四年级下册数学第四单元教案(精华)
作为一名优秀的教育工作者,通常需要准备好一份教案,教案有助于顺利而有效地开展教学活动。那么你有了解过教案吗?下面是小编为大家整理的四年级下册数学第四单元教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
四年级下册数学第四单元教案1
【教学内容】
义务教育教科书《数学》四年级下册第四单元第38-39页例1、例2、例3、例4及相关练习。
【教材分析】
本小节的学习内容是学生学习了“小数的意义”的基础上深入学习小数的有关知识,小数意义的掌握是本节课知识的支撑点,对于小数性质的理解起着基石作用,掌握小数的性质,不但可以加深对小数意义的理解,而且它为后面比较小数的大小,小数四则计算打下坚实的基础。小数的性质实质上是研究在什么情况下两个小数相等的,它与分数的基本性质是相通的,但由于学生还没有学过分数的基本性质,所以教材通过直观和学生所熟悉的十进复名数来进行教学。本节学习和掌握小数的性质,不但可以加深小数意义的理解,而且
【学情分析】
在学习本内容之前,学生对于在整数的末尾添上“0”或去掉“0”会引起整数大小的变化有了一定的认识,这一点实际上是这节课学习的负迁移,也是这节课展开研究的切入点。同时,学生已经学习了小数的意义和小数的读法和写法,以小数的意义为教学支撑点,借助直观操作,遵循概念的形成规律,教学中引导学生经历“数学猜想、验证和应用的过程”,体验探索、发现数学规律,并设计多层次的专项练习从本质上帮助学生理解小数性质。
【教学理念】
奥苏贝尔说过:只有孩子亲身经历过的事情,他才会印象深刻。学生对数学体验主要是通过动手操作,从中感悟并理解概念的形成和发展,体会数学学习的过程与方法,获得数学活动的经验。教学中充分利用直观教具、学具,从“生动的直观到抽象的思维”的认知规律来设计、组织操作活动,通过实验操作引导学生观察、体验、思考,真正清晰地理解概念的本质属性。
【教学目标】
1、理解并掌握小数的性质;
2、能运用小数的性质进行小数的化简和改写;
3、经历“数学猜想、验证和应用的过程”,体验探索、发现数学规律的基本策略和方法;
4、通过理解小数的性质,渗透“变”与“不变”的辩证思想。
【教学重点】
理解和掌握小数性质的含义。
【教学难点】
理解在小数部分什么位置添“0”去“0”,小数大小不变。
【教学准备】
直尺图、方格图、数位顺序表。
【教学过程】
一、创设情境,引发冲突。
教师用《西游记》中唐僧考验悟空和八戒的题目引入,由金箍棒能变长变短引出在整数末尾添上“0”或去掉“0”,学生直观感受1米、10米、100米的变化。但八戒在0.1米的末尾试着添上“0”时,金箍棒的长度却没有发生变化。教师将八戒的困惑抛给学生:这是怎么回事?
追问:为什么“0.1米=0.10米=0.100米”?
【设计意图:生动有趣的故事导入,形象直观的问题呈现,激发学生探究数学问题的兴趣,抓住学生的认知冲突作为研究的切入点,调动学生学习积极性。】
二、探究交流,学习新知
(一)探索小数的性质
1、操作观察,初步感知。
(1)学生借助直尺图操作验证。
先看图填一填,再比较0.1m、0.10m、0.100m的大小。
0.1m= m=( )dm
0.10m= m=( )cm
0.100m= m=( )mm
(2)学生汇报,结合汇报课件展示思考过程(直尺图)
因为1 dm、10cm、100mm表示的是同一长度,即1dm=10cm=100mm
所以:0.1m=0.10m=0.100m
借助数位顺序表再次感知这3个小数的大小不变。
(3)引导观察:这三个相等的小数,小数部分有什么不同?
小组交流:
①从左往右看,两个两个比,小数的末尾有什么变化?小数的大小有没有变化?
②从右往左看呢?
(4)学生汇报,课件展示。
2、提出猜想,验证猜测
(1)提出猜想:为猪八戒解惑为什么“0.1米=0.10米=0.100米”?发现小数的末尾添上“0”大小不变,去掉“0”大小也不变。那你猜猜,是不是所有的小数都有这样的规律呢?找找我们身边的存在这样规律的例子。(板:发现猜想)
(2)出示情景图:到文具店买牌橡皮,我在芳芳文具店买用了0.3元,我在百合文具店买用了0.30元,那你们去买的时候会选择哪一家呢?为什么?
预设:学生联系元角分说明关系
0.3元和0.30元都是3角,所以0.3元=0.30元
思考:如果去掉单位“元”,还相等吗?
(3)学生操作验证:可以选择方格图涂色表示这两个小数,比一比;也可以在数位顺序表填小数,观察你发现了什么?
(4)学生汇报,课件展示。
借助方格图、数位顺序表说明关系,再次感知小数的末尾添上“0”或去掉“0”,小数的大小不变。
【设计意图:利用方格图、数位顺序表,从本质上帮助学生理解“为什么小数的末尾添上”0“或去掉”0“,小数的大小不变”。】
(5)学生举例。(你能再写出几个这样相等的小数吗?并利用数位顺序表验证。)
3、观察对比,归纳性质。
【设计意图:整个探究环节由图形→数量→数,由具体到抽象,符合中年级学生的.认知特点。】
4、揭示课题(板:小数的性质)
5、专项练习,明晰概念的内涵和外延。
0是个调皮的孩子,0它喜欢跳来跳去。0说我怎么站,小数的大小都一样,你认为0说得对吗?
(1)10.080 → 10.08;10.080→ 10.80;10.080 → 10.0800
(2)700 → 7000
把700放在数位顺序表中,观察对比,明确小数的性质使用范围,对于小数才适用。
你有什么办法使700的末尾添0以后它的大小不变?
6、小结:
(1)小数性质中的关键词。
【设计意图:通过突出重点与突破难点的专项练习--辨析具体实例中哪些“0”可以去掉,哪些不能去掉旨在让学生更加深刻地体验小数性质的核心内涵。】
(2)回顾小结过程:同学们思维非常活跃,能运用不同方法和想出不同的例子来验证自己的猜想。我们就像科学家们,大胆地猜想--小心地验证,才能得到科学的结论。(板书:验证结论)
(二)应用性质
1、通过一组数据,感受小数可以化简。
(1)课件出示:0.7000000000 0.700000 0.7
(2)观察思考:这3个小数之间有什么关系?你们愿意读写哪一种?为什么?
(3)揭示化简的含义。
2、学生自学例2,小组交流。
3、学生板演,汇报依据,规范化简的写法。
4、小组合作,思考讨论:
①化简小数是什么意思?化简后小数的大小变了吗?
②105.0900,为什么不去掉中间两个的0?
借助结合数位顺序表直观感知小数的中间去掉“0”后,小数的大小发生改变。
小结:从数位顺序表中直观看到小数的中间去掉“0”后,相同数位上的数不一样,小数的大小发生改变。
5、结合具体数据,探究改写规定小数部分位数的方法。
(1)课件出示小数的性质在生活中的应用图片】
【课件出示计算题图片】
(2)独立完成例3.
例3:不改变数的大小,把下面各数写成三位小数。
0.2= 4.08= 3=
审题,尝试练习,交流汇报:
重点点拨“3”(追问:能直接在整数后面添上“0”,为什么?)根据小数的性质,必须先把整数改写成小数,再根据要求补0。
小结:有时根据需要,可以在小数的末尾添上“0”;把一个整数改写成小数,先要在整数的个位的右下角点上小数点,再根据需要添上“0”。
6、即时练习。
不改变数的大小,把下列各数改写成两位小数。(生一起口答)
23.180 6 12.0 0.020
7、小组合作,思考讨论:
改写小数时要注意什么?
【设计意图:通过自学和独立尝试完成例题,明确小数性质的两大运用:化简和改写小数。,适时创设问题情境,引导学生观察反思自己的学习过程,对学习结果进行理性思辨,有效促进学生对概念本质的理解。同时引导学生学会研究问题和解决问题的方法,不断提高自我获取知识的能力。】
三、巩固深化,拓展提升
1、照样子,在直线上填上对应的小数。
(1)指导完成0.1、0.10、0.2、0.20,学生独立完成余下填空。
(2)思考:0.1和0.10有什么相同和不同的地方?1和1.00呢
预设:小数的大小相同;不同:小数部分的位数不同,一个是一位小数,一个是两位小数,意义不同,0.1表示1个十分之一,0.10表示10个百分之一。
(3)追问:1还可以用什么小数表示?
小结:在小数的末尾添上“0”或去掉“0”,小数的大小不变,但意义不同。
【设计意图:每组2个小数对应于数轴上的同一个点,再次直观感受大小不变,但所表示的意义改变,渗透“变”与“不变”的辩证思想。】
四、总结分享,评价互动
今天你有哪些收获?跟大家分享一下好吗?
