节课,我们来学习怎样解决按一定的比进行分配的实际问题。板书:按比例分配
(二)解决问题二:怎样分才是按3:2的比例来分的?
1、提出问题。
师:我们帮笑笑想出了分配的方法,笑笑又问:怎样分才是按3:2的比例来分的呢?
2、操作感知。
让学生用小棒代替橘子,4人—组分一分。[教师给每组相同数量的小棒,但没有告诉学生小棒的根数。(小棒的根数是5的倍数)学生按3:2分小棒,教师巡视,及时了解学生中典型的分法]
3、让学生说一说分的过程中的发现和自己的体会。
学生可能会说出不同的发现,
①发现6:4,9:6、15:10、30:20……的结果都是3:2。
②发现无论怎么分都是按3:2分。
(三)解决问题三:如果有140个橘子,按3:2该怎么分?
1、提出问题。
师:现在有140个橘子,按3:2又应该怎么分?
2、小组讨论。
让学生针对问题把自己的想法在小组内说一说,
教师巡视时,从中了解学生中典型的想法和做法。
3、全班交流。
指名汇报,学生可能会提供以下三种不同的方法。
方法1:通过实际操作解决问题。如下表所示:
一班
二班
30个
20个
30个
20个
方法2:用画图的方法解决问题,如下图所示:
140个
3+2=5?
28×3=84(个)
140÷5=28?
28×2=56(个)
(答略)
方法3:根据分数的意义解决问题,
思考过程如下:
先求分的`总份数:3+2=5
因为:一班分5份中的3份,即分到140个的3/5。
二班分到5份中的2份,即分到140个的2/5。
所以:一班分的个数是140×3/5=84(个)
二班分的个数是140×2/5=56(个)
方法4:方程
解设每一份有x个橘子,则一班分3x个,二班分2x个,根据:3份(3x)+2份(2x)=140列出方程:3x
+
2x
=
140并解出方程x=28,一班分3×28
=
84(个),二班分2×28
=
56(个)。
让学生说一说以上三种方法的相同点和不同点
4、引导检验
生思考,小组交流检验方法。
5、小结:
师:说的真好!我们今天遇到的问题是按一定的比例进行分配的问题,请你们思考:
A这类问题有什么特点?
B解决这类问题的方法是什么?
c解决这类问题的关键是什么?
三、巩固练习
指导学生完成教材第75~76页中“练一练”的第1、7、8题。
四、课堂小结
师:通过这节课,你有什么收获和体会与大家分享?
还有什么疑问要和大家商讨商讨?
六、布置作业
课本第75页练一练的第二题和课本76页的第6题。
教学反思:
本节课在谈话中引出问题复习旧知,为新授做铺垫,同时也让学生切身实地的感受到数学就在我们身边,从而很自然地引出课题。
整节课紧紧围绕三个问题展开,共分两大部分:一、分一分:创设情境,鼓励学生通过操作,在交流不同分法的过程中体会1:1分配的不合理性,产生按比分配的必要性,同时体会按比分配在生活中的实际应用;二、算一算:再有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解决问题的策略解决实际问题。
由于按比分配在生活中的运用很广泛,所以在练习的设计上,主要通过有层次、有坡度的一组问题,让学生用今天所学的知识来解决这些生活上的问题。
存在问题:由于学生个体差异较大,教学在短暂的课堂要面对全体学生,还有个别学生不能顺利准确的解决问题,造成教学效果的不足。为了提高教学效果,加强学生全面发展,在课余时间进行个别辅导,做到有的放矢,因材施教,在课堂上关注学困生,培养学习兴趣从而提高教学效果。
六年级上册数学《比的应用》教案5
一、教学目标:
1、使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。
2、在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。
二、教学重点:
确定单位,理清题中的数量关系。利用题中的等量关系用方程解答。
三、教学过程:
(一)复习准备
1、找出单位。
2、(1)画图分析并列式解答。
(2)说说你是怎样思考和解答的?
(3)学生分析教师板演线段图。
3、导入。
今天我们继续学习分数应用题。
(二)学习新课。
现在老师把这道题改动一下。分析解答。
(1)读题,找出已知条件和问题。
(2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的`重量,后者已知还剩的重量,求这袋米的重量。)
(3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位
(4)谁来分析这个条件?
学生分析的同时教师板演线段图。
(5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?
生在黑板上画出。
(6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)
(7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)
(8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它
(9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)
(10)试着在练习本上列方程解答。
(11)谁能说说你是怎样解答的?
①生口述:
答:买来大米40千克。
②买来的重量还剩几分之几=还剩的重量。
③小结:
通过刚才的分析解答,你认为这两道题实际上什么相同。
数量关系相同。
④解答方法相同吗?为什么?
解答方法不同。单位已知,可根据数量关系用算术方法解答;单位未知,可用x代替,运用数量关系式列方程解答。
⑤出示例7。读题,找出已知条件和所求问题。
画图分析解答。
a、从这个条件可以看出题中是几个数量相比?
两个数量相比。
追问:哪两个?
四月份实际烧煤量和四月份计划烧煤量。
我们应把哪个数量看作单位?为什么?
