平均数数学教案[经典]
作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。教案要怎么写呢?下面是小编为大家整理的平均数数学教案,仅供参考,欢迎大家阅读。
平均数数学教案1
【教学内容】:
九年义务教育课本数学五年级第一学期(试用本)P31
Ⅰ:教案
【教学目标】
知识与技能:
1、通过具体的事例让学生初步了解平均数的概念;
2、知道求“平均数”的一个基本方法——平均数=总和÷个数;
3、知道平均数是个“虚拟”的数,它的取值范围在该组数据的最小值和最大值之间。
过程与方法:
1、从生活实际出发,让学生通过观察、比较、主动探索的过程中,了解和掌握求平均数的意义与方法,2、培养学生一定的估测能力,能对平均数的结果做出简单的推断和预测。
3、培养学生具有合作交流的意识和能力。
情感、态度与价值观:
体会“平均数”在现实生活中的实际意义及广泛用途,在学习过程中让学生享受学习的快乐。
【教学重点与难点】
重点:理解平均数的概念,知道求“平均数”的方法。
难点:理解平均数的概念。
【教学准备】
教具准备:夹玻璃球的用具、课件。
【教学过程】
一、游戏导入:
1、师:老师这里有200个玻璃球,要平均分给我们五个小组,每个小组能分到几个玻璃球?怎么算出来的?为什么要用除法来做?
生:200÷5=40(个)平均分
2、师:接下来,我们就一起来玩夹玻璃球的游戏,先听清游戏规则
(1、不能用手拿2、掉在桌上和地上的不算,时间:30秒钟。好,谁愿意来做裁判,帮大家看时间?我也加入一组玩。)
3、请小组长负责统计每组夹玻璃球的总数。
按组汇报板书
【教学策略说明:从夹玻璃球的游戏导入新课,使学生体会到数学就在身边,生活中处处离不开数学,从而对数学知识产生亲切感,能更好地激发学生爱数学、学数学的兴趣。】
二、探究新知:
1、比一比每组夹玻璃球水平的高低是怎样的?
2、师:就请大家把自己这组平均每人夹的个数算一算。
生:汇报各组平均每人夹的个数。
师:这些表示各个组平均每人夹玻璃球的个数叫作“平均数”,也就是这节课我们要学习的内容——出示课题
师:算出了平均数,现在可以比出夹玻璃球水平高低的名次了吗?
3、师:在平时的生活中像这样的事还有很多,下面请同学们一起来做一个公正的裁判,出示:
同学们跳集体舞得分统计表
年龄低年级组中年级组高年级组总分760588480人数865
师:你能给他们排出名次吗?
4、通过第一个游戏和为集体舞比赛排名,谁能说说求平均数的方法是什么?
板书:总和÷个数=平均数
5、例题教学
师:同学说得很好,现在来看看这几座大桥,你们都认识吗?
师:现在老师把五座大桥的长度告诉你们,请你们用计算器帮忙算出五座大桥的平均长度是多少?
师:完成后翻开书P31进行校对并读一读书上是怎样介绍平均数的。
师:(媒体上)在这道算式上,括号里的一组加法运算表示的是什么?5表示什么?得到的最后结果叫什么?
师:这个平均数6584。6米又表示什么意思?那么这五座大桥的长度有没有等于这个平均数的?说明平均数不是一个实际的数,它是一个“虚拟数”。
师:再来看看我们一开始做的两组题,200÷5=40是平均分,40是一个什么数?而右边一列算出每组夹玻璃球的平均数是个什么数?
6、了解了平均数的一些知识后我们来看这道题
有一篮子鸡蛋,每个鸡蛋的重量如下:
56g,55g,54g,58g,55g,53g,54g
先请同学估计一下这篮子鸡蛋平均一个有多重?你是怎么想的?
生:试做并交流(56+55+54+58+55+53+54)÷7=55 (g)
师:请将平均数55与每个鸡蛋的实际重量比一比,结果怎样?这道题算出的平均数与条件中一些数据会一样,是不是平均数就变成实际数了?为什么?
师:观察平均数和每个鸡蛋的重量,你发现了什么?
7、小结:今天我们学了什么知识,怎样来求平均数?还明白了哪些道理?
【教学策略说明:比一比每组夹玻璃球水平的高低引出要“算出每组平均每人夹的个数比”,初步感知平均数的意义。让同学们根据跳集体舞得分统计表来排名,是为了使学生进一步加深理解平均数在日常生活中的意义和实际作用以及计算的方法:总和÷个数=平均数的结论。】
三、巩固练习:
1、选择题:
学校篮球队队员的平均身高是160cm,李强是学校篮球队队员中是最矮的一位。下面表述正确的是()。
(1)他的身高是160 cm 。
(2)他的身高是160 cm以下。
(3)他的身高是160 cm以上。
(4)他的身高以上三种情况都有可能。
2、拓展题:
有3包糖,第一包35个糖,第二包有40个糖,第三包有45个糖
有3组小朋友,第一组12人,第二组有8人,第三组有10人
怎样分糖,比较合理?
四、总结:
你们今天学会了什么?有什么不懂要问的吗?