五、布置作业
1.看书本第38、39页。
2.书本第41页第1、2题。
▲板书设计
小数的性质
1dm = 10cm = 100mm例3化简下面的小数。
0.70 = 0.7 105.0900 = 105.09
发现0.1m = 0.10m = 0.100m例4不改变数的大小,把下面各数
猜想0.3元=0.30元写成三位小数。
验证0.3=0.30=0.300 0.2 = 0.200
结论小数的性质:小数的末尾添上“0”或去掉“0”,4.08 = 4.080
应用小数的大小不变。 3 = 3.000
四年级下册数学第四单元教案2
教学内容:人教版数学第八册第四单元“小数的性质”
教学目标:
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:
让学生理解并掌握小数的性质。
教学难点:
能应用小数的性质解决实际问题
教学过程:
一、谈话导入、课前质疑
1、师:今天老师给同学们准备了一个小魔术,我们来看看。
这个数认识吗?几呀?出示数字卡片:1
我能让这个数变大,看仔细哟。(添了一个0)
这个1的末尾添了一个0,这个数发生了什么变化?
老师还能把这个数变小,知道怎么变吗?就要把末尾的0(去掉),看着啊。
看来,我把整数末尾的0 去掉,这个数就缩小。那100去掉末尾两个0,大小怎么变化的?(缩小了100倍,好极了)
师:刚才我将这个整数的末尾添上0,这个整数就变大了,我又将这个整数的.末尾去掉0,这个整数就变小了。
2、师:接下来再变一个小数的魔术。这是几?(0.1)看着啊,老师还能把它变大。变大了吗?
这可奇怪了,刚才整数的末尾添上0,这个数会变大,整数的末尾去掉0,这个数就会变小,那我在小数的末尾添上0或去掉0,小数的大小变不变呢?你认为呢?
在小数的末尾添上或去掉0,小数的大小不变,这只是大家的猜想,这个猜想对不对呢?这就需要大家一起来验证一下。
板书:猜想 验证
二、探究新知、课中释疑
1.探究0.1米,0.10米,0.100米的大小
(1)有以有的知识来解释一下这三个数的大小。
请比较一下它们的大小。
板书:1分米=10厘米=100毫米
(2)导入例1:
你能把它们都写成用米做单位的小数的形式吗?必须体现它们的原先单位。
导:分米和米有什么关系?厘米、毫米呢?
根据学生回答归纳演示:
1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
学生很快回答后课件演示。并在他们之间加上等号。
我们还可以用重合法比较一下。(课件演示)
(3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米
提问:这说明了什么问题?
请大家仔细观察这个等式,可以从左往右看,再从右往左看,什么变了?什么没变?在什么地方多(少)0?在这个小数的什么位置?多(少)0还可以怎么说?
小数的末尾添上0大小不变,去掉0大小也不变。是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。
2.教学例2。
(1)比较1.30和1.30的大小。
导:想想0.30表示什么意思?0.3呢?应该涂多少格?
学生涂完色问:你为什么这样涂?之后演示涂色过程。
(2)同桌商量比较,汇报结论。
问:谁涂的面积大?1.30和.1.3的大小怎样?你是怎么知道的?
直观比较法:看上去都一样大;
理论推导法:1.30是130个1/100,也是13个1/10;1.3是13个1/10。
课件演示重合图形。(在原板书下再板书:1.30=1.3)
(3)观察思考
观察板书1.30=1.3
这个例子说明了什么?看来不仅仅是个特例,再次验证我们的猜测。
3. 讨论归纳
教师指着板书说:你能把上面的研究结论归纳成为一句话吗?4人小组之间讨论一下,想想该怎么说才比较完整?
教师提问几个小组代表让其归纳,不够完整可以由其他小组代表补充。得出小数的性质:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质.(课件展示)
4、指导阅读。
讲述:书上也证实了我们的研究,并把它称为“小数的性质”。齐读小数的性质。
5、质疑问难:(判断)
你们对这句话理解的够不够透彻呢?挑战一下你们。(以下题目陆续出现)
(1)一个数的末尾添上“0”或去掉“0”,这个数的大小不变。
举例说明后返回小数的性质,红字强调“小数”。
(2)小数点的后面添上“0”或去掉“0”,小数的大小不变。
举例说明后返回小数小性质,红字强调“末尾”。
(3)10.50=10.5=10.500 判断后返回小数小性质强调“大小不变”。
三、巩固运用、交流反思
小数的性质有什么作用呢?
强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.
l.出示例3:把0.70和105.0900化简。
思考:哪些“0”可以去掉,哪些“0”不能去掉?
(1)提问:0.70你认为可以怎么化简才能大小不变?
(2)学生自己完成。指名回答,让其说说这样做的根据是什么?
(3)为什么105.0900的5左边的0不能去掉呢?(强调小数的性质中“小数的末尾的0”。)
(4)练习:下面的数,哪些“0”可以去掉?哪些¨0“不能去掉?
0.40 1.820 2.900 0.080 12.000
回答后小数末尾的0红色闪现。
问12应该去掉0后是多少?还可以怎样表示?
强调:12去掉0后,小数部分没有数,可以把小数点也去掉。
过渡:同样,应用小数的性质,我们还可以根据需要,把一个数改写成含有指定小数位数的小数
2.出示例4:。
不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。
想想可以怎么做?
(1)学生自己完成。
(2)大家这样做的根据是什么?3能不能直接在后面添0?
(3)练习:下列数如果末尾添”0“,哪些数的大小不变,哪些数的大小有变化?
3.4 18 0.06 700 3.0 4.90
整数和小数用不同的颜色区分。
如果整数想改成大小不变的小数,必须先做什么?(先添上小数点,再添0)
五、课堂小结
1.这节课你学到了哪些知识?有哪些收获?
四年级下册数学第四单元教案3
教学目标:
1、理解并掌握小数的性质,正确理解“小数末尾”的含义,并会用小数的性质将小数化简和把一个数改为指定小数位数的小数。
2、在引导学生发现小数性质的过程中,培养学生的观察,概括和语言表达能力。
3、在数学探究活动中树立学习数学的信心和兴趣。
教学重点:小数的性质。
教学难点:理解小数的性质。
教具学具准备:课件、练习纸。
教学过程:
一、创设情境,激发兴趣
师:同学们,今天我们请位老朋友和大家一起上课,看看他是谁?(出示孙悟空图片)孙悟空的兵器是什么?(金箍棒)我们知道孙悟空的金箍棒,能长能短,变化无穷,下面我们来让它变一变,金箍棒现在长度是1米,我在1的末尾添上1个0,变成10米,我来喊“金箍棒”,你们喊“变”,看它怎么变(动画演示金箍棒1米变成10米);在10的末尾添1个0,变成100米(动画演示金箍棒10米变成100米)。有意思吧!现在把100末尾的两个0去掉,变成1米(动画演示金箍棒100米变成1米);用小数来试一试,输入0.1米,在0.1的末尾添上1个0,变成0.10米(动画演示金箍棒0.1米变成0.10米),啊,怎么没反应。再在0.10的末尾添上2个0,变成0.100米(动画演示金箍棒0.10米变成0.100米),啊,还是没反应,这是怎么回事?谁想说说看。
生1:法术失灵了。
生2:0.1,0.10,0.100米这三个长度一样长。
老师板书:0.1米,0.10米,0.100米
二、主动探素,体会领悟
1、初步感知小数的性质。
师:如果你认为这三个长度相等,用你学过的知识解释一下,它们为什么相等,如果你对这三个长度相等有疑问,就把你想到的东西写下来。
拿出老师提供的空白练习纸,把你的想法写下来。
(1)学生动手写下来。
(2)学生汇报。
生1:因为0.1米=1/10米=1分米,0.10米=10/100米=10厘米,0.100米=100/1000米=100毫米,而1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。
生2:因为0.1米里有1个1分米,0.10米里有10个1厘米,0.100米里有100个1毫米,而1个1分米、10个1厘米、100个1毫米相等,所以0.1米=0.10米=0.100米。
老师适时板书:0.1米=0.10米=0.100米。
(3)观察0.1=0.10=0.100初步认识小数的性质。
师:0.1米=0.10米=0.100米,三个数的单位相同,也就是0.1=0.10=0.100(板书),看一看,你发现了什么?和你同桌说一说。
生1:在小数的后面加上一个0或加上两个0,小数大小是一样。
生2:在小数的末尾添上0,小数大小不变。
生3:在小数的末尾去掉0,大小是一样的。
2、深化认识小数的性质。
(1)纯小数中比一比
师:确实是这样的,是不是其它小数也有这样的特点呢?这样吧,你在心中想一个这样的数,拿出1号练习纸,把你想的.小数表示出来,比一比它们是否有这样的特点,当然你也可以用其它的办法比一比。
练习纸:
两个大小相等的正方形,一个平均分成10份,另一个平均分成100份。
三个大小相等的正方体,分别平均分成10份、100份、1000份。
生动手写小数,涂一涂,比一比,师适时板书。
(2)混小数中比一比
师:同学们,你们写的小数是不是也有这样的特点?下面看看大屏幕上的小数是不是有这样的特点?