把原计划烧煤量看作单位。因为和它相比,以它为标准,所以把它看作单位。
②画图时我们要用两条线段表示两个数量,先画谁呢?
先画原计划烧煤吨数。
下一步画什么?
实际烧煤吨数。
指名回答:把计划烧煤量看作单位,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量。
这两条线段谁为已知?谁为未知?
③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?
计划烧煤吨数-节约吨数=实际烧煤吨数。
计划烧煤吨数未知怎么办?
设计划烧煤吨数为x,用方程解答。
④试做在练习本上。
⑤反馈:说说你的解答方法及依据。
a、学生独立画图分析并列式解答。
b、反馈提问
c、你用什么方法解答的?依据的等量关系式是什么?
(三)课堂总结。
今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?
数量间的等量关系相同,解答方法不同。
(四)巩固反馈。
(1)课本第74页1题。
(2)根据列式补充条件。
(五)布置作业。
六年级上册数学《比的应用》教案6
教学内容:
北师大小学数学六年级上册二单元第28页—第29页百分数应用(三)
教学目标:
1、进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题。
2、提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
教学重点:
加强对百分数的意义的理解,根据百分数的意义列方程解决实际问题。
教学难点:
根据百分数的意义列方程解决实际问题。
教具准备:
幻灯
教学过程:
一、导入
来一个小调查:说一说你家的生活水平,贫困、温饱、小康还是富裕?用什么可以衡量出你家的生活水平?谁来介绍一下恩格尔系数。
简单地说,恩格尔系数就是一个百分率,食品支出占总支出的百分率,如果这个家庭的恩格尔系数越大,就说明这个家庭的经济越困难。恩格尔系数越小,就说明这个家庭经济越富裕。恩格尔系数可以衡量一个国家和地区人民的生活水平,看来数学在生活中的价值真是不可估量!
20xx年,国家利用恩格尔系数在某地区进行了一次调查。
复习题:20xx年某地区有74户家庭迈入小康,占被调查家庭总数的37%,被调查家庭一共是多少户?
你能帮他们算一算吗?
生在黑板板书,说说等量关系,被调查家庭总数的37%是74户,要求家庭总数,列方程,也就是x的37%=74,计算:74除以它所对应得百分率,就是被调查家庭总数,这道题其实就是已知一个数的百分之几是多少求这个数的应用题。
板书:已知一个数的百分之几是多少求这个数的应用题。
我们用什么方法解决这类题?方程或除法,今天我们继续研究这样的应用题。
二、家庭消费
1、(幻灯)这是笑笑家的调查表:(家庭消费情况)
年份xx年xx年20xx年
食品支出总额占家庭总支出的百分比65%58%50%
其他支出总额占家庭总支出的百分比35%42%50%
比较这个家庭情况的有关数据,你发现了什么?
生齐读表。语速,1985年食品支出……
发现:笑笑家从1985年往后,食品支出总额占家庭总支出的百分比越来越小,恩格尔系数越小,她家越富裕。
为什么食品支出占总支出的百分比和其他支出占总支出的百分比相加为1?
因为食品支出和其他支出和起来就是总支出。
2、在1985年,笑笑家食品支出比其他支出多210元。你知道这个家庭这一年的总支出是多少元吗?
要解决这个问题,需要表格中的哪些条件?
板书:1985年笑笑家食品支出占总支出的65%,其他支出占总支出的35%,食品支出比其他支出多210元,总支出多少元?
反馈:谁来分析一下:210元是具体的量,65%和35%都表示两个量的倍比关系,这两个关系句中,食品支出和其他支出都在和谁比?借助线段来分析,这条线段表示总支出(板书:总支出),食品支出和其他支出如何表示?整体和部分,在一条线段上,食品支出占总支出的65%(板书),其他支出占总支出的35%(板书),因为食品支出比其他支出多210元,在食品支出中去掉和其他支出同样多的部分(直尺比划其他支出长度,量出),这是食品支出比其他支出多的部分(板书:食品支出比其他支出多),多了210元(板书:210元)。求总支出(板书:?元),动笔尝试解决。生板书。三种方法同时板书。
①看这个方程,说一说等量关系,生:食品支出-其他支出=210元,再说一遍,食品支出就是什么?总支出的65%,其他支出就是总支出的35%,也就是总支出的65%-总支出的35%=210元,列方程,65%x-35%x=210
关键是从这句话中找到等量关系食品支出-其他支出=210元列方程。
②看这个方程,生:210元表示食品支出比其他支出多的部分,食品支出占总支出的65%,其他支出占总支出的35%,所以食品支出比其他支出多了总支出的.30%(板书:总支出的30%),也就是总支出的30%是210元,一个数的30%是210,就用这个数乘30%=210。所以:总支出*30%=210,30%怎么来的?