Ⅱ:教案设计说明
随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“平均数”安排为统计中的一个重要学习领域,强调发展学生的统计观念。本单元是由平均数的认识,平均数的计算和平均数的应用三个部分组成。本课则是第1课时,让学生认识理解平均数的概念并掌握平均数的计算方法。
平均数是统计工作中常用的一种特征数,它能反映统计对象的集中趋势,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”和过去学过的“平均分”的结果是不同的,要弄清“虚拟数”和“实际数”是教学的难点。
(一)从夹玻璃球的游戏导入新课
1、先让学生将200个玻璃球,要平均分给五个小组,引出200÷5=40(个)平均分的意义。
2、接着组织学生玩夹玻璃球的游戏。
3、请小组长负责统计每组夹玻璃球的总数,按组汇报结果
这个开头既很快的复习了平均分的意义,又非常吸引学生,大大地调动了他们的积极性。游戏其实就是“数学化”的过程,它对于培养学生用数学的眼光观察、思考问题有着实际的意义。由熟悉的生活情景引入,使学生体会到数学就在身边,生活中处处离不开数学,从而对数学知识产生亲切感,能更好地激发学生爱数学、学数学的兴趣。
(二)、探究新知。
1、比一比每组夹玻璃球水平的.高低引出问题——因为每组人数的不同,看夹球的总数比哪组夹玻璃球的水平高,有学生认为是不合理的,由此引发——“怎么比才合理”,通过学生的讨论问题最终获得解决的方法,“算出每组平均每人夹的个数比”初步感知平均数的意义。
2、让同学们根据跳集体舞得分统计表来排名,是为了使学生进一步加深理解平均数在日常生活中的意义和实际作用以及计算的方法。在两个生活实例的引导下,学生就比较内容能够得出总和÷个数=平均数的结论。
3、有了上面两道题的铺垫,书上P31的例题我就让学生去体验求平均数的完整过程与方法。
4、了解了平均数的一些知识后让我让学生来看这道题“有一篮子鸡蛋,每个鸡蛋的重量如下:
56g,55g,54g,58g,55g,53g,54g
先请同学估测这篮子鸡蛋平均一个有多重?再计算”。这道题是例题下的试一试,因为数字比较小而且较接近,所以我利用学生估测的结果和实际的平均数引发讨论出“平均数”是个虚拟数的的意义所在之处。以实例来证明,有利于学生的理解。
(三)、巩固练习
安排了基础题和拓展题,基本题就是选择题,让学生理解平均数的真正含义,也是检测本课知识目标是否达标的有效方法。
拓展题让学生悬念顿生,迫使他们自觉产生思维碰撞,多角度思考问题,鼓励学生充分发表意见,从而进一步理解平均数的意义和一般方法。
总之,这堂课力求使既定的三维目标都能达到并且使学生感受到数学的应用价值,树立应用意识,能够初步形成解决日常生活工作中的数学问题的能力,并通过这一应用过程学会用数学的眼光看社会,从而获得必要的发展。
Ⅲ:教学反思
“平均数”是本册教材第三单元“统计”教学的主要内容,涉及的知识点包括平均数的意义,计算简单数据的平均数等。粗略地看,这部分内容好像无异于传统小学数学的教学内容,但仔细品味,我们可以发现,虽然知识还是这些知识,但通过这些知识所要传递的理念和思想,已经发生了重大变化,平均数的教学应该呈现出新的气象。本学期,我就以“平均数的认识”开了一堂课,颇有感触。
一、让学生在具体的活动中体会平均数的意义,起到了很好的作用。对小学生来说,平均数是表示“集中量数”,这样的专业术语是难于理解的。所以,在教学中我创设了如下情景:分小组在30秒内,玩夹玻璃球的游戏,然后统计每个小组夹玻璃球的总个数,最后进行比较哪组夹得多。因为我将每组的人数安排的有多有少,所以学生在比较时提出看夹球的总数比是不公平的,引起争论,为解决问题大家经过讨论想起了算出每组平均每人夹的个数来比就公平的,从而我很自然的介绍了平均每个人的夹球数又叫做“平均数”。运用统计知识解决实际问题的过程中,体会平均数的本质内涵,把握平均数的意义。这个教学情景的创设,调动了不同层次的所有学生共同参与,有趣的游戏吸引了每一位学生的注意力,这样的过程使每一个学生都乐在其中,整个学习活动没有一位学生是等待状态的。多变的练习,让学生对“平均数”得到多方面的感受。
二、练习在学生的数学学习过程中是必须的,但新课程的背景下,练习也要注入新的内涵,在进行基本训练的同时,努力让学生得到多方面的感受。本节课在练习设计中,我大幅删减了纯粹的技能训练,每个练习题在保证基本的双基训练功能的前提下,都力图呈现各具不同的侧重点,引导学生通过练习在知识技能以外的其他方面得到提升。
平均数数学教案2
一、内容和内容解析
(一)内容
加权平均数.
(二)内容解析
学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平均数,体会权的意义、作用,并进一步体会平均数是刻画一组数据集中趋势的重要的统计量,是一组数据的“重心”.
教科书设计了以招聘英文翻译为背景的实际问题,根据不同的招聘要求,各项成绩的“重要程度”不同,从而平均成绩不同,由此引入加权平均数的概念.权的重要性在于它能够反映数据的相对“重要程度”.为了更好地说明这一点,教科书设计了“思考”栏目和例1,从不同方面体现权的作用,使学生更好地理解加权平均数,体会权的意义和作用.
基于以上分析,本节课的教学重点是:对权及加权平均数统计意义的理解.
二、目标和目标解析
(一)目标
1.理解加权平均数的统计意义.
2.会用加权平均数分析一组数据的集中趋势,发展数据分析能力.
(二)目标解析
1.理解权表示数据的相对“重要程度”,体会权的差异对平均数的影响,会计算加权平均数.
2.面对一组数据时,能根据具体情况赋予适当的权,并根据得到的加权平均数对实际问题作出简单的判断.
三、教学问题诊断分析
加权平均数不同于简单的算术平均数,简单的算术平均数只与数据的大小有关,而加权平均数则还与该组数据的权相关,学生对权的意义和作用的理解会有困难,往往造成数据与权混淆不清,只会利用公式,而不知加权平均数的统计意义.
本节课的教学难点是:对权的.意义的理解,用加权平均数分析一组数据的集中趋势.
四、教学支持条件分析
由于教学重点是对加权平均数意义的理解,可以用电子表格excell来辅助计算加权平均数,同时加深对权意义的理解.
五、教学过程设计
(一)创设情境,提出问题
通过已有的统计学方面的知识,我们知道当收集到一些数据后,通常用统计图表整理和描述这些数据,为了进一步获取信息,还需要对数据进行分析,小学时我们学习过平均数,知道它可以反映一组数据的平均水平.本节我们将在实际问题情境中,进一步探讨平均数的统计意义,并学习中位数、众数和方差等另外几个统计量,了解它们在数据分析中的作用.
师生活动:阅读章引言.
设计意图:让学生回顾统计调查的一般步骤,了解本节的大致内容,体会数据分析是统计的重要环节,而平均数等统计量在数据分析中起着重要作用.
问题1 一家公司打算招聘一名英文翻译,对甲、乙两名候选人进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:
应试者 听 说 读 写
甲 85 78 85 73
乙 73 80 82 83
如果这家公司想招一名综合能力较强的翻译,该录用谁?录用依据是什么?
师生活动:学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.
设计意图:回顾小学学过的平均数的意义,为引入加权平均数作铺垫.