出示一组混小数,让学生写小数,比一比。
师:大屏幕上的涂色部分应该用哪两个小数来表示?
生:1.2和1.20
师:它们相等吗?
生:看涂色部分是一样大的。
师动态演示两个阴影部分相等。师:你还能举出这样的例子吗?
生举例:如1.5=1.50,2.6=2.60
师:还能说吗?(能)这样的数说得完吗?(不能)能说这么多,你能说出这么多这样的小数,说明你发现了某种规律,这样吧,你把你的发现和你的同桌说一说。
(3)小结小数的性质,揭示课题。
生1:小数的后面无论添上几个0,它都不变。
生2:小数的末尾添上0,去掉0,大小都不变。
根据学生的汇报完善,归纳,总结出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
师:这就是我们今天来学习的内容:小数的性质(板书课题)
3、探究小数性质的内涵
师:下面请看到大屏幕,
这是我们熟悉的数位顺序表,如果一个整数,在它的末尾添上0,那它表示的大小就不同了,如5,变成50,同样在整数的末尾去掉0,它表示的大小也不同了,如700;如果是一个小数,在它的末尾添上0,或去掉0,它的大小就不变,如0.3变成0.30,0.300,15.20xx变成15.2。(借助数位顺序表,动画演示添0,去0的过程)
4、教学小数性质的应用
(1)化简小数
师:现在脑子里想一个数,想一想,哪些0可以去掉,哪些0不能去掉?
生汇报,如:109.900中末尾的2个0可以去掉。
师:通过刚才的学习,我们可以把小数末尾的0去掉使小数更简洁,这个过程我们称为把小数化简(板书:化简),
出示例3,化简小数:0.70 105.0900
生独立完成,汇报,师讲评。
0.70=0.7 105.0900=105.09
(2)改写小数
师:根据小数的性质我们可以去掉小数末尾“0”,也可以在小数末尾添上“0”,有时我们需要把一个数改写成指定小数位数的小数。(板书:改写)
出示教学例4,不改变数的大小,把下面各数写成三位小数。
0.2 4.08 3
三、应用新知、解决问题。
1、做一做
(1)化简下面各数。
0.40 1.850 2.900 0.080 12.000
(2)不改变数的大小,把下面各数写成三位小数。
0.9 30.04 5.4 8.18 14
2、辨一辨:
因为0.2=0.20,所以0.2和0.20没有区别。
3、填一填
把0.9改写成计数单位是千分之一的数是(),把800个0.001化简是()。
四、总结交流
通过本节课的学习,你有什么收获?
板书设计:
小数的性质
小数的末尾添上“0”或去掉“0”,小数的大小不变。
1分米10厘米100毫米
0.1米=0.10米=0.100米
0.1=0.10=0.100
0.3=0.30
1.2=1.20
四年级下册数学第四单元教案4
教学目标
知识与技能
1、理解和掌握小数的意义。
2、理解整数、小数、分数之间的联系,掌握相邻两个计数单位之间的进率。
过程与方法
经历小数的发现、认识过程、体验探究发现和迁移推理的学习方法。
情感、态度与价值观
了解数学知识的产生过程,激发学习兴趣,培养动手实践、合作探究的学习习惯。
教学重点/难点
教学重点:理解和掌握小数的意义。
教学难点:认识小数的计数单位并掌握它们之间的进率。
教学用具
多媒体、板书
教学过程
一、展示生活中的小数
1、师:同学们,我们在生活中经常会看到小数的存在,你能举几个例子吗?(学生回答)
2、师重点展示:这两天老师也收集了一些小数请看!
①小明的50米赛跑成绩是7.98秒。
②小亮的身高是1.41米,小强的体重是39.4千克
3、超市里,面包0.9元,火腿肠2.85元,牛奶是5.98元。
创设情境,导入新课:
这些数都是什么数?(小数)板书:小数。
小数是怎么产生的呢?
在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
3、揭示课题:
关于小数你想知道些什么?由于时间有限,我们今天先研究小数的意义(板书)
探究新知1:
师解析:
把一米平均分成10份:
我们把它平均分成10份,每份用分数表示是多少米?( 米)。
师:米还可以写成0.1米。这样我们就得到了一个小数0.1米。刚才0.1米是怎样得到的?谁再来说一说。(板书)
箭头指向40的地方怎么表示?课件点出:4分米。
0.4米是怎样得到的?(把1米平均分成10份,表示这样的4份,也可以写成0.4米),用分数表示是
同理得出:指向70的箭头,用分数和小数分别怎么表示。
从上图中我们可以看出把整数1平均分成10份,每一份是0.1,4份是0.4,用分数表示为
4、归纳抽象:
刚才我们分的是一米一元一千克,都可以用整数“1”来表示,平均分成10份100份1000份、……这样的.一份或几份是十分之几、百分之几、千分之几……在实际应用中,可以用小数来表示。像0.1、0.2、0.01、0.52、0.625等都是小数。(注意板书)
5、各部分名称:
(以0.625为例来说明)小数中的小圆点“.”叫做小数点。小数点右边第一位是十分位,十分位上2表示2个0.1, 3表示3个0.1,因此十分位上的计数单位是0.1,也可以说成是十分之一(板书);小数点右边第二位是百分位,计数单位是百分之一(0.01)(板书);小数点右边第三位是千分位,计数单位是千分之一(0.001)(板书)。
归纳:每相邻两个计数单位之间的进率是10。
探究新知2:
分母是10、100、1000 ‥‥‥的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥例如:把1米平均分成100份,每份是1厘米。0.03的计数单位是或0.01。
所以:小数中,每相邻两个计数单位间的进率是10。
十分之几是一位小数,百分之几是两位小数,千分之几是三位小数。
归纳总结:
识记小数并不难,它与分数紧关联。
测量计算不得整,就请小数来帮忙。
分数10、100与1000…..
小数位数一、二、三
计数单位分数表,十分之一,百分之一,千分之一要记全。
课堂小结
今天你有什么收获?
1、 小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥
2、 小数中,每相邻两个计数单位间的进率是10。
3、 十分之几是一位小数,百分之几是两位小数,千分之几是三位小数。
课后习题
1、0.8的计数单位是( ),有( )个( )。
2、0.06的计数单位是( ),有( )个( )。
3、0.34的计数单位是( ),有( )个( )。
4. 商品的单价通常用以“元”为单位的两位小数表示,你能把下面商品单价按要求表示出来吗?
(1)一支铅笔5角 单价:_________元
(2)一个铅笔盒15元 单价:_________元
(3)一个书包20元 单价:_________元
(4)一个小练习本2角5分 单价:_________元
板书
小数歌
识记小数并不难,它与分数紧关联。
测量计算不得整,就请小数来帮忙。
分数10、100与1000…
小数位数一、二、三
计数单位分数表,十分之一,百分之一,千分之一要记全。
教学反思:
回顾本节课的教学,教学过程中也存在着不足,比如在学生自主探究两位小数和三位小数时,学生不知道怎么交流,应该是前面一位小数的学习还是不够深刻,部分学生对小数的意义、小数的计数单位和数位掌握不牢,所以到两位小数三位小数出现困难。再如,问到“小数部分有没有最小的计数单位?有没有最大的计数单位时”,学生不能准确回答,是因为对小数的意义的掌握时不扎实、不理解。
这些都是本节课的重点,而出现这些问题说明本节课教学设计还有一些问题,在教学重点知识时,要慢下来,让学生充分理解、掌握。如何帮助学生理解小数的意义,需要继续探究、改进。
四年级下册数学第四单元教案5
课题:小数的读法和写法
教学内容:教科书第 34-35页例2-4及做一做。
教学目标 :
会正确读、写小数,并进一步理解小数的意义。
教学重点:会正确读、写小数
教学难点:进一步理解小数的意义
一、复习引入
1、0.2是( )位小数,它表示( )分之( );
0.15是( )位小数,它表示( )分之( );
0.008是( )位小数,它表示( )分之( )。
2. 0.4的计数单位是( ),它有( )个这样的计数单位;0.07的计数单位是( ),它有( )个这样的计数单位;0.138的计数单位是( ),它有( )个这样的计数单位。
二、新知学习
1.教学小数的数位顺序表。
师:前面我们看到的一些小数如0.2、0.15等,这些小数的小数点左边的数都是0。其实小数点的左边也可以是其它的数,如1.8米、5.63米、12.378等。这样的小数可以分成两部分,小数点的左边是整数部分,小数点的右边是小数部分,小数的整数部分和小数的小数部分中间被小数点隔开。教师同时在黑板上写出小数的数位顺序表的表头,如:
整数部分 小数点 小数部分
1 . 8
5 . 63
12 . 378
谁还记得整数的数位顺序?