解:设这个家庭85年的总支出是x元。
(65%-35%)x=210
关键是找到总支出的30%是210元,再列方程用总支出乘这个百分率=210。,这个百分率是210元所对应的百分率。
其实这两个方程也是有联系的,什么联系?(运用乘法分配律的逆用可以推出它,括号可千万别忘了。)
③幻灯:因为总支出的30%是210元,(65%-35%)x=210已知一个数的30%是210,可以用这个数乘30%=210,求这个数,根据除法的性质,用积除以一个因数等于另一个因数,210(65%-35%)
(65%-35%)这个百分率是210所对应的百分率,用210元除以它所对应的百分率得到总支出,除法就是由这个方程推出的。括号不写行吗?(幻灯:表格)
3、(表)到20xx年,笑笑家也进入了小康生活,食品支出和其他支出都分别占了总支出的50%,(你们分析猜想一下,其他支出中都有哪些支出?)旅游、教育、穿衣、消遣……这些项合起来是其他支出,笑笑家教育支出占总支出的20%,食品和教育支出一共是6300元,这一年总支出多少元?
解决这道题还需要表格中哪些条件?食品支出占家庭总支出的50%。
板书:20xx年笑笑家食品支出占家庭总支出的50%,教育支出占总支出的20%,食品支出和教育支出一共6300元,总支出多少元?
这道题和第一题有什么异同?都知道两项占总支出的百分比,都在与总支出比较,第一题告诉两项的差,这道题告诉两项的和,都求总支出,你会算吗?尝试画线段并解决(生板书线段、解法)
反馈:因为都在与总支出比,这条线段表示总支出(板书:总支出),食品支出和教育支出如何表示?整体和部分,在一条线段上,食品支出是总支出的50%(板书:食品支出是总支出的50%),教育支出是总支出的20%(板书),食品支出和教育支出共6300元,(板书:6300元)。求总支出(板书:?元),对比:这三道题有什么异同吗?它们都是已知一个数的百分之几是多少求这个数的应用题,这两题和复习题有不同吗?怎样解决这类题?
三、练一练
1、(幻灯练习)来看,1995年其他支出比食品支出少760元,这个家庭的总支出是多少元?还需要用到哪些条件?画线段并解决(幻灯反馈)。(表格)
2、笑笑家越来越富裕,而且从题中可以看出,他们很重视对自身及孩子的教育,所以,生活好了,笑笑却从不乱花钱,她会科学、合理的消费。
20xx年笑笑的压岁钱是这样用的,买作文书刊花了一半的压岁钱,用25%购买日常用品,()捐赠贫困地区,10%存入银行,捐赠贫困地区的钱和买作文书刊的钱共195元,她共有多少压岁钱?
我们的生活水平在逐步提高,与此同时,我们也应该注重物质消费与精神消费协调发展,注重个人内在修养,要学会科学消费。
四、课堂总结
通过今天的学习你有什么收获?
解答较复杂的已知一个数的百分之几是多少求这个数的应用题的方法是什么?根据这样的条件找等量关系列方程解答,也可以找到它对应的百分率列方程或用除法计算,解题过程中,可以借助线段帮我们分析。
五、作业设计
(1)请计算你家现在的恩格尔系数。
(2)访问你的家长(爸爸或妈妈),了解他们小时候的情况,计算出当时的恩格尔系数。
(3)比较两个数据,请你写出自己的想法。
板书设计:
较复杂的已知一个数的百分之几是多少求这个数的应用题
六年级上册数学《比的应用》教案7
教学目标
1.通过观察、分析、改编、解答、比较,使学生进一步弄清较复杂的分数乘、除法应用题数量关系和解题思路的联系和区别,掌握解题方法。
2.培养、提高学生分析推理、解答应用题的能力。
教学重点和难点
明确比一个数多(少)几分之几的分数乘除法应用题的联系和区别,掌握解题方法。
教具准备
投影仪、投影片。
教学过程
(一)复习
1.根据关系句填空。
( )是单位“1”,苹果树除了有和梨树同样多的数量外,还多( ),苹果树是梨树的( )。
( )是单位“1”,椅子价钱是桌子价钱的( )。
椅子价钱○( )=( )
2.仿照上面例子分析关系句。
(二)导入新课
我们复习了分数乘、除法应用题的数量关系。通过上题发现,有很多题的叙述形式很相似,但解题方法却大不相同。为什么不相同呢?今天我们就来研究稍复杂的分数乘除法的应用题,对比、区别它们之间的异同点。(板书课题)
(三)讲授新课
1.出示例1。
(1)默读例题。
(2)同桌互说分析思路。理解足球是单位“1”,篮球除了有和足球
篮球的个数,用乘法计算。
(3)学生在练习本上画图列式。(组长检查)一名学生板书:
(4)反馈、订正、说出不同的列式。
(5)问:两种方法在解题思路上有什么相同点?有什么不同点?
(共同点是两种方法中都有一步是求20的几分之几是多少。不同点是:方法一是先求篮球是足球的几倍,再求足球的几倍,也就是篮球的
加上足球个数就是篮球的个数。)
2.改编上题,第一个条件不变,只变换单位“1”,即为例2。(改的文字用红粉笔)
(1)学生默读例题思考,为什么足球和篮球变换位置?
(2)同桌互说分析思路。
(3)画图、列式:(在本上做,一生板书)
方法一:解设篮球有x个。
(4)三种解法在解题思路上有什么不同?
等于20个为等量关系列方程;方法二则是先求出足球相当于篮球的几倍,(5)例1和例2的不同点是什么?