问题2 如果这家公司想招一名笔译能力较强的翻译,能否同等看待听、说、读、写的成绩?如果听、说、读、写成绩按照2︰1︰3︰4的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?
追问1:用小学学过的平均数解决问题2合理吗?为什么?
追问2:如何在计算平均数时体现听、说、读、写的差别?
师生活动:教师适时地追问,学生自主设计计算平均数的方法,教师收集整理学生的计算方法,并统一计算形式,讲解权的意义及加权平均数.
设计意图:追问1让学生理解问题2与问题1的有区别,问题2中的每个数据的“重要程度”不同,追问2让学生自主探究如何在计算平均数时体现的每个数据的“重要程度”不同,从而体会权的意义.
(二)抽象概括,形成概念
问题3 在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?
《20.1.1平均数》课时练习含答案
14.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( )
A.14.15 B.14.16 C.14.17 D.14.20
答案:B
知识点:计算器—平均数
解析:
解答:本题要求同学们,熟练应用计算器.
解:借助计算器,先按MOOE按2再按1,会出现一竖,然后把你要求平均数的数字输进去,好了之后按AC键,再按shift再按1,然后按5,就会出现平均数的数值.
故选B.
分析:本题要求同学们能熟练应用计算器,会用科学记算器进行计算.
15.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的这组数据的平均数与实际平均数的差是( )
A.3.5 B.3 C.0.5 D.-3
答案:D
知识点:计算器—平均数
解析:
解答:利用平均数的定义可得.将其中一个数据105输入为15,也就是数据的和少了90,其平均数就少了90除以30.
平均数:知识点
引入新课:
在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)
知识与技能
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
平均数数学教案3
一、单元教学内容
平均数与条形统计图
二、单元教学目标
1、理解平均数的含义,学会简单的求平均数的方法,理解平均数在统计学上的意义。
2、认识复式条形统计图,能根据统计图提出问题并解答,能发现信息并进行简单的数据分析。
3、在体验数据的收集、整理、描述和分析的过程中,发现信息进行简单的数据分析,并进行有条理的思考。
4、体会统计在现实生活中的作用,运用已经掌握的知识解决生活中简单的数学问题。
5、体会数学知识与实际生活的紧密联系,激发学习兴趣,培养细心观察的良好学习习惯。
6、发展统计观念,培养自主探究的能力及合作意识。
三、单元教学重、难点
理解平均数的含义,学会简单的求平均数的方法,理解平均数在统计学上的意义。认识复式条形统计图,能根据统计图提出问题并解答,能发现信息并进行简单的数据分析。
四、单元教学安排
3课时
第1课时
平均数
一、教学内容:
平均数
二、教学目标
1、经历探索平均数的过程,学会寻找平均数的方法移多补少、先总后分,理解平均数的含义。
2、在运用平均数的知识解释简单的生活现象、解决简单的实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
三、教学重难点
重点:理解平均数的含义。难点:会简单的求平均数的方法。
四、教学准备多媒体课件
五、教学过程
(一)导入新授
1、课件出示:班级图书角的书架上层有8本书,下层有4本书。
提出问题:同学们能帮忙重新整理一下,使每层书架上的书一样多吗?
2、学生思考,交流讨论。
师生交流后,教师用课件操作并提问:现在每层都有6本书了,这个6是它们的什么数?(平均数)我们是如何求出平均数6的呢?
师生交流后明确是通过把上层书本移2本至下层得到的相同数。今天,我们就来深度认识一下“平均数”这个朋友。板书课题:平均数。
(二)探索发现
1、教学例1。
(1)课件出示教材第90页例1统计图:环保小分队的四名同学收集的矿泉水瓶如下(课件出示统计图)。
师:从统计图中,你能获得哪些数学信息?
学生交流后反馈:从统计图中,可以知道:小红收集了14个,小兰收集了12个,小亮收集了11个,小明收集了15个。
师:根据数学信息,你能提出什么数学问题?教师从学生提出的问题中选择求平均数的问题。
(2)解决问题:平均每人收集了多少个矿泉水瓶?
师:你是怎样理解“平均每人收集多少个”的?你会解决这个问题吗?如何解决?小组交流探讨。教师巡视指导。
(3)汇报展示。
汇报预测:方法一:移多补少,学生汇报,多媒体演示移多补少的过程。
师:像这样,把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多,这种方法叫移多补少,得到的这个相等的数叫做这几个数的平均数。13是14、12、11,15的平均数。
方法二:根据总数量÷总份数=平均数,得。(14+12+11+15)÷4=52÷4=13(个)。
(4)小结:我们可以用移多补少的方法求平均数。也可以用数据的总和除以数据的个数求出平均数。数据较少时,我们可以用移多补少的方法。数据较多时,用先求总数再求平均数的方法计算比较简便。
(5)教师追问:平均每人收集13个,是不是每个人真的都收集了13个?你是怎么理解“平均每人收集13个”这句话的?
师生交流后明确:“平均每人收集13个”表示每个人收集的数量可以比13个多,也可以比13个少,也可以刚好是13个。
(6)区分“平均分”和“平均数”。
①把52个矿泉水瓶平均分给4个人,每人分得几个?
②每人分到13个和平均每人收集13个,这两个“13”所表示的意义相同吗?师生交流后小结:平均分是实实在在的量,平均数是虚拟的量。2、教学例2。
(1)创设问题情境。
四(1)班第4小组男生队和女生队进行踢毽比赛,我们来看看他们的比赛情况。课件出示教材第91页的情境图和两张统计表。
师:这两张统计表给出了他们踢毽的成绩。观察两张表,你能从中知道些什么?(参加人数、每人的踢键个数等)
(2)探索解决问题。
提出问题:你认为是男生队的成绩好一些还是女生队的成绩好一些呢?说说你的理由。让学生充分从多个角度分析表示男、女生队的踢毽情况。在尝试中体会到用平均数能较好地说明问题。
学生动手列式计算:
男生队:(19+15+16+20+15)÷5 =85÷5 =17
女生队:(18+20+19+19)÷4 =76÷4 =19
(3)全班汇报交流。
师:为什么男生队除以5而女生队是除以4呢?你认为是男生队还是女生队成绩好?师生交流后明确:因为男生队有5人,所以要除以5,而女生队只有4人,所以除以4。男生队平均每人踢17个,女生队平均每人踢19个,女生队的成绩好一些。
师:问题解决了吗?你有什么收获?