每个数位的`计数单位是什么?
相邻两个计数单位之间的进率是多少?
师:0.2表示十分之二,它表示有两个十分之一,十分之—是它的计数单位;0.05表示百分之五,它表示有五个百分之—,百分之一是它的计数单位;0.006表示千分之六,它表示有六个干分之一,千分之一是它的计数单位。那么小数的计数单位有十分之—、百分之一、千分之一,还有万分之一等。
“这些小数的计数单位哪个最大?”
“多少个十分之一是整数1?”
“多少个百分之一是十分之一?”
“多少个千分之一是百分之一?”
师:小数的这些计数单位十分之—、百分之—、千分之—、万分之—等,相邻两个计数单位之间的进率是10。这和整数相邻两个计数单位之间的进率是—样的,都是10。因此一个小数的小数部分可以用小数点与整数部分隔开,排在整数部分的右面,像整数一样计数。
“10个十分之一是整数1,那么整数个位的右边应该是哪一位?”
“把十分之一分成10等份,每一份是多少?”
“那么十分位的右边应该是哪一位?”
“把百分之一分成10等份,每一份是多少?”
“百分位的右边应该是哪一位呢?”
“十分之几的计数单位是多少?”
“百分之几的呢?千分之几的呢?”
教师边在黑板上列出小数部分的数位顺序边说明:再往下还有万分位、十万分位、百万分位等,因为小数位较多的不常用,我们在数位表上就用“......”表示。前面我们讲过在整数的右边,用小数点隔开,用来表示十分之几、百分之几、千分之几、??的数,叫做小数。实际应用时常把整数和小数写在—起,这样的数也叫小数。再边说边在黑板上写如1.8、5.63、12.378等也都是小数。小数点左边的数叫整数部分,小数点右边的数叫小数部分。教师指12.378提问:
“这个小数的整数部分中的每一位分别是什么位?”
“这个小数的小数部分的十分位是几?百分位是几?千分位呢?”
P36做一做1
2.教学小数的读法。
教师在黑板上写出下面的小数:0.58、3.5、41.47。
提问:谁能读出黑板上的小数?”
学生读出前两个小数后,教师说明:这样的小数是我们过去学过的,后面一个小数的数值比较多,它们的读法也是整数部分仍按照整数的读法来读,小数点就读点,小数部分通常就按顺序读出每一位上的数字就可以了。
3.教学小数的写法。
师:写小数过去我们学过一些.下面我们大家一起来写一写。
三、巩固练习
教师报出教科书第36页例4和“做一做”第2题中的小数,让两个学生在黑板上写,其余的学生写在自己的练习本上。写完后教师结合学生出现的问题再讲解。
四、总结:
写小数的时候,整数部分仍按照整数的写法来写,如果整数部分是零就写0;小数点写在个位的右下角,要写成小圆点;小数部分按顺序写出每一个数位上的数字。
四年级下册数学第四单元教案6
教学内容
人教版四年级下册教材第34、35页的例2、例3、例4及“做一做”。
内容简析
本节课借助学生已有的知识经验及生活经历,在生活中感受小数的读法和写法,通过大量的感性知识与数学活动,抽象、概括、提炼出小数的数位顺序表,使学生明确小数的数位名称及数位顺序,进一步体会生活中处处有数学的理念,从而达到巩固小数意义的目的。
教学目标
1.理解小数的数位顺序表,知道小数的构成及小数各位上的数的含义。
2.掌握小数的读法与写法,会读、写小数,进一步理解小数的意义。
3.培养学生学习数学的兴趣和刻苦钻研、探求新知的良好品质。
教学重难点
教学重点:进一步掌握小数的意义,能比较熟练地读写小数。
教学难点:正确地说出小数部分每一位上的计数单位。
教法与学法
1.采用的教法是直观演示法、情景体验法和点拨法。从表象到抽象、感性到理性的设计层次符合小学生的认知规律,能有效地培养学生的自主学习能力。
2.具体的学法是合作讨论法、尝试与体验法、练习法,帮助学生养成好的自学习惯,学会与他人合作学习。
教学过程
一、情景创设,导入课题
生活情景引入:同学们,有个小朋友遇到了困难,你们愿意帮忙吗?小红和妈妈逛超市,但她不认识价格表。(课件出示播放超市物品与价格)
观察物品价格,指名说一说。(结合学生回答板书:5.98、0.85和2.60)
超市里的这些标价有什么共同特点?
揭示课题:超市里商品的价格都是用小数来表示的,这些小数该怎样读写呢?这节课我们将一起研究小数的读法和写法。(板书课题)
【品析:从学生熟悉的生活场景入手,容易引起学生的学习兴趣,也使数学与生活的联系更为紧密,数学学习显得更有意义。】
激趣引入:
抢答题:地球上长的最高的动物是什么?(学生抢答,猜测长颈鹿的身高)
出示教材第34页的情境图,学生读图,找出数学信息,教师板书小数。
【品析:这样的导入设计是为了激发学生的学习兴趣以及想要学的愿望,同时又为后面的`学习提供了具体数据。】
故事引入:今天一大早,熊二就吵着要吃蜂蜜,熊大告诉它,只有回答出它提出的几个问题才会有蜂蜜吃。你愿意帮助熊二吗?
1.读出下面各数。
234 7093 31 10000 38950 0.7
2.回忆一下:你是怎样读出这些数的?整数的数位顺序是什么?(个位、十位、百位、千位……)整数的计数单位依次是什么?(一<个>、十、百、千……)
3.导入:在同学们的帮助下,熊二顺利拿到了蜂蜜。你知道吗,小数和整数一样,也有计数单位,也按照一定的顺序排列起来,这节课我们就来研究一下小数的数位顺序。
【品析:由学生喜爱的动画故事入手,容易引起学生的学习兴趣,同时又复习了整数的数位顺序和计数单位,为研究小数的数位顺序表打下了基础。】
二、师生合作,探究新知
1.教学小数的数位顺序表。
(1)观察教材第34页例2的主题图,从图中你得到了哪些信息?
(师生交流后,板书1.8、5.63、12.378)
(2)观察并思考:这些小数和我们以前学的数一样吗?这些小数是由哪几部分构成?
小结:像1.8、5.63、12.378……这样的数都是小数,这些小数都由三部分组成:整数部分、小数点和小数部分。
(板书:整数部分、小数点、小数部分)
(3)提问:小数点左边一位是什么位?计数单位是什么?表示什么?小数点右边一位的计数单位又是什么呢?
学生交流讨论:
四年级下册数学第四单元教案7
教学目标:
1、初步理解小数与分数之间的内在联系,明确一位小数用十分之几来表示,两位小数用百分之几来表示,三位小数用千分之几来表示。掌握相邻两个计数单位间的进率。
2、在合作与交流中的过程中,体验探究发现和迁移推理的学习方法,感受数学学习的乐趣。
教学重点:
理解和掌握小数的意义。
教学难点:
理解小数的意义。
教学过程:
一、导入课题
三年级我们已经初步认识了小数,今天我们继续研究小数的意义。板书课题。
二、小数的意义
板书0.1 0.01猜猜第三个写什么?0.001你们很会推理。
像0.1,小数点后面只有一位数,就是一位小数。老师先写了一个一位小数,又写了一个两位小数,最后写了一个...?
板书一位小数两位小数三位小数
1、一位小数
这节课咱们要认识小数的意义,就从0.1开始研究。把一个正方形看做1,0.1该怎样表示呢?请你试着画一画、涂一涂,在自己的正方形纸上表示出0.1。
出示学生作品:有错的,有对的。
到底哪位同学的意见是正确的呢?我们能用原来的知识来说明其中的道理吗?
学生:把正方形纸看成一元,0.1元就是一角,一元里面有10个一角,所以应该把正方形纸平均分成10份,其中的一份就是0.1。
大家的意见统一了,谁来说说0.1究竟表示什么?
小结:把1平均分成10份,其中的一份是十分之一,也就是0.1。
板书:=0.1
那这样的2份、3份、5份呢?板书:=0.2 =0.3 =0.5
同学们观察一下,刚才我们看到的这些小数都是...?一位小数
师:你能说一说一位小数表示的意思了吗?
小结:一位小数表示十分之几。
一份,也就是十分之一,叫做一位小数的`计数单位,写作0.01
板书:计数单位:十分之一写作:0.1
0.2里面有几个0.1?0.3呢?0.5呢?
出示课件:涂色部分是多少?(0.9)0.9里面有几个0.1?
再添上1个0.1是多少?(10个0.1)
课件演示:10个0.1是1,1里面有10个0.1。
2、两位小数。
(1)第二个小数0.01表示什么意思?还是那张纸,看做1,如果想表示0.01,想一想你会怎么做呢?
课件展示:正方形用来表示1,0.01就表示百分之一。
涂色部分是0.01,空白部分呢?0.99表示什么?
0.99里面有几个0.01?