位“1”,用除法计算。)
3.根据图形编题,出示例3。
(1)学生默读。
(2)根据思考题讨论。
①你们所编的题谁是单位“1”?为什么以它为单位“1”?
②列式。
③问例1例3有什么相同点和不同点?
(相同点:例1、例3的单位“1”都是已知的,都是求单位“1”
(1)根据思考题小组讨论。
观察算式,你认为谁是单位“1”,为什么?
(2)学生画图、列式。(方程、算术两种方法。组长检查、辅导,一生板演。)
(3)反馈、订正。
方法一:解设篮球有x个
(4)观察例3、例4与例2、例4的.异同点。(小组讨论)
集体订正:例3和例4的单位“1”不同。例3的单位“1”是足
数是多少,根据乘法意义用乘法计算;例4的单位“1”是篮球的个数,法意义就要用方程列式,也可根据逆运算用算术法列式。例2例4的相同点:都是把篮球看作单位“1”,篮球个数都是所求的,因此根据乘法意义,找等量关系,列方程,或根据逆运算用除法列式。不同点:例2
于足球的倍数。
(5)学生自己观察黑板的四个例题,再次观察异同点。(看题、看图、看列式。)
(6)质疑。
四、课堂总结
(略)
五、巩固练习
1.第94页中“做一做”的第1,2题。
2.第95页第1题。
课堂教学设计说明
这节课的内容是稍复杂的分数乘除法应用题的比较练习课,目的是明确数量之间的内在联系和区别,明确相比的量相当于单位“1”的几分之几或几倍,所以在教案设计上突出了分数乘除法例题的对比。在让学生独立完成例1的基础上,改变单位“1”出示例2,通过一改一编,突出了两题的区别。例3的出示是根据图形而编出来的,比直接给出例题更容易激发学生的兴趣。对思考题的讨论加深了学生对如何找单位区别。例4的出示是根据算式编的题,使学生进一步明确了分数应用题的结构及解题思路。
六年级上册数学《比的应用》教案8
教学目标:
1.使学生加深理解和掌握的数量关系和解题思路,能正确地分析、解答分数,百分数应用题。
2.使学生进一步明确简单的和稍复杂的之间的联系,以及不同类型的的结构特征和解题规律;进一步提高分析、推理和判断等思维能力。
教学过程:
一、揭示课题
1.口答算式或方程.
(1)20米是50米的百分之几?
(2)50米的 是多少?
(3)多少米的 是20米?
学生口答后提问:第(1)题的40%是怎样求的,表示什么意义?第(2)、(3)题是按怎样的数量关系列式的,这两个式子都表示什么意义?
2.引入课题。
我们根据分数的意义和求一个数的几分之几(或百分之几)是多少用乘法的数量关系,学习过。这节课就复习。(板书课题)我们学过的,分为简单的和稍复杂的两种情况。通过复习,要能进一步理解井掌握它们的数量关系、解题思路,更加明确它们的结构特征和解题规律,提高分析、解答的能力。
二、复习解题思路
1.选择下面三个条件里的一个条件作问题,编出三道不同的应用题。
(1)松树30棵 (2)杨树50棵
(3)松树棵数是杨树的
学生回答时,分别出示三道应用题
(1)松树30棵,杨树50棵,松树棵数是杨树的几分之几?
(2)杨树50棵,松树棵数是杨树的 ,松树多少棵?
(3)松树30棵,正好是杨树棵数的 ,杨树多少棵?
指名学生口答算式或方程,老师板书。提问:第(1)题为什么用杨树棵树做除数?第(2)、(3)题为什么都用杨数棵数乘言?你认为解答的关键是什么?(板书:关键:确定单位1的数量)追问:上面题里与对应的数量是什么?求一个量是另一个量的几分之几要怎样算?第(2)、(3)题都是技怎样的数量关系列式子的?
2.归纳基本思路。
从上面的题可以看出,解答的关键是确定单位1的数量,并且找出与几分之几(百分之几)对应的量,然后联系分数、百分数的意义,或者一个数乘分数 (或百分数)可以表示求一个数的几分之几(或百分之几)是多少的意义列出数量关系式,再列出式子解答。如果要求一个量是另一个量的几分之几,就用几分之几对应的数量除以单位1的数量;当几分之几是已知条件时,就要根据单位1的量乘几分之几等于与几分之几对应的数量来列算式或方程解答。
3.组织练习。
(1)做练一练第1题。
提问各把哪个数量看做单位1。让学生填写数量关系式,然后口答。结合提问学生第(2)题的数量关系式里为什么是节约的数量,强调数量对应关系。提问:从上面可以看出的基本数量关系是怎样的?找数量关系时要注意什么?