师生交流后明确:用求平均数的方法来分析得到的数据,常常能反映一般情况,帮助我们解决问题。
(三)巩固发散
1、指导学生完成教材第92页“做一做”。
学生独立完成,集体交流时说一说自己是如何求出平均数的。
2、四(1)班学生参加植树活动,第一组种了180棵,第二组种了166棵,第三组种了149棵,平均每组种了多少棵?
3、想一想:游泳池的平均水深是120厘米,小明身高130厘米,他在游泳池中学游泳,会不会有危险?为什么?
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:求平均数可以采用“移多补少”的方法,也可以先求几个数据的总和再除以这几个数的个数,所得的'结果即为平均数。
(五)板书设计
六、教学后记
略
平均数
求平均数的方法:
数据较少:移多补少法常用方法:总数÷份数=平均数
第2课时
复式条形统计图
一、教学内容
复式条形统计图
二、教学目标
1、在数据的收集、整理、描述和分析的过程中,进一步体会统计在生活中的作用,体会数学与生活的密切联系。
2、认识两种形式的复式条形统计图,能根据统计图提出并回答问题,能发现信息并进行简单的数据分析。
3、通过对生活事例的调查,激发学习兴趣,培养学生细心观察的良好习惯,以及合作意识和实践能力。
三、教学重难点
重点:正确画出复式条形统计图。
难点:根据统计图发现信息、分析信息,提出并回答简单的实际问题。
四、教学准备
多媒体课件、彩笔、直尺、三角板。
五、教学过程
(一)导入新授
你们知道中国有多少人吗?那你们知道自己所在的区有多少人吗?(学生回答)下面我们一起对收集到的信息进行整理和分析。
(二)探索发现
1、教学纵向单式条形统计图。
(1)课件出示教材第95页例3某地区城乡人口统计表。
提出问题:怎样才能清楚地表示这个地区这几年城镇和乡村的人数变化呢?学生交流后,得出可以制作统计图来表示。让学生根据教师提供的统计表,分别完成某地区城镇和乡村人口的纵向单式条形统计图。
(2)展示学生绘制的统计图。
提出问题:从这两个统计图中,你能获得哪些信息?
师:如果我要很快地知道xx年与xx年中城镇人口与乡村人口的变化情况?那该怎么办?学生讨论,汇报。引导学生把两个统计图并列排放来比较,并思考怎样把它们合并起来。
2、教学纵向复式条形统计图。
(1)提出问题:如何才能把两个单式条形统计图合并成一个统计图呢?学生在小组内交流探讨,试着绘制统计图。教师巡视指导。
(2)展示学生绘制的复式条形统计图。
讨论交流:复式条形统计图与单式条形统计图有什么区别与联系?让学生先独立思考,然后把自己的想法与小组内其他同学交流。
(3)全班交流、汇报。
通过小组合作交流复式与单式条形统计图的联系与区别,使学生认识到为了区分两个内容,采用不同颜色的长方形来表示。
(4)分析复式条形统计图。
从这个统计图中你获得了哪些信息?
小结时可引导学生通过观察统计图发现:该地区近年来城镇人口逐年增加,农村人口逐年下降,人口总数逐年上升,同时对学生进行人口教育。
3、教学横向复式条形统计图。
(1)出示教材第96页不完整的横向复式条形统计图。让学生独立把横向复式条形统计图补充完整。
(2)展示作品。
请你说一说,横向复式条形统计图应该怎样绘制?
师生交流后明确:这个统计图中横轴表示人数,纵轴表示的是年份,所以画出的条形是横向的。
(3)分析横向复式条形统计图。
从这个统计图中你获得了哪些信息?让学生分别说一说,然后进行小组交流。
(4)比较纵向与横向复式条形统计图。
师:我们已经认识了两种复式条形统计图,即:纵向复式条形统计图和横向复式条形统计图,请同学们对比这两种统计图,思考:丙种复式条形统计图有什么区别与联系?
师生交流后小结:这两种复式条形统计图只是形式上的不同,当数据种类不多,但是每类数据又比较大时,用横向条形统计图表示更方便。
4、即时练习。
指导学生完成教材第97页“做一做”。
学生根据统计表,完成统计图。并回答统计图后的问题。
(三)巩固发散
市场甲、乙两种品牌的果汁饮料一、二、三月销售情况如下表。请你动手绘制统计图并回答下列问题。
2、如果你是超市的经理,下个月应该怎么进货?
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:本节课学习并掌握了两种形式的复式条形统计图的绘制方法。
(五)板书设计复式条形统计图
六、教学后记
略
第3课时
营养午餐
一、教学内容
营养午餐
二、教学目标
1、了解营养与健康的常识,培养运用简单的排列组合、统计知识解决问题的能力。
2、能根据营养专家的建议运用正确的数学思想方法分析调配科学、合理的午餐菜式。
3、明确科学、合理的饮食的重要性,养成良好的饮食习惯。
三、教学重难点
重点:培养学生分析整理数据、运用数据解决问题的能力。难点:科学分析结果,合理安排搭配方案。
四、教学准备多媒体课件
五、教学过程
(一)导入新授
你们平时喜欢吃哪些菜?这些菜搭配是否合理?今天我们就一起来研究这个问题。板书课题:营养午餐。
(二)探索发现
1、自主配餐。
(1)出示教材第101页情境图。让学生根据要求自主选择一份菜谱。
(2)全班交流,展示学生的搭配方案。
2、科学评判。
(1)介绍科学的配餐要求:我们点的菜是否符合营养学标准呢?“不应低于”、“不超过”是什么意思?用数学符号应该怎样表示?