请你在自己的方格纸上涂出自己喜欢的两位小数,想一想它表示什么,里面有几个0.01?
(2)学生自由活动,点名回答。
(3)两位小数有什么特点?
小结:两位小数表示百分之几,计数单位是百分之一,写作:0.01。
出示课件:涂色部分表示多少?(0.09)里面有几个0.01?再添上1个0.01是多少?演示,板书:10个0.01是0.1,0.1里面有10个0.01
3、认识三位小数。
(1)根据一位小数和两位小数的特点,你能总结三位小数的特点吗?
让学生自己归纳出三位小数。三位小数可以表示为千分之几,计数单位是千分之一,写作:0.01。
4、一位小数、两位小数、三位小数计数单位之间的关系可以用一幅图表示。
课件演示:一个正方体平均分成10份,其中一份是十分之一,也就是0.1;继续平均分成10份,其中一份占正方体的百分之一,也就是0.01;还能平均分成10份,一份占正方体的千分之一,也就是0.001。
5、数轴上认识小数
出示课件:我们在正方形和正方体上找到了小数,数轴上的小数你能找到吗?
(1)、课件演示:0.1;9.1数轴下面的数字变了,小数就发生了变化。
(2)、在数轴上找到3.14,3.141
三:知识眼延伸
3.14这个小数,小数点后面还有很多的数,这是我们六年级要学习的圆周率。
课件:
1、介绍圆周率
2、介绍0.618
四:课堂总结:
如果这节课满分是1,你会为自己的表现打多少分呢?
四年级下册数学第四单元教案8
课题名称 小数的意义
课标要求 结合具体情景理解小数的意义,会进行小数、分数的转化。
学习目标
1.通过动手操作,学生明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
2.知道小数的计数单位和每相邻两个计数单位之间的进率。
教学重点 理解一位、两位、三位小数的意义,知道每相邻两个计数单位之间的进率是10。
教学难点 理解一位、两位、三位小数的意义。
学习过程
一、谈话导入
师:同学们,我们在三年级的时候已经对小数有了初步的认识,今天我们继续学习小数的意义。那同学们还记得小数长什么样子?你能举个例子说一说吗?
预设:0.3
师:谁能说一个和他不一样的?
预设1:0.47
预设2:0.356
师:同学们说了这么多,那老师说几个,我说,你们来读(1.8、2.75、4.702)你能将这些小数分分类吗?并且说一说你分类的依据是什么?
预设:(0.3、1.8)(0.47、2.75)(0.356、4.702)我是这样分的,看小数点后面,有一位的分在一起,有两位的分在一起,有三位的分在一起。
师:我们把第一组给他起个名字,叫一位小数,第二组叫两位小数,第三组叫三位小数。
二、探究新知
(一)0.1表示什么
师:今天学习小数的意义,要想知道0.3表示什么?我们得从研究0.1表示什么开始。
1.请同学们拿出准备好的正方形纸,如果把这张纸看作“1”,怎样表示出0.1呢?完成学习单第一题。
学生操作。
汇报:将这张纸平均分成10份,取其中的`1份是,用小数表示就是0.1。也就是0.1就表示,可以用等号连接。(板书)
2.谁能借助你手中的正方形纸说一说,0.3表示什么?
预设:将这张纸平均分成10份,取其中的3份是,用小数表示就是0.3。也就是0.3就表示。(追问:0.5里有几个0.1?)
3.你还想表示哪个小数?
预设:我还想表示0.8。将这张纸平均分成10份,取其中的8份是,用小数表示就是0.8。也就是0.8就表示。
4.观察这三组,你发现一位小数和分数有什么关系?
预设:一位小数都表示十分之几。
(二)0.01表示什么
师:现在我们探究出一位小数表示十分之几,那么两位小数、三位小数又表示什么?按照这个思路,完成导学单第二题。
小组讨论。
汇报:
1.两位小数表示什么,应先从研究0.01开始,我们把这张纸平均分成100份,取其中的1份是,用小数表示就是0.01。也就是0.01就表示。
2.0.06表示,它里面有6个0.01。
3.我还想表示0.73。我们把这张纸平均分成100份,取其中的73份是,用小数表示就是0.73。也就是0.73就表示。
4.小结:我们发现两位小数都表示百分之几。
(三)0.001表示什么
预设:0.001表示。我们把这张纸平均分成1000份,取其中的1份是,用小数表示就是0.001。也就是0.001就表示。
师:平均分成1000份是不不好分呀,我们找电脑帮帮忙。(ppt出示正方体)
师:现在从这1000份中取出365份,用分数怎么表示?写成小数呢?里面有多少个0.001?你还能写出哪些小数?
观察算式,你发现了什么?
预设:三位小数都表示千分之几。
(四)认识计数单位
ppt出示:十分之一、百分之一、千分之一…….都是小数的计数单位。通过ppt演示,学生发现每相邻两个计数单位之间的进率是10。
三、课堂检测
1.写出下面图形所表示的分数和小数。
2.哪两只手套是一副,用线连一连。
3.填空
0.8里面有( )个0.1
0.32里面有( )个 0.01
0.620里面有( )个0.001
0.1235里面有( )个0.0001
4.在直线上标出下面各数的位置。
0.4 2.6 1.3 3.85
四、课堂小结
师:请同学说一说,这节课你都收获了哪些知识?
五、板书设计
板书设计:小数的意义
一位小数 两位小数 三位小数
十分之几 百分之几 千分之几
0.1= 0.01= 0.001=
0.3= 0.06= 0.365=
0.8= 0.73= 0 .798=
四年级下册数学第四单元教案9
学生填完结果并订正
第二教时
2、师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作,想的办法越多越好,老师提供两个大小一样的正方形,一张数位顺序表)
3、生1:在两个大小一样的正方形里涂色比较。
(2)连线。把相等的数用直线连起来。
第五教时
第六教时
反馈:
第九教时
第十教时
第十二教时
教学内容:教科书P78~79的内容。
教学目标:
1、使学生通过整理和复习,弄清本单元学习了哪些知识,更牢固地掌握小数的意义和性质。
教学目的:
教学重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点、数大小变化的规律。
教学难点:用“四舍五入”法按要求求出小数近似数。
教学过程:
一、揭示课题
这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。
二、复习小数的意义
1、做整理和复习第1题(
(1)学生在书上填写,集体订正。说一说这些小数的意义。
(2)说一说小数的意义是什么?
问:一位小数、两位小数、三位小数……各表示几分之几的数?
2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?
(2)填空。
0.1里面有( )个0.01。 10个0.001是( )。
10个0.1是( )。 0.1里有( )个0.01。
三、复习小数的性质和小数的大小比较
1、练习。
(1)把下面小数化简。
4.700 16.0100 8.7100 14.00
(2)不改变数的大小,把下面的数写成两位小数。
4.2 13.1 21
①学生做,指名板演,集体订正。
②问:做题时是根据什么来做的?什么
(3)、做整理和复习第2题。
0.1 0.012 0.102 0.12 0.021
(2)按要求从小到大排列。
四、复习小数点位置移动引起小数大小变化的规律
1、做整理和复习第3题。
(1)小数点向右移动,原来的.数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?
问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?
(2)学生练习,指名回答。
2、练习。
(1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。
(2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。
五、复习求小数的近似数和整数的改写
1、把下面小数精确到百分位。
0.834 2.786 3.895
(1)学生做,指名板演。
(2)让学生说一说怎样求一个小数的近似数。
2、(1)把下面各数改写成“万”作单位的数。
486700 521000
(2)把下面各数改写成“亿”作单位的数。
460000000 7189600000
学生在练习本上做,指名板演,说一说怎样把一个较大数改写
成“万”或“亿”作单位的数。
3、把下面各数改写成“万”作单位的数,并保留一位小数。
67100 209500
(1)学生在练习本上做,指名板演。
(2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?
(3)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。
(4学生练习,集体订正。
(5)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以
了。
六、全课总结
这节课复习了什么内容?
怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?
【作业设计】
1、0.45表示( )。
2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。
3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是(
)万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。
4、在○里填“>”、“<”或“=”。
16.36○16.63 0.36万○3600
0.97○1.01 0.23亿○2100万
5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?
10000千克稻谷可出大米多少千克?
四年级下册数学第四单元教案10
教学目标:
通过教具演示和联系实际使学生在初步认识小数的基础上知道小数的产生,理解小数的意义,明确小数与分数的联系,小数的计数单位以及相邻计数单位间的进
教学重点:
使学生明确小数的产生和意义、小数与分数的联系、小数的计数单位,从而对小数的概念有更清楚的认识。
教学难点:
小数的意义的探究过程与相邻计数单位间的进率。
教学准备:多媒体课件
教学过程:
一、情境导入
二、探究新知
1.导入新课:教学小数的产生
由于日常生活和生产的需要,从而产生了小数。
同学们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。
2.构建一位小数的意义。
把1米的木条平均分成10份,标上刻度,每份是1分米。
师:能用分数表示吗?能用小数表示吗?