【板书:基本关系:对应数量单位1的量=几分之几(百分之几)
单位1的量几分之几(百分之几)=对应数量】
指出:我们解答,一般根据含有几分之几或百分之几这句话确定单位1的量和题里的数量关系,这样就可以根据数量关系式来列式解答。
(2)做练一练第2题。
让学生默读题目,提问学生两个问题有什么不同。学生做在练习本上。指名学生口答算式,老师板书。提问:求这两个问题有什么相同的地方?【都用除法算,都用单位1的'量做除数】有什么不同的地方?为什么不同? 指出:解答一个数量是另一个数量的几分之几或百分之几的应用题,要先确定好单位1的量.再根据问题里数量间的对应关系找准需要的数量,然后列式解答。
(3)做练一练第3题第(1)、(2)题。
学生默读题目。提问:这两题哪个数量是单位1的数量?指名两人板演,其余学生做在练习本上。集体订正。提问:这两题都是按怎样的数量关系式列式的?为什么第(1)题用算术方法直接列乘法算式解答,第(2)题用方程解答?指出,这两题都是已知谁是单位1的几分之几这个条件,解答时也是看这个条件先确定好单位1的数量,再根据单位1的数量乘几分之几,等于几分之几的对应数量列式解答。当单位1的量已知时,就可以按数量关系式直接列算式解答;当单位1的量未知时,就要按数量关系式列出方程解答。
(板书:单位1已知算术方法解答单位1未知列出方程解答)
(4)做练一练第3题第{3}题。
学生改编应用题,老师依次出示。提问:你能从改变后的条件看出求小麦面积的数量关系各是怎样的吗?指名两人板演,其余学生做在练习本上。集体订正,结合让学生说一说怎样想的。提问:为什么这两题的式子都是两步计算的?解题方法为什么不一样?指出:解答,要注意数量之间的对应关系,(板书:注意:数量的对应关系)当题里的数量与题里的几分之几、百分之几不对应时,就是稍复杂的。解答时,要根据条件和问题的联系确定数量关系式,并按照单位1已知还是未知确定解题方法,然后对照数量关系列算式或方程解答。
三、综合练习
1.做练习十六第7题。
提问:这两题有什么相同?让学生在练习本上列出算式,然后提问怎样列式的,老师板书。提问:这两题的数量关系式是不是相同?数量关系式相同,为什么列出的算式不同?指出:根据数量关系式列式时,要找准相应的数量。
2.做练习十六第8题。
让学生在练习本上解答。指名口答算式和方程,老师板书。提问:这两题有怎样的数量关系?为什么所用的解题方法不一样?
3.做练习十六第9题。
提问:这两题有什么不同的地方?指名两人板演,其余学生做在练习本上。集体订正。提问:为什么问题相同,而解题方法不一样?这两题各是按怎样的数量关系式列式子的?
指出:解答,一般先确定单位1的量,(板书:定1)再根据单位1已知还是未知确定解题方法,明确用算术方法还是用方程解答,然后对照数量关系式列出式子解答。
四、课堂小结
通过复习,对于解答,你进一步明确了些什么?
五、课堂作业
完成练习十六第7题的计算;练习十六第10、11题。
六年级上册数学《比的应用》教案9
【教学内容】
小学数学实验教材(北师大版)六年级上册第一单元P23-24内容
【教学目标】
1、在具体情景中理解增加百分之几或减少百分之几的意义,加深对百分数意义的理解。
2、能解决有关增加百分之几或减少百分之几的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
【教学重点】
理解增加百分之几或减少百分之几的意义,能解决有关增加百分之几或减少百分之几的实际问题。
【教具准备】
多媒体课件。
【学具准备】
【教学设计】
教学过程教学过程说明
一、准备
线段图是把握数量关系的重要方法之一
你能用线段图表示下面的数量关系吗?
在学校开展的第二课堂活动中,参加围棋班的有32人,参加航模班的人数比参加围棋班的多25%
1.学生独立完成线段图
2.展示学生成果
3、教师对学生的作品进行评价
25%=1/432人
围棋班比围棋班25%
航模班
二、百分数的`应用
1、出示教科书P23上面的问题
2、思考:增产百分之几是什么意思?
※学生自由发表自己的见解
※教师评价
杂交水稻比普通水稻增加的产量是普通水稻产量的百分之几
3、学生独立解答问题
4、班内交流
方法一:7-5.6=1.4(吨)
1.45.6
=0.25
=25%
方法二:75.6
=1.25
=125%
125%-100%=25%
三、试一试
1、出示教科书P23下面的问题
2、几成是什么意思?
※成数主要用于农业收成
※几成就是十分之几。
※一成就是1/10,也就是10%
二成五就是2.5%,也就是25%
3、学生独立解决问题
※(2.61-2.25)2.25
=0.362.25
=0.16
=16%
四、练一练
1.教科书P24练一练第1题
2.科书P24练一练第2题
3.教科书P24练一练第3题
五、课堂总结
通过今天的学习你有什么收获?
从复习中引导学生分析数量关系。
通过介绍某实验田普通水稻与杂交的产量,引出增产百分之几的实际问题。
引导学生分析数量关系,再一次体会百分数的意义。
引导学生用两种不同的方法解答,开拓学生的思路,发展学生思维的灵活性。
重点理解几成的意思。让学生独立完成再交流,发展学生的思维。
六年级上册数学《比的应用》教案10
教学内容:
小学数学人教版第十一册第52页~53页的内容,练习十三的第1~4题。
教学目标:
1、使学生理解按比例分配的意义。
2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。
3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。
教学重点:掌握按比例分配应用题的解题方法。
教学难点:按比例分配应用题的实际应用。
教学准备:自制多媒体课件。实物投影仪。
教学过程:
一、复习引入:
1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?