(2)了解每份菜中热量、脂肪和蛋白质的含量情况。出示每份菜的热量、脂肪和蛋白质含量表。
3、小结。
我们在进行午餐营养判断时既要看热量又要看脂肪,只有两种指标都不超量时才能算是营养的午餐。
(三)巩固发散
1、学习合理搭配。
如果让你动手搭配菜谱,你会了吗?每人只搭配一组就行。要求:在这十种菜中任选三种搭配一起,营养一定要合理。分组讨论,集体汇报。各组派代表汇报本小组的搭配方案。
2、小结。
师生共同分析总结营养搭配的要求:荤素搭配,营养均衡。
3、统计全班同学喜欢的菜谱。
(1)男女生各选一个代表收集数据,教师记录。
(2)学生根据统计表完成复式条形统计图。
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
(五)板书设计营养午餐
热量不低于2926千焦脂肪不超过50g荤素搭配,营养均衡。
六、教学后记
略
平均数数学教案4
【教学目标】
1.结合具体事例,经历认识平均数、求平均数以及讨论平均数意义的过程。
2.初步体会平均数的作用,能计算平均数,了解平均数的实际意义。
3.积极参加数学活动,体会用“平均成绩”说明问题的公平性。
【教学重点】
体会学习平均数的作用,了解平均数的.实际意义,学会平均数的计算方法。
【教学难点】
理解平均数的意义,掌握求一组数据平均数的方法,能正确计算一组数据的平均数。
【教学准备】
PPT课件。
【教学过程】
一、导入新课
操作中体验“同样多”,引出平均数。
(PPT课件出示教材第85页例1)
师:要使每个笔筒放的铅笔一样多,可以怎样做?每个笔筒放几支?
学生充分表达不同的想法,最后形成一致意见。
师:每个笔筒平均放3支,这样每个笔筒里的铅笔就同样多了,这个数量3在数学上我们叫做平均数。
师:今天我们就一起学习平均数。(板书课题:认识平均数)
二、探究新知
1.认识平均数。
师:四(1)班一、二组同学进行投球比赛,每人投10个,投篮结果如下:
(PPT课件出示)
师:你能读出哪组的成绩好吗?你是怎样知道的?
全班进行讨论,鼓励学生大胆说出自己的想法,学生可能出现比总数情况,这样不公平,教师要引导学生考虑怎样比较才“公平”。师生总结得出:算出每个组的平均成绩来比较最公平。(学生自己尝试计算。)
学生交流计算的方法和结果,用自己的语言描述每个组的平均成绩,并根据两个组的平均成绩说明哪个组的成绩好。
师:通过上面的计算,你知道平均数是怎样计算出来的吗?
师生总结得出:平均数=总数量÷总份数。
2.求平均数。
师:亮亮把自己家一个星期丢弃塑料袋的情况作了统计,你能计算出平均每天丢弃几个塑料袋吗?(PPT课件出示统计表)
学生自己计算,然后交流计算方法和结果。
师:“3个”是每天实际丢弃塑料袋的个数吗?
学生充分发表自己的意见。了解求出的3个“不是实际每天丢弃塑料袋的个数,而是算出的一个平均数”。
三、巩固新知
1.完成教材第86页“练一练”第1,2题。
2.完成教材第86页“问题讨论”。
四、课堂小结
这节课你学到了什么?
五、布置作业
完成《·同步课时练习》相关习题。
平均数数学教案5
教学内容:求平均数的问题--教材第27-29页例2-3,做一做题目及练习七1-2题。
教学目的:使学生理解平均数的概念,掌握简单的求平均数的方法,培养学生分析、综合能力。
教学过程:
一、复习
1、口算:
(38+32)÷2(63-27)÷9(30+55)÷5(7+9+6+8)÷3
2、解应用题:
一个杯子里的水深16厘米,把水平均倒在同样的4个杯子里,平均每个杯子里水深多少厘米?
二、新课
1、用谈话法引入。
刚才做的“把一个数平均分成几份,求每份是多少”的简单应用题,是以前学的。在实际生活中,我们还经常遇到要求解答这样的问题:语文、数学等各科的平均成绩,汽车的平均速度,一群人的平均身高,工厂里的平均产量等等,这类问题是求平均数问题。今天我们一起来学习求平均数问题,看与过去所学的有什么不同的地方。
2、教学例2。
(1)出示例2。让学生默读题目,理解题意,明确条件及所求问题。
(2)教师演示,学生观察、思考。
拿出盛着水的4个同样的杯子,杯壁贴有标明刻度的纸条,每个杯子的盛水量与课本中上图的相同。
问:这4个杯子的水面高度相等吗?
求这4个杯子水面的平均高度是什么意思?
(4个杯子里的水同样多棗高度相同。)
怎样使这4个杯子里的水高度相同?
指导学生操作。
让学生拿出准备好的学具卡片,把表示水量的蓝色纸条摆在四个白杯子上,使四个杯子里的水高度相同。操作之后让学生说一说自己是怎样摆的。
启发学生想:把4杯水倒在一起,再平均倒在4个杯子里,得到平均高度。
教师演示。
出示挂图。(把课本上的下图制成挂图,图中的“4厘米”和虚线用红色标明。)指出用红色虚线标明的地方(4厘米)就是它们的.平均高度。并和演示作对照。
问:这个平均高度是怎样得来的?(它是把4个杯子里的水平均分的结果。)
(3)指导列出算式。
问:如果不用倒水,我们有办法计算出这个平均高度吗?
让学生说出想法,并用式子表示:
(6+3+5+2)÷4
指导学生阅读课本“想”这一部分,并与自己是怎样想的相对照。
指名学生说出式子的意义,强调“4厘米”是平均数。
区别例2的“4厘米”和复习题的“4厘米”的意义。
3、做第29页上“做一做”中的第1、2、3题。
教师巡视,辅导差生。
订正时让学生讲思考过程。
4、启发学生说计算方法。
问:从刚才做的几道题中,你能说一说求平均数的一般计算方法吗?
(要求学生在理解的基础上掌握算法,不要求学生把算法抽象为公式。)
5、教学例3。
出示例3。让学生默读,理解题意,明确条件和所求问题。
问:怎样求哪一组平均身高高一些?怎样计算出“高多少”?
启发学生想:如一个一个地比,非常麻烦,而且不容易比清楚。先算出各组的平均身高,就容易比较了。
让学生运用从例2中学到的方法,自己求出两组各自的平均身高,再求出哪个组平均身高高一些,高多少。
然后提问:如果不求平均身高,直接用各组所有人身高的和进行比较行不行?为什么?