教师根据学生的回答小结:米还可以用小数来表示就是0.1米。因为1/10米还不够1米,用米作单位不能写“1”,得不到一个整数,所以我们在整数部分写上“0”,后面加上一个点,点后面写上“1”,读作“零点一”,④教师小结:把1米平均分成10份,这样的一份或几份表示十分之几米,可以用像0.1米、0.3米等这些一位小数来表示。(板书:一位小数、十分之几)
3.构建两位小数的意义
出示米尺教具这是把1米平均分成了100份,根据以上学习你能知道什么?学生以小组方式讨论,然后找同学回答。教师根据学生的交流小结:把1米平均分成100份,每份长是多少?这样的一份或者是几份表示百分之几米,可以用像0.01、0.13这种两位小数来表示。(两位小数、百分之几)
4.构建三位小数的意义
把1米平均分成1000份,每份长是多少?学生在尺上找出1毫米,而后出示(投影)1厘米的放大图引导学生从图中找出1毫米,并说明理由。启发学生明确:1毫米提问:分母是1000的分数可以写成几位小数?(板书:三位小数)教师根据学生的交流小结:把1米平均分成1000份,这样的一份或者是几份表示千分之几米,可以用像0.001、0.183这种三位小数来表示。(三位小数、千分之几)
5.抽象、概括小数的意义
①把1米看成一个整体,如把一个整体平均分成10份、100份、1000份……这样的'一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几、百分之几、千分之几这样的分数表示。
这样的分数写成小数时,可以仿照整数的写法,写在整数个位的右面,用圆点隔开。
③什么叫小数?引导学生讨论。
④师生共同概括:分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。(投影出示)。小数是分数的另一种表现形式。得出:分母是10、100、1000……这样的分数可以用小数表示。这就是小数的意义。(课件演示)
4、构建小数的单位
整数也有计数单位,那么小数也不例外,也有计数单位,你们想知道小数的单位是什么吗?
师小结:像0.3、0.5这样的一位小数我们都可以看成有许多个1/10组成的,那么我们就说1/10是一位小数的计数单位,写成0.1。
板书:计数单位十分之一0.1
师:同样1/100是两位小数的计数单位就是什么?
学生回答教师板书:百分之一0.01
师:那三位小数的计数单位是什么?(千分之一0.001)
师:那四位小数的计数单位呢?
师:谁能用自己的话概况一下小数的计数单位是什么,分别写作什么?
学生回答后教师出示:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……。(课件演示)
师:0.1、0.01、0.001是小数的计数单位,它们之间有什么关系吗?
三、巩固练习(课件演示)
四、总结(课件演示)
五、作业。
1、练习九第1、2、3、4题。学生独立完成。
2、调查:生活中哪些事物的数量是用小数表示的?写出几个来。
板书设计:
小数的产生和意义
在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(小数的产生)
分母是10、100、1000、……的分数可以用小数表示。(小数的意义)
一位小数(十分之几)两位小数(百分之几)三位小数(千分之几)……
1分米1厘米1毫米……
0.1米0.01米0.001米……
1/10米1/100米1/1000米……
0.6米0.13米0.183米……
计数单位
1/10 1/100 1/1000 ……
0.1 0.01 0.001 ……
每相邻两个计数单位间的进率是10。
四年级下册数学第四单元教案11
[课程标准要求]
课标对小数的性质这部分内容指出引导学生通过动手、观察、经历自主发现小数的性质的过程,并总结概括出小数的性质。自主发现是行为动词,动手、观察是行为条件,行为程度是指学生发现小数的性质,并总结概括出小数的性质。
[学情分析]
本课学习内容,看似容易,但理解起来有点难度。因此学生将在教师设计的量一量、说一说、比一比、涂一涂等活动中开展学习活动。通过合作交流、观察、总结发现小数的性质,并应用小数的性质化简和改写指定位数的小数。
[学习目标]
1、学生以小组合作为单位,通过动手操作、观察、比较、交流、归纳概述出小数的性质。
2、运用小数的性质能正确地化简、改写小数。
教学重点理解掌握小数的性质。
教学难点
探索发现并概括出小数性质的过程。
[评价任务]
通过练习和例3化简例4改写小数检验目标1、2的教学完成情况
[资源与建议]
1、教材分析:这部分内容是在学生学习了分数、小数的初步认识的基础上,进一步理解了小数的意义,认识了小数的计数单位,会熟练地读、写小数后教学的,本课的知识点不多,但学生理解起来有点难度,因此教材设计了让学生自主探究的学习内容,教材先通过例1和例2教学小数的性质,即让学生通过比较0.1米、0.10米、0.100米的大小,比较0.3和0.30的大小,引导学生归纳出小数的性质。然后,又安排例3和例4对小数的性质加以应用。运用一正一反两个例题,即一个是去掉小数末尾的“0‘把小数化简,一个是在小数末尾添上”0“把小数改写成指定位数的小数,来使学生学会小数性质的应用。学好这部分内容是为今后学习小数的四则运算打基础的。
2、教具:课件
学具:米尺,方格图,殊为顺序表
授课对象:四四班学生
授课地点:考务办公室
3、本课的学习按以下流程进行
4、本节课的重点是理解小数性质的含义,难点小数性质归纳的过程.突破方法:让学生在大量感性体验的基础上,自己试着归纳总结。
[学习过程]
一、创设情境,引导探索
1、谈话激趣
昨天因为买冰激淋的事难住了我女儿,大家来帮帮她好吗?同一种冰激凌金阳光超市标价2.5元,家家乐超市标价是2.50元。那家便宜些呢?2.5元是多少钱?2.50元呢?它们什么关系?(相等)(结合学生的回答板书)建议我女儿去那家买?(都行)通过比钱数我们知道了2.5等于2.50请观察这两个小数,2.5是怎样变成了2.50的?(在2.5的末尾添上0)
3、为什么在2.5元的末尾添个0大小不变呢?究竟可以添几个零呢?是不是什么数末尾添零大小都不变呢?请看老师这里有一个小数0.1我在它的末尾添一个零,它的大小变吗?添两个零呢?(不变)我们想个什么办法验证一下?(加个单位)加个米好吗?
二、合作探究,探索新知
(一)学生量出0.1米0.10米0.100米纸条的长度,通过比较发现它们长度相等。
下面我们以小组为单位来试一试,请看合作要求:
出示例1比较0.1米0.10米0.100米的大小。
要求:1、组长分工分别量出0.1米、 0.10米、0.100米纸条的长度。
2、把量出的0.1米、 0.10米、0.100米纸条的长度放在一起比一比看你们有什么发现?
(合作并比较)
0.1米是多长?(1分米)你是怎么想的?0.10米呢?(10厘米)你是怎么想的?0.100米呢?(100毫米)你是怎么想的?
汇报交流
生:我量的是0.1米。0.1米是十分之一米,也就是1分米。我量出1分米长的纸条就是量出了0.1米长的纸条。
生:我量的是0.10米。0.10米是10个百分之一米,也就是10厘米。我量出10厘米长的纸条就是量出了0.10米长的纸条.
生:我量的是0.100米。0.100米是100个千分之一米,也就是100毫米。我量出100毫米长的纸条就是量出了0.100米长的纸条
生:我们发现1分米、10厘米、和100毫米的纸条都一样长。
师小结(看课件)因为1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。
同学们我们通过小组合作量0.1米、 0.10米、0.100米的长,得出0.1米=0.10米=0.100米。如果老师再给你一组小数你也能想办法比较它们的大小吗?
(二)学生通过在正方形纸上涂0.3和0.30比较发现它们大小相等。
出示例2:比较0.3与0.30的大小
师:你认为这两个数的大小怎样?(一样)想一下你可以用什么办法来比较这两个数的大小呢?老师给同学们准备了两个大小一样的正方形。请同桌两人合作利用它们试一试
合作要求;
1、两人分工分别在同样大小的正方形纸上涂出0.3和0.30。并互相说一说你是怎么想的?
2、把涂出的0.3和0.30的正方形纸放在一起比一比看你们有什么发现?
汇报:
(1)我涂的是0.3,它是把1个正方形平均分成10份,我涂3份,0.3就是3个十分之一.
(2)我涂的是0.30,它是把1个正方形平均分成100份,我涂30份,0.30就是30个百分之一.也就是3个十分之一.
(3)我的发现是0.3等于0.30
师:通过涂小数0.3和0.30涂出的什么相同?什么不同?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变。)从中你发现了什么?(0.3与0.30相等.)
(三)引导观察,得出小数的性质
指2.5元=2.50元;0.1米=0.10米=0.100米;0.3=0.30引导学生观察:我们来看这几组等式,从左往右观察2.50元同2.5元相比;0.10米同0.1米相比0.30同0.3相比。小数有什么变化?