学生汇报:
(1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )
(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )
(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )
(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )
(5)女生人数占全班人数的( ),女生人数和全班人数的比是( )
(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )
2、口答应用题
六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?
口答:100÷2=50(平方米)
提问:这是一道分配问题,分谁?(100平方米)
怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)
指出:按比例分配就是把一个数量按照一定的比来分配。
二、讲授新课
1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”
1、思考:由“如果按3 :2分配”这句话你可以联想到什么?(小组讨论)
小组汇报:
(1)六年级的保洁区面积是二年级的 倍
(2)二年级的保洁区面积是六年级的
(3)六年级的`保洁区面积占总面积的
(4)二年级的保洁区面积占总面积的
……
3、课件演示
4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?(请学生板演)
方法一、3+2=5 100÷5=20(平方米)
20×3=60(平方米) 20×2=40(平方米)
方法二、3+2=5 100× =60(平方米)
100×=40(平方米)
……
5、这道题做得对不对呢?我们怎么检验?
①两个班级的面积相加,是否等于原来的总面积。
②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2
……
6、练习:
如果你来分配这100平方米的保管区给六(1)班和六(2)班你准备按这样的比来分配,并把两个班保管区的面积算出来。
学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。
7、出示:学校新买来315本新书,要分配给六年级三个班,如果你是图书管理员,怎样分配才合理呢?
(1)小组讨论,提出各种各样的分配方案,最后统一到按照各班人数进行分配比较合理。
(2)增加条件:六(1)班34人,六(2)班36人,六(3)班35人。
(3)问:3154本书按照人数分配,就是按照怎样的比来分配呢?
(4)学生独立解答。
(5)学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。
8、小结:观察我们今天学习的按比例应用题有什么特点?
三、开放运用,体验成功
小明九月份共用去零花钱30元,具体用途及分配情况见下表:
零花钱30元 | ||
买学习用品 | 买零食 | 玩游戏机 |
1 | 3 | 6 |
? | ? | ? |
1.你能算出小明的各项支出是多少元吗?
2.看了这张表,你有什么想法?如果是你,你会怎样安排这30元零花钱?能用表格展示出来吗?
1、反馈。实物投影出示学生的表格,并让学生说说理由和计算钱数的方法。
四、总结:
今天的学习你有什么收获呢?
五、布置作业:练习十三的第1~4题。
六年级上册数学《比的应用》教案11
教学内容:
义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。
教材简析:
教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。
教学目标:
1.知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。
2.能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。
3.情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。
教学过程:
一、创设情境,谈话导入。
谈话:同学们,2008年的.奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?
[设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。
二、自主探究,获取新知。
1.课件出示教科书73页情境
谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?
(1)北京故宫的占地面积大约是多少公顷?
(2)我国的世界文化遗产和自然遗产一共有多少处?
(3)我国的世界文化遗产比自然遗产多多少处?………
(4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?
2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?
[设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。
3.选择你喜欢的方法试着独立解决这一问题好吗?
4.学生汇报交流。
让学生到前面展示不同的方法,分别说说自己的解题思路。
(1)272×1/4=68(公顷) 68+4=72(公顷)
(2)272×1/4+4
=68+4
=72(公顷)
学生在多次交流解题步骤中,教师板书数量关系
天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积
并展示学生画的线段图。让学生分析线段图。
[设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。
5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?
学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)
全班交流,展示做题方法。
(1)30×7/10+30×2/15 (2)30×(7/10+2/15)
=21+4 =30×25/30
=25(处) =25(处)
6.让学生展示线段图的画法,说清解题思路。
7.点题并板书:分数应用题。
8.单看这两个算式的计算,你能想到什么运算律?有什么启发?
9.小结:乘法的分配律在分数中同样适用。
[设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。
三、巩固练习,加深理解。
独立完成(第75页第2、3题。)
指生回答,并说出解题思路。
(重点说出数量关系。)
[设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。
四、回归实践,拓展运用。
课件再次出示本课信息窗情境图。
谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?
现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。
课本76页第9题。学生读题,指生列式。
[设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。
五、谈收获。
这节课你有什么收获?
六年级上册数学《比的应用》教案12
教学目标
使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答基本的分数除法应用题。
进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点
分数除法应用题的特点及解题思路和解题方法。
教学准备
教学过程设计
教学内容
师生活动
备注
一、 复习引新
二、教学新课
三、巩固练习
四、课堂小结
五、作业
1、先说出单位1,再说出数量关系式
(见课件)
2、做43页复习题
问:这道题怎样想?
3、引入新课
解答分数应用题,要先确定单位1,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的.思路来学习分数应用题。
1、教学例1
(1)出示例1,学生读题,说明条件和问题。
问:关键句是哪一句?谁占果树总棵数的2/5?
单位1是谁?
(2)让学生画出线段图
(3)学生独立列式解答。
(4)讨论:哪种方法比较简单?