使学生明确:由于两组人数和每人的身高不一样,不能直接比较,而只能用平均身高进行比较。
三、巩固练习:练习七第1、2题。
四、小结(略)
平均数数学教案6
教学目标
(1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理;
(2)能运用定理证明不等式及求一些函数的最值;
(3)能够解决一些简单的实际问题;
(4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系;
(5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科学的认识习惯,进一步渗透变量和常量的哲学观;
教学建议
1.教材分析
(1)知识结构
本节根据不等式的性质推导出一个重要的不等式:,根据这个结论,又得到了一个定理:,并指出了为的算术平均数,为的几何平均数后,随后给出了这个定理的几何解释。
(2)重点、难点分析
本节课的重点内容是掌握“两个正数的算术平均数不小于它们的几何平均数”;掌握两个正数的和为定值时积有最大值,积为定值时和有最小值的结论,教学难点是正确理解和使用平均值定理求某些函数的最值.为突破重难点,教师单方面强调是远远不够的,只有让学生通过自己的思考、尝试,注意到平均值定理中等号成立的条件,发现使用定理求最值的三个条件“一正,二定,三相等”缺一不可,才能大大加深学生对正确使用定理的理解,教学中要注意培养学生分析归纳问题的能力,帮助学生形成知识体系,全面深刻地掌握平均值定理求最值和解决实际问题的方法.
㈠定理教学的注意事项
在公式以及算术平均数与几何平均数的`定理的教学中,要让学生注意以下两点:
(1)和成立的条件是不同的:前者只要求都是实数,而后者要求都是正数。
例如成立,而不成立。
(2)这两个公式都是带有等号的不等式,因此对其中的“当且仅当……时取‘=’号”这句话的含义要搞清楚。教学时,要提醒学生从以下两个方面来理解这句话的含义:
当时取等号,其含义就是:
仅当时取等号,其含义就是:
综合起来,其含义就是:是的充要条件。
(二)关于用定理证明不等式
当用公式,证明不等式时,应该使学生认识到:
它们本身也是根据不等式的意义、性质或用比较法(将在下一小节学习)证出的。因此,凡是用它们可以获证的不等式,一般也可以直接根据不等式的意义、性质或用比较法证明。
(三)应用定理求最值的条件
应用定理时注意以下几个条件:
(1)两个变量必须是正变量;
(2)当它们的和为定值时,其积取得最大值;当它们的积是定值时,其和取得最小值;
(3)当且仅当两个数相等时取最值.
即必须同时满足“正数”、“定值”、“相等”三个条件,才能求得最值.
在求某些函数的最值时,还要注意进行恰当的恒等变形、分析变量、配置系数.
(四)应用定理解决实际问题的分析
在应用两个正数的算术平均数与几何平均数的定理解决这类实际问题时,要让学生注意;
(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;
(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;
(3)在定义域内,求出函数的最大值或最小值;
(4)正确写出答案。
2.教法建议
(1)导入新课建议采用学生比较熟悉的问题为背景,这样容易被学生接受,产生兴趣,激发学习动机.使得学生学习本节课知识自然且合理.
(2)在新授知识过程中,教师应力求引导、启发,让学生逐步回忆所学的知识,并应用它们来分析问题、解决问题,以形成比较系统和完整的知识结构.对有关概念使学生理解准确,尽量以多种形式反映知识结构,使学生在比较中得到深刻理解.
(3)教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
(4)可以设计解法的正误讨论,这样能够使学生尝试失败,并从失败中找到错误原因,加深对正确解法的理解,真正把新知识纳入到原有认知结构中.
(5)注意培养应用意识.教学中应不失时机地使学生认识到数学源于客观世界并反作用干客观世界.为增强学生的应用意识,在平时教学中就应适当增加解答应用问题的教学,使学生不禁感到“数学有用,要用数学”.
第一课时
教学目标:
1.学会推导并掌握两个正数的算术平均数与几何平均数定理;
2.理解定理的几何意义;
3.能够简单应用定理证明不等式.
教学重点:均值定理证明
教学难点:等号成立条件
教学方法:引导式
教学过程:
一、复习回顾
上一节,我们完成了对不等式性质的学习,首先我们来作一下回顾.
(学生回答)
由上述性质,我们可以推导出下列重要的不等式.
二、讲授新课
1.重要不等式:
如果
证明:
当
所以,
即
由上面的结论,我们又可得到
2.定理:如果是正数,那么
证明:∵
即
显然,当且仅当
说明:)我们称的算术平均数,称的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.
)成立的条件是不同的:前者只要求都是实数,而后者要求都是正数.
)“当且仅当”的含义是充要条件.
3.均值定理的几何意义是“半径不小于半弦”.
以长为的线段为直径作圆,在直径 AB 上取点 C , . 过点 C 作垂直于直径 AB 的弦DD′,那么
即
这个圆的半径为,显然,它不小于 CD ,即,其中当且仅当点 C 与圆心重合;即时,等号成立.
在定理证明之后,我们来看一下它的具体应用.
4.例题讲解:
例1已知都是正数,求证:
(1)如果积是定值 P, 那么当时,和有最小值
(2)如果和是定值 S ,那么当时,积有最大值证明:因为都是正数,所以
(1)积 xy 为定值 P 时,有
上式当时,取“=”号,因此,当时,和有最小值.
(2)和为定值 S 时,有
上式当时取“=”号,因此,当时,积有最大值.
说明:此例题反映的是利用均值定理求最值的方法,但应注意三个条件:
(1)函数式中各项必须都是正数;
(2)函数式中含变数的各项的和或积必须是常数;
(3)等号成立条件必须存在.
接下来,我们通过练习来进一步熟悉均值定理的应用.
三、课堂练习
课本P 11练习2,3
要求:学生板演,老师讲评.
课堂小结:
通过本节学习,要求大家掌握两个正数的算术平均数不小于它们的几何平均数的定理,并会应用它证明一些不等式,但是在应用时,应注意定理的适用条件.
课后作业:习题6.2 1,2,3,4
板书设计:
§6.2.1 ……
1.重要不等式说明)4.例题……学生
……)……练习
)……
2.均值定理3.几何意义
……
……
第二课时
教学目标:
1.进一步掌握均值不等式定理;
2.会应用此定理求某些函数的最值;
3.能够解决一些简单的实际问题.
教学重点:均值不等式定理的应用
教学难点:
解题中的转化技巧
教学方法:启发式
教学过程:
一、复习回顾
上一节,我们一起学习了两个正数的算术平均数与几何平均数的定理,首先我们来回顾一下定理内容及其适用条件.
(学生回答)
利用这一定理,可以证明一些不等式,也可求解某些函数的最值,这一节,我们来继续这方面的训练.
二、讲授新课
例2已知都是正数,求证:
分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同时加强对均值不等式定理的条件的认识.
证明:由都是正数,得
即
例3某工厂要建造一个长方体无盖贮水池,其容积为,深为3m,如果池底每的造价为150元,池壁每的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理.