生:我发现小数的最后面加了0。生:小数后面多了一个0(哪儿多个0呢?)那小数大小呢?
生:没有变化。0.100米同0.1米相比有什么变化?小数的大小呢?
通过以上观察你发现了什么?也就是板书:小数的末尾依次添上”0“
学生归纳:在小数的末尾添上”0“,小数的大小不变。
从右往左观察,2.5元同2.50元相比;0.10米同0.100米相比;0.3同0.30相比;0.1米同0.100米比小数又有什么变化呢?
生:小数后面依次少了一个0生:小数的末尾,板书:去掉”0“那小数的大小呢?生:没有变化。通过观察你又发现了什么?生:在小数的末尾去掉0,小数的大小不变
师:综合刚才的观察,你发现了什么?
师板书:小数的末尾添上0或去掉0,小数的大小不变。这就是小数的性质。
生齐读一遍.板书课题:小数的性质
(四)进一步探究,加深感知
师:无论添0还是去0都是在哪儿添或去才能使小数的大小不变呢?(小数的末尾)在整数的末尾添0去0数的大小变吗?(变)现在你知道为什么在2.5元的末尾添一个0仍然和2.5元相等吗?(2.5是小数)在1的.末尾添上0它的大小变不变呢?(变)为什么?(因为1是整数)整数有这个性质吗?(没有)在2.5这个小数5的前面添上0它的大小变吗?(变)为什么?(不是小数的末尾)哪儿才是小数的末尾?
注意:小数的性质是在”小数“的”末尾“添上0或去掉0,小数的大小不变。你认为小数的性质里哪些词很重要?(末尾)
齐读一边小数的性质.
根据小数的性质小数的末尾是可以添上”0“或去掉”0“的,并且小数的大小不变。请同学们来看。
练习
不改变数的大小,下面数中的哪些”0“可以去掉,哪些”0“不能去掉?为什么?先来看3.90米,(3.90 500 20.20问为什么?)
3.90米,0.30元,500米,1.80元
0.70米,0.04元,600千克,20.20米
三、联系生活,灵活运用
1.教师结合板书内容讲解性质的运用。
同学们像3.90米、0.30元等这些数根据小数的性质去掉它们末尾的0,小数的大小不变。根据小数的性质去掉小数末尾的0也就是把小数进行了化简。你能化简下面小数吗?
化简下面各小数:
例3 0.70 105.0900
小数里的其他零可以去掉吗?(不能)
一般计算时,遇到小数末尾有0,都要化简。来看下面这些数化简后分别是多少?
练习
(2)同学们根据小数的性质去掉小数末尾的0就把小数进行了化简。有时根据需要,我们还要根据小数的性质在小数的末尾添上0;把小数改写成指定位数的小数。
出示:例4不改变数的大小,把0.2、4.08改写成小数部分是三位的小数,怎样改写?
把3改写成小数部分是三位的小数,怎样改写?(想一想超市里2元的商品标价时还怎么标:2.00元)
提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上”0“。能不能在小数中间添零?不能,要使小数的大小不变只能在小数的末尾添”0“
请把这几个数改写成三位小数。
练习
应用小数的性质我们可以化简一个小数还可以对一个小数进行改写。请同桌两人讨论一下应用小数的性质时,要注意什么?
同桌讨论:应用小数的性质时,要注意什么?(无论添0还是去0都是在小数末尾)
请看这三个数0.70 4.08 0.310 0.20去掉0,数的大小怎样?4.08去掉0,会怎么样?0.310可以添上0吗?
四、全课总结
今天我们学习了什么内容?什么是小数的性质?小数的性质有什么用?应用小数的性质时,要注意什么?2.5的末尾可以添上多少个”0“呢?
五、看课本
我们今天学的内容在课本第58、59页,请把课本看一下把该画的内容画下来。
六、多层练习,巩固深化
(一)我是小法官(打”√“,错的打”ד)
1、把0.50 0.0600的小数点后面的”0“去掉,小数的大小不变。()
2、在5.3的末尾添上三个”0“,它的大小不变。()
3、一个数末尾添上”0“或者去掉”0“,大小不变。()
(二)把相等的数连起来。
2.70 4.400
31.0100 0.005
72.060 2.07
0.0050 31.01
4.40 72.60
(三)给下面的物品加上标签(以元作单位,用两位小数表示)。
水杯3元2角
铅笔6角
板书设计:
小数的性质
2.5元=2.50元
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
0.3=0.30
小数的末尾添上”0“或去掉”0“,小数的大小不变。
四年级下册数学第四单元教案12
课题:小数点位置移动引起小数大小的变化
教学内容:教科书43页例1.
教学目标:
1. 理解和掌握小数点位置移动引起小数大小的变化规律
2. 通过总结规律的过程,培养学生观察比较,概括的能力。
教学重点、难点 :
小数点位置移动引起小数大小的变化规律,归纳“规律”的过程,既是教学的重点,又是学生学习的难点。
教学设计
一、复习导入:
板书:35.67 3.567 356.7 3567比较大小。
问:这四个数有什么相同特点?(数字及排列顺序一样。)有什么不同?(小数点位置不同,大小不同。)
二、新知探究
从上题可见小数点的位置直接影响到小数的大小。那么,小数点的位置移动会引起小数大小怎样的`变化呢?今天我们一起研究。
板书课题:小数点位置移动的规律。
1、例1 把0.009米的小数点向右移动一位、两位、三位......小数的大小有什么变化?
(1)0.009米等于多少毫米?(板书:0.009米=9毫米)
(2)师移动0.009米的小数点。 向右移动一位,变为多少毫米?大小发生了什么变化?(板书:0.09米=90毫米,原数扩大10倍)
向右移动两位,原数变为多少?是多少毫米?大小有什么变化?(板书:0.9米=900毫米,原数扩大l00倍)
向右移动三位,原数又变成多少?是多少毫米?大小又发生了什么变化?(板书:9米=9000毫米,原数扩大1000倍)
小数点可不可以向右移动四位、五位甚至更多位? 师:所以我们要在移动位数和扩大倍数的后边点上省略号。
(3)从这一例子看,小数点向右移动会引起原数怎样的变化?你能总结出规律来吗?
引导学生总结出: 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大loo倍;小数点向右移动三位,原来的数就扩大1000倍......
2.刚才是由上往下观察(画↓),如果我们由下往上观察(板书↑),小数点相当于往哪边移动?(向左移动),小数点向左移动了几位?原来的数会有怎样的变化? (小组讨论)
全班交流讨论结果,引导学生得出:
小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小l000倍......(板书)
3.引导学生完整地概括小数点移动位置引起小数大小的变化规律。 (在书上补充完整)
4.强调:掌握小数点移位的规律,一要注意移动方向与变化的关系,就是左移就缩小,右移就扩大;二是要注意移动位数与变化的倍数的关系,移动一位,变化的倍数是10倍,移动两位,变化倍数是100倍,移动三位,变化倍数是l000倍......
三、巩固练习:P45做一做
四、小结:
掌握小数点移位的规律,一要注意移动方向与变化的关系,就是左移就缩小,右移就扩大;二是要注意移动位数与变化的倍数的关系,移动一位,变化的倍数是10倍,移动两位,变化倍数是100倍,移动三位,变化倍数是l000。
五、布置作业
练习十一1-3题。
板书设计
小数点位置移动引起小数大小的变化
小数点向右移动一位,相当于把原数乘10,小数就扩大到原数的10倍;
小数点向右移动两位,相当于把原数乘100,小数就扩大到原数的100倍;
小数点向右移动三位,相当于把原数乘1000,小数就扩大到原数的1000倍;
小数点向右移动四位,相当于把原数乘10000,小数就扩大到原数的10000倍;
小数点向左移动一位,相当于把原数除以10,小数就缩小到原数的1/10;
小数点向左移动两位,相当于把原数除以100,小数就缩小到原数的1/100;
小数点向左移动三位,相当于把原数除以1000,小数就缩小到原数的1/1000;
小数点向左移动四位,相当于把原数除以10000,小数就缩小到原数的1/10000;
四年级下册数学第四单元教案13
教学内容:教材52页例1.
教学目标:能根据要求用四舍五入法求一个小数的近似数。
教学重、难点:求一个小数的近似数。
教学过程
一、复习导入:
根据要求改写成近似数。
245600985
省略亿位后面的尾数是( )
省略百万位后面的尾数是( )
省略万位后面的尾数是( )
四舍五入到百位是( )
师:求一个整数的近似数用的是“四舍五入”法。在实际应用小数的时候,往往没必要说出它的准确数,只要说出它的近似数就够了。
例如,量得小明身高是0.984米,平常不需要说得那么准确,只说大约0.98米或1米。 求一个小数的近似数与求整数的近似数相似,我们今天来研究怎样求一个小数的近数。
板书课题:求一个小数的近似数。
二、学习新知 1.求一个小数的近似数。
出示例1:0.984保留两位小数、一位小数和整数,它的`近似数各是多少?