指出:求单位1的应用题一般来说用方程解。
2、比较解法
请同学们比较例1和复习题。
问:在条件、问题上有什么相同点和不同点?
在解法上有什么相同点和不同点?
小结:解答分数应用题,要先确定单位1,再找出题目的数量关系再解答。
1、做练一练
让学生先写出数量关系式再解答。
2、做练习十第4题
问:要怎样想?根据什么来列方程?
今天学了什么?解答此类应用题要怎样思考、分析?
练习十第2、3题
课后感受
本节课的内容比较简单,学生有一定的基础,所以花一定的时间让学生画线段图,让学生提高解题的能力,这对学习较复杂应用题有一定的帮助!
六年级上册数学《比的应用》教案13
教学内容:教材67—68页。
教学目标:
1、使学生理解内接正方形和外切正方形的含义,掌握圆与内接正方形、外切正方形之间面积的计算方法。
2、经历问题解决的全过程,并在解决具体问题的基础上发现更为一般的数学规律,提高发现问题、提出问题、分析问题、解决问题的能力。
教学重点:掌握圆与内接正方形、外切正方形之间面积的计算方法。
教学难点:在解决问题的基础上发现数学规律。
教学过程:
一、创设情景,生成问题
1、计算下面各圆的面积
r=8dm r=12cm d=4m
2、填表
二、探索交流,解决问题
(一)学习例3
1、仔细观察:什么是内接圆和外切圆,它们都有什么特征?
2、正方形的边长与圆的半径有什么关系?
3、学生尝试解决外切正方形与圆之间的面积。
(1)通过观察,学生容易看出,正方形的边长就是圆的直径。
(2)它们之间的面积=正方形面积—圆的面积
(3)学生独立计算,集体订正。
4、解决内接正方形与圆之间的`面积。
(1)怎样求内接正方形与圆之间的面积?
学生不难发现:圆的面积—正方形的面积
(2)那正方形的面积怎样求?
观察提示:转化成2个三角形
(3)学生尝试解决
5、回顾与反思:形成一般性的结论。
当r=1m时,和前面的结果完全一致。
(二)生活中的数学
学生阅读教材70页资料,了解圆形在生活中的应用。
三、巩固应用,内化提高
1、完成“做一做”、独立解决。
2、完成练习十五的第5—9题。
(1)第5题:求圆环的面积
(2)第6题:大圆的面积—小圆的面积
(3)第7题:
a、观察图形,明确什么是周长,什么是面积?
b、分别说出这里的周长包含哪些长度,面积包含哪几个部分?
c、学生独立列式解答。
(4)第8题:小组合作完成
(5)第9题:圆的面积—中间正方形的面积
四、回顾整理,反思提升
说一说这节课的收获。
六年级上册数学《比的应用》教案14
教学内容:
教科书第81~82页的第4~7题,练习二十一的第4~6题.
教学目标:
通过一些有联系的分数乘、除法应用题的整理和复习,使学生进一步掌握分数乘、除法应用题的解题思路以及它们之间的内在联系.进一步提高用算术方法和用方程解应用题的能力.
教学过程:
一、复习一般的两步计算的分数应用题
1.教师出示第97~98页的第3题:学校买了一批新书,其中故事书有30本,科技书有18本,共占这批新书的.这批新书有多少本?
指定一名学生口述题目的条件和问题,全体学生在练习本上解答.解答完后指名学生口述分析解答过程.
2.让学生做练习二十六的第4题.
二、复习分数乘、除法应用题
1.解答第97页的第4题.
(1)出示第4题第(1)、(2)题.
指名学生口述它们的条件和问题.教师在黑板上画出线段图.
1125-1125×解法一:x-x=450
解法二:450÷(1-)
让学生独立完成,并说出是怎样解答的.
教师板书出来(见上图).
(2)观察比较.
引导学生从线段图、解法上进行比较,使学生明确:第(1)题中单位“1”的数量是已知的,要求单位“1”的几分之几是多少,用乘法计算.第(2)题中剩下的公路长是已知的,而单位“1”是未知的,求单位“1”,要按照题意找等量关系列方程解,或用除法计算.
2.让学生做练习二十六的'第5题.
3.解答第82页的第5题.
(1)出示第(1)、(2)题.
让学生自己读题,并进行解答.
订正时,教师出示线段图,指名说解题思路.教师在图的下面板书出算式.
(1)停车场有18辆大客车,(2)停车场有18辆大客车,小汽车的辆数比大客车大客车的辆数比小汽车多.小汽车有多少辆?少.小汽车有多少辆?
18+18×解法一:x-x=18
解法二:18÷(1-)
(2)比较第(1)、(2)题.
让学生说说它们有什么相同点和不同点,各把谁看作单位“1”.使学生明确:第(1)题中单位“1”的数量是已知的,要求比已知数多的数是多少,用乘法计算;第(2)题中单位“1”的数量是未知的,要按照题意找等量关系列方程解答,或用除法解答.
(3)解答、比较第(3)、(4)题.
仿照第(1)、(2)题的复习方法进行.
(3)停车场有21辆小汽车,(4)停车场有21辆小汽车,大客车的辆数比小汽车小汽车比大客车多.