解:设水池底面一边的长度为 x m,水池的总造价为 l 元,根据题意,得
当
因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600元.
评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件.
为了进一步熟悉均值不等式定理在证明不等式与求函数最值中的应用,我们来进行课堂练习.
三、课堂练习
课本P 11练习1,4
要求:学生板演,老师讲评.
课堂小结:
通过本节学习,要求大家进一步掌握利用均值不等式定理证明不等式及求函数的最值,并认识到它在实际问题中的应用.
课后作业:
习题6.2 5,6,7
板书设计:
均值不等式例2 §6.2.2例3学生
定理回顾…… ……
…… …… ……练习
…… …… ……
平均数数学教案7
教学内容:
课本第49---51页例3、“练一练”和练习八第1----4题。
教学目标:
1、使学生经历用平均数刻画一组数据特征的过程,联系实际问题感受平均数的含义,建立平均数的概念;学会求简单平均数的不同方法,初步学会利用图形直观或具体数据估计一组数据的平均数。
2、使学生经历移多补少、先合后分、估算等寻求一组数据的平均数等活动,体会平均数是一组数据总体情况的反映,了解平均数在统计活动中的价值和作用,发展数据分析观念,积累数学活动的基本经验。
3、使学生主动参与数学问题的探究活动,能对别人的想法提出质疑或建议,初步培养乐于思考、勇于质疑的品质,体会平均数在现实生活中的广泛应用,增强应用数学的意识。
教学重点:
平均数的意义和计算。
教学难点:
平均数意义的理解
教学过程:
一、创设情境,提出问题。
谈话:说说参加过哪些游戏?
创设情境,提出问题。
出示例3情境图:
说明:这两幅统计图分别表示男生和女生套中的个数。 引导:你能从图上知道些什么?男女生套圈比赛要比的是什么?你认为可以怎样比?
二、解决问题,认识新知。
1、交流解决方法。
讨论:这里记录了同学们想的积种不同的比较方法,你认为哪种比较方法是合理的?为什么?
(学生对不合理的方法提出质疑、否认,确认因为人数不同,比较男生和女生平均每人套中的个数是合理的。)
2、初步认识平均数。
(1)移一移-----探究男生套中的个数。
提问:从图上看,你打算怎样得到男生平均每人套中的个数?讨论交流。
交流:你是怎样移的,平均每人套中几个? 提问:我们是怎样做的,每人平均套中几个?
追问:男生套中的平均数是7个,刚才是怎样得到的`?
(2)算一算-----计算男生套中的平均数。
交流:你是怎样求出男生平均每人套中几个的?
追问:这里的“28”指的是什么,为什么要除以4?
3、理解平均数的含义。
启发:通过“移多补少”和“先合再分”这两种方法,得到了男生平均每人套中7个。想,这里的“7”表示的是谁套中的个数吗?
4、加深认识平均数。
(1)探究女生套中的平均数。
引导:你能求出5名女生套圈成绩的平均数吗?准备用什么办法求?
先在统计图上移一移,再列式计算,得出女生套中的平均数,和男生的比一比
交流:移多补少是怎样做的?求平均每人套中的个数还有什方法?
这里先算的什么?为什么接着要除以5? 追问:这求出的“6”是什么,表示什么意思?
(2)回顾问题。
我们在解决怎样的问题是用到了平均数?平均数是怎样得到的?它表示的是什么意思?
5、感知平均数的大致范围。
观察:从统计图上看,平均数在哪些数据范围之内?为什么会有比平均数大或小的呢?
讨论:你发现一组数据的平均数大小有什特点吗?它一定在那个范围之内,为什么?说说你是怎样想的?
交流:平均数在最大的数与最小的数之间。
三、练习巩固,加深理解。
1、做“练一练”
(1)学生观察笔筒里各有多少支铅笔。并按题里情境出示。你能移动笔筒里的铅笔,看出平均每个笔筒里有多少支铅笔吗?
提问:怎样移的,平均每个笔筒里有多少支?
(2)你还能用什么办法来求呢?自己求出平均数。
提问:这求出的“6”是哪几个数的平均数?
2、做练习八第1题。
说说每条丝带的长度。
出示数据: 14厘米 24厘米 16厘米
提问:这里出示的3个数据中,你认为哪个数据可能是3条丝带的平均长度?为什么?
提问:18是哪些数据的平均数?
3、做练习八第3题。
依次回答两个问题,说明理由。
说明:队员的实际身高就可能会有155厘米的和超过160厘米的。
4、做练习八第4题。
(1)解决第(1)题,同时指名板演。
提问:是怎样解决的?说说想法。
(2)讨论第(2)题。
提问:说说你们的讨论结果。为什么会有超过平均数的箱数?
通过和平均数比较,你对平均数的大小有什么要说的。
四、全课总结。
你对学习平均数,知道了哪些知识?
平均数数学教案8
教学内容:巩固练习教材第30—31页练习七3—7题与8题。
教学目的:使学生加深理解平均数的概念和求平均数的实际含义;掌握求平均数的方法;为今后进一步学习统计初步知识打下基础。
教学过程:
一、做练习七的第3题
请一位学生读题后,让学生说一说是怎样想的,解答的方法是什么。引导学生说出解答的方法是:把所有老人年龄的和除以老人的人数。然后让学生自己解答。解答之后,集体订正。
二、做练习七的第4题
让学生默读题目,理解题意,然后独立解答。教师巡视,个别辅导,解答之后,集体订正。
三、做练习七的第5题
先让一位学生读统计表上的两行文字。然后,教师提问:
谁能看懂这个统计表?
上面一行表示的是什么意思?
下面一行表示的是什么意思?
计算出平均每棵桃树的'产量,应填在哪里?
然后,学生自己计算填表。
四、做练习七的第6题
教师读题后,先让学生观察条形统计图,然后回答教师的问题。
教师提问:一小格代表几米?
谁爬得最高?