(1)首先要理解保留整数、一位小数、两位小数......的含义。还可以怎样表述?
引导学生理解,保留整数就是省略整数后面的尾数;保留一位小数就是省略十分位后面的尾数,或者说精确到十分位;保留两位小数就是精确到百分位,也就是省略百分位后面的尾数。
(2)求一个小数的近似数的方法是什么?
引导学生明确,仍然采用“四舍五入”法,看省略部分的最高位,是5以上的数,省去后在前一位加l,是4以下的数舍去。
在明确上述两点的基础上,让学生自己试算,得出:
0.984≈0.98 0.984≈1.0 0.984≈1
引导学生分别说明省略的方法。
注意:在表示近似数时,小数末尾的0不能去掉。
小结:求近似数时,保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……
三、巩固练习
P52做一做
四、课堂总结
通过这节课的学习,你知道怎样求一个小数的近似数吗?应注意什么问题?
五、作业:练习十三1、5题。
板书设计: 0.984≈0.98 0.984≈1.0 0.984≈1
四年级下册数学第四单元教案14
教学内容
小数的意义
教学目标
1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。
2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。
3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。
重点难点
重点:体会十进制分数与小数的关系,初步理解小数的意义。
难点:能够正确进行十进制分数与小数的'互化。
教具准备
课件、正方形纸2张。
教学过程
一、情境导入。
1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?
生:好。
2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)
铅笔:0.1元一支圆珠笔:1.11元一支
猪肉:9.5元一斤黄瓜:5.96元一千克
教师:上面这些物品的价格有什么特点?
学生:都不是整元数。(都是小数。)
教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?
学生依次读出:零点一、一点一一、九点五、五点九六。
师:大家知道这些小数是几位小数吗?
生:......
2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?
生:身高体重跳高跳远
小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。
板书:小数的意义
二、自主探究。
1.一位小数的意义
a.那么多的小数,我们今天就从0.1开始入手研究。
b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.1表示什么意思?
学习单元角米分米网格图
c.生反馈0.1表示什么意思。
d.思考:我们选用的图都不一样,为什么都可以表示0.1?
你还能在图中找到其他小数吗?他们表示什么意思?
学生交流反馈。
学生:1元=10角,0.1元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成0.1元。
生2:1米=10分米,0.1米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成0.1米。
生:......
2.两位小数的意义
师:同学们真了不起,都善于思考问题,勇于探究,你们0.01又是什么意思呢?
a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.01表示什么意思?
学习单元分米厘米网格图
b.生反馈0.01表示什么意思。
c.思考:你还能在图中找到其他小数吗?他们表示什么意思?
学生交流反馈。
学生:1元=10分,0.01元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成0.01元。
生2:1米=100米,0.01米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成0.01元。
生:......
3.三位小数的意义
我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()
小数我们写的完吗?其实呀,小数的位数越多就分的越细。
大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?
三、巩固练习
教师:0.8可以表示成分数吗?可以表示成小数吗?
学生:分别是和0.7。
教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)
同学们在小组内进行游戏交流,教师巡视指导。
四、探究结果报告。
教师:通过刚才游戏,你们发现了什么?(出示课件)
师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
1.像0.1、9.5这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)
2.像1.11、5.96这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)
3.像0.001、0.125这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)
四、教师小结。
小数中,每相邻两个计数单位间的进率都是10。
五、课外拓展。
分享最美数字0.618
四年级下册数学第四单元教案15
教学目标:
1、在学生初步认识分数和小数的基础上,进一步理解小数的意义。
2、使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
3、培养学生的观察、分析、推理能力。
教学重难点:理解小数的意义;知道小数的计数单位及单位间的进率
教具准备:多媒体课件、学生每小组一把米尺
教学过程:
一、创设情景、生成问题
师:课桌每天都在为我们服务,但同学们有没有认真的观察过它,你知道课桌的长是多少吗?谁来估一下。谁还愿意估一估课桌的宽是多少?(学生猜测)
师:同学们的猜测对不对?下面我们就来验证一下。小组合作,在长和宽中选择你们喜欢的一项测量,看哪个小组动作又快又准。 (小组合作测量桌子的长、宽)
汇报:课桌长是1米5厘米、宽是40厘米。
师:40厘米用米作单位怎么表示?
(学生汇报老师板书)
师:我们测量了桌子的长和宽,在用米作单位时得不到整数的结果。其实生活中还有很多地方在进行测量和计算时,往往得不到整数的结果,为了适应生活和生产的需要,于是便产生了小数。这节课我们就一起来研究小数的产生和意义。板书课题。
(设计意图:学生对于分数和小数有初步的认识,在这个基础上让学生测量课桌的宽,在用米表示时得不到整数的结果可用小数来表示,感受小数产生的必要性。)
二、探索交流、解决问题
师:刚才我们在表示桌子的宽是多少时,有的同学用分数表示,有的用小数表示,看来小数和分数之间一定有联系,究竟有什么联系呢,下面我们就一起来探索他们的秘密。我们要使用的工具就是直尺。请同学们看屏幕。
1、认识一位小数
①把1米平均分成10份,每份长多少?用分数怎样表示? 小数呢?
师:那这样的3份,写成分数、小数是多少?7份呢?
师:视情况评价,请同学们告诉我十分之一与0.1,十分之三与0.3,十分之七与0.7有什么关系
师问像0.1、0.3 、 0.7这样的小数的小数点右边有几位小数? 学生回答
再认真观察,这些分数有什么共同特点? 可同桌之间讨论
所以你认为什么样的分数可以写成一位小数?小组讨论
师小结:分母是10的分数,可以写成一位小数。即一位小数表示十分之几(板书)学生体会一下得到结论的过程,举例。
2.认识两位小数
还记得1米等于多少厘米吗?根据这个知识,结合刚才一位小数的学习,再利用米尺图,以小组为单位对下面的三道小题进行探究学习.看哪一组能在较短的时间内完成学习任务.
课件出示
1)、把1米平均分成100份,每份长是多少?
2)、1厘米是几分之几米?用小数表示是多少米?
3)、3厘米、6厘米、10厘米分别是几分之几米?用小数表示是多少米?
班内交流并演示,并视情况评价。
小组再交流
1. 像0.01、0.03 、 0.06、0.10这样的`小数的小数点右边有几位小数?
2. 这些分数有什么共同特点?
3. 什么样的分数可以写成两位小数?
生小组讨论并班内交流,师视情况评价
师小结:分母是100的分数,可以写成两位小数。即两位小数表示百分之几(板书)
生体会并举例
3.认识三位小数
我们已经知道了十分之几可以表示成一位小数,百分之几可以表示成两位小数那么请同学们猜一猜三位小数与什么样的分数有关呢?师适时表示鼓励如果把1米的尺子平均分成1000份,其中的一份或几份的数怎么用分数表示?又怎么用小数表示?你能举例说明你的表示方法吗?
生答师演示,视情况评价
共同总结:分母是1000的分数,可写成三位小数,即三位小数表示千分之几(板书)
4、我们还可以用上面的方法,把1米继续分下去,得到四位、五位…小数。那你们能告诉我四位小数表示什么吗?五位小数呢?
生答
是同学们都非常聪明请同学们根据黑板上的内容回忆我们探讨的过程,和同伴们交流一下,你都发现了什么?
同桌交流,学生汇报,课件演示
5、对口令
同桌两人,一人说分母是10、100、1000的分数,另一人说出小数然后互调。
6、探究小数的计数单位。
大家知道分数中是,十分之几的计数单位是十分之一,百分之几的计数单位是百分之一,千分之几的计数单位是千分之一,每相邻的两个计数单位之间的进率是10,那么小数的计数单位呢?
生答
每相邻的两个计数单位之间的进率是多少呢?
三、巩固应用、内化提高
1、同学们表现非常棒,现在老师要考一考大家,有没有信心接受考验呀?
进入考一考环节
2、现在让我们走进生活,看看生活中的一些数量怎么用小数表示。
四、回顾整理、反思提升
1、出示爱迪生的格言天才= 1/100的灵感+ 99/100 的勤奋,你能用小数把等式中的分数表示出来吗?
2、这是大发明家爱迪生用加法描述的一句格言,你明白其中的道理吗?人必须勤奋才能有所成就,也希望同学们通过自己的勤奋努力成为对国家有用的人才!
小数的产生和意义
1分米 1厘米 1毫米
1/10米 1/100米 1/1000米
0.1米 0.01米 0.001米
一位小数 两位小数 三位小数
【四年级下册数学第四单元教案】相关文章:
四年级下册数学第四单元教案03-02
四年级下册数学第四单元教案05-27
数学第四单元除法的教案02-07
人教版四年级数学下册第四单元教案08-05
四年级数学下册第四单元《小数的性质》教案11-25
四年级数学下册第四单元《小数的意义》教案11-17
四年级下册数学第四单元教案15篇[精选]05-27
五年级数学下册第四单元教案02-20