少.大客车有多少辆?大客车有多少辆?
三、复习工程问题
1.教师出示第82页的第6题.让学生解答.
2.分析、比较第(1)、(2)题.
让学生回答下面的问题
(1)第(1)题的路程、两船的速度各是多少?
(2)第(2)题的路程、两船的速度各用什么表示?
(3)这两题的数量关系是否相同?
通过对比使学生认识到:两道题的思路是一致的,数量关系基本相同,都是用路程除以速度和.只是第(2)题的路程和速度不是用具体数量来计算,而是用单位“1”和“”、“”来表示的.
四、作业
练习二十一的第6、7题.
六年级上册数学《比的应用》教案15
教学目标:
1、理解和掌握分数应用题的解题思路和方法。
2、学会用多种方法解答分数应用题。
3、培养学生提出数学问题和解决问题的能力。
教学准备:
多媒体课件和答题卡
教学过程:
一、激情导入
1、自我介绍
同学们,首先,老师自我介绍一下,我来自阳城县蟒河镇。大家听说过蟒河吗?去过吗?十一长假老师欢迎大家到蟒河去,到时老师可以做你们的免费导游,好吗?我叫王宏亮,希望大家在课堂上的发言像老师的名字一样宏亮。
2、同学们,请大家环顾一下教室,有什么感觉?你能用一个词来形容吗?课前,老师初步统计了一下,今天到会的老师共有90人,其中男教师50人,女教师40人。有这么多领导老师光临我校,首先,我们应该以热烈的掌声欢迎他们的到来!他们来首先是参观我们美丽的校园,更重要的是关心、指导我们的学习。他们直面要听六年级的课,而且点名
要听六(1)班的'数学课。为什么呢?因为他们听说六(1)班同学个个都是敢于发问、善于思考、反应敏捷、积极主动回答问题的好学生。因此,请大家尽情展示自己的风采,亮出自己的真正水平。
二、揭示课题
今天,我们共同来复习分数的应用(板书:分数的应用复习课)
三、提出数学问题和解决问题
现在请同学们看黑板,根据这两条信息,你能提出哪些数学问题呢?
1、学生提出问题,并解决(老师相机板书)
2、小组评价
同学们说得太好了,真是名不虚传。爱因斯坦说:提出一个问题比解决一个问题更重要。大家不仅能提出不同的数学问题,而且能熟练的解答出来。大家都是未来的爱因斯坦。下面请同学们再看黑板,老师又摘录了两个条件,并且标上了序号。请大家选择其中的两个条件,自己补充合适的问题(提示:其他条件可以当作问题,如已知男教师人数可求女教师人数)改编成新的应用题,并列出式子,能行吗?请大家试一试,做在答题卡上。可以独立完成,也可以同桌一起交流。
3、学生编题,列式,教师巡视指导评价。
4、全班交流。
师:现在我们全班交流一下,我相信通过大家的交流,相互补充,相互促进,我们的思维一定会碰撞出智慧的火花。
(交流过程略)
5、小结评价
同学们说得真是太精彩了,一下子编出了这么多应用题,而且每一道应用题能从不同的角度去思考,用多种方法解答出来。实际上大家已经概括出了分数应用题的各个类型。小明也听说大家是解决问题的高手,他有两道难题想请大家来帮忙。
四、实际应用
1、小明说:我去年十岁,体重60千克,今年上半年体重增加了1/10。经过暑假减肥,我的体重终于减轻了1/10。同学们,我现在与去年相比是变重还是变轻了呢?
A、大家先来猜一猜。
B、请大家验证一下,迅速算一算就知道了。
C、学生计算交流。
D、小结:很好!看来小明减肥确实有效果,但是效果还不太明显。因此,大家想对小明说些什么呢?
2、小明说,他爸爸开了一个商店。同时购回两种不同价格的衣服,但都以相同的价钱48元卖出。其中一件赚了1/5,另一件赔了1/5。请大家帮忙算一算,这两件衣服合起
来,是赔了还是赚了?还是不赔也不赚?
A、学生交流讨论。
B、全班交流。
C、小结:看来数学在我们生活中随处可见,学好了数学,确实可以帮助我们解决生活中的许多问题。
五、全课总结。
今天,我们共同复习了各类分数应用题的解法,大家能够做到一题多问,一题多编,一题多解。在今后的学习中,只要大家能够这样坚持长期的训练,头脑一定会越来越灵活,越来越聪明,未来的科学家将会在我们六(1)班中诞生!
板书设计:
分数的应用复习课
①男教师有50人 ②女教师有40人
③男教师比女教师多1/4④女教师比男教师少1/5选择条件 所求问题 解决方法
【六年级上册数学《比的应用》教案】相关文章:
六年级上册数学《比的应用》教案08-30
六年级上册数学《比的应用》教案05-27
六年级数学上册《比的应用》教案02-11
六年级上册数学《比的应用》教案【必备】05-28
六年级上册数学《比的应用》教案6篇03-12
六年级上册数学《比的应用》教案(6篇)03-13
北师大版数学六年级上册《比的应用》教案02-02
北师大版六年级上册数学《比的应用》教案08-26
数学教案-比的应用08-16