接着,让学生独立把条形统计图里的数据填写在统计表里,计算出平均每人爬的米数,填上第(3)小题的空。做完,集体订正。
五、做练习七的第7题
这道题,教师可提前布置调查任务,让学生自己去调查。课堂上教师让学生拿出调查结果,计算出小组的平均成绩。然后,可让学生把调查结果在教科书第161页的方格图中表示出来。学生独立做,教师巡视,个别辅导。
让学有余力的学生做练习七的第8题。
整理和复习
平均数数学教案9
一、教学内容:
人教版《义务教育课程标准实验教科书数学》三年级下册P42、43页《平均数》
二、教学准备:
直尺、三角板,学生按矮到高的顺序坐好。
三、教学目标与策略选择:
以往我们把《平均数》这节课当成是一节应用题的课,侧重读题、分析、计算;从新课程标准出台以后,列入统计与概率的范畴,重视平均数意义的教学,更注重学生估计意识、猜想意识和推理能力的发展。学生已有了相当丰富的统计知识,对于“平均数”这个概念已有所接触,如测试中的“平均分”等。但大部分学生还不能准确理解“平均数”的意义。为此,确定以下教学目标:
1、通过观察、比较,理解平均数不是一个具体的数(实际的数);
2、在师生、生生的交流互动中,让学生知道平均数是有一定范围的,培养学生的估计、猜想意识,并产生探究数学知识的积极情感;
3、学生能掌握求平均数的方法:(1)移多补少;(2)先求总数再平均分等;
4、体现总体与样本的关系。
鉴于以上的目标定位,本节课重在学生的体验、参与。在学生互动中,使学生感受够到生活中处处有数学,并会从实际生活中提出数学问题,运用不同的方法加以解决,同时在学生的合作中初步感受统计知识。为此,主要采取了以下教学策略:
1、以“情”、“趣”开路。
2、创设生动的生活情境,提供丰富的生活化材料,唤起学生已有的知识经验。
四、教学流程设计及意图:
教学流程
设计意图
一、活动导入,引出平均数的意义。
1、创设情境:比身高。
(1)第一次比较。师:今天进行男女同学比身高。先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)
(2)第二次比较。师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在是男同学高还是女同学高?
(3)第三次比较。师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)
师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?怎么比呢?生:......
(4)第四次比较。师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?
师:如果不请男同学上来了,你觉得还有其它比较的办法吗?
2、同桌学生讨论。生:求出几个同学的平均数。
3、现场测量台上同学的身高。
4、学生尝试练一练,指名板书。
5、比较结果。是男同学高,还是女同学高。
6、小结:看来平均数(板书课题)还真能帮肋我们解决一些问题。
二、延伸拓展,形成统计观念。
1、感悟平均身高。师指着平均身高:这个身高是你们当中times;times;同学的身高吗?那它是什么?
2、全班的平均身高。师:现在要知道全班同学的平均身高,怎么办?
生:先把所有的身高加在一起,再除以有40人。
师:是个办法,能解决这个问题。如果想知道全校四年级同学的平均身高,有什么办法?
生:......
3、选取样本。师:但是现在在课堂里没办法解决这个问题。有没有更好的办法呢?
(1)学生参考选取第一排或第五排。
(2)选取第一组的学生比较有代表性。
4、估计。
师:你们先估计一下,第一组5个同学的平均身高是多少?
生:......(不会比最大的大,比最小的小)
5、学生计算。
6、进一步感悟平均数。
师:是times;times;同学的身高吗?我们可以推测全班的同学身高,全校四年级同学的身高,甚至是更大范围的四年级同学的平均身高。
7、小结方法。
师:我们来观察一下,刚才我们是怎样求平均数?
生:先求总数(板书),除以人数,等于平均身高。
三、应用提高,深化统计观念。
1、举例。师:其实生活除了求平均身高外,还有很多地方用到平均数,能举个例子吗?......
2、你觉得有危险吗?
小朋友说:我身高140厘米,在这里游泳不会有危险。
2、猜猜看:
3根小棒,平均3根小棒,平均
每根长10厘米每根长15厘米
(1)猜测。师:如果从第一个袋子里拿一根(标上序号),第2个袋子里也拿一根,哪个袋子里拿出的长一些?
(2)举例。师:能举个例子吗?同桌商量一下。
(3)汇报。
3、变式练习。
(1)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天、第三天共印87万张,他们平均每天印多少万张?
①(39+87)divide;2=63(万张)
②(39+87)divide;3=42(万张)
(2)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天上午印22万张,下午印23万张。他们平均每天印多少万张?
①(39+22+23)divide;2=42(万张)
②(39+22+23)divide;3=28(万张)
质疑:为什么两个数要除以3?三个数相加要除以2呢?
小结:像这样的天数、人数,我们可以称为份数。(平均每天的张数、平均身高可以称为平均数)
4、读信息,了解最新动态,解决实际问题。
(1)你在这幅图上了解到哪些信息?根据这些信息,你能提出什么数学问题?
(2)计算前,你先估计一下,第二十五届到第二十八届平均每届获金牌的块数?并介绍你是怎么估计的?
(3)计算--课件验证。
(4)根据这幅图的发展趋势,你能预测一下20xx年能获多少块?
四、全课总结。
以“比身高”作为本节课学生的学习主题,通过现场简单的两人比较,四人,六人,七人的比较,使学生在观察中发现比较的量在不断的变化,结果也不断在变化,在矛盾迭起的活动中,不断寻找平衡,寻求合理的比较方法。
通过教师言语的引导,制造在大范围的情况下,求平均身高这么一个矛盾,怎么办?促使学生经历寻求“样本”的过程,致使合理的解决这个问题。
在本节课的练习设计中,突出对平均数意义的理解,体现开放性,变通性,实效性。促进学生的思维不断深入、发展。
五、教学片断实录:
片断一:
开场白:今天我们进行一场比赛--比身高。板书:男、女
师:同学们的想法都很好!但是今天先进行男女同学比身高。我先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)
师:你们说谁比较高?
生:男同学。
师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在谁比较高?
生:还是男同学。(男同学似乎很得意)
师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)
此时学生大笑。
师:你们笑什么呢?
生:这个男同学这么矮?
师:你们听过一句话吗,浓缩就是--精华。更何况,你们现在正是长身体的时候,过几年后,他可能会长得比你们高呢。
师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?
生:是男同学。生:是女同学。生:一样高。
师:怎么比呢?
生:把男同学高的部分“切下来”补到矮的身上,女同学也用这种办法,再比较。(还没等这位同学说完,其它同学就大笑,一致认为这是不可能的。)
生:可以把男同学或女同学的.身高加起来,再比较。
另一学生似乎心领神会:找一个男生和一个女生比较,求出相差数,再找第二、第三个男生和女生比,最后比一比相差数的办法。
......
师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?
生:女同学或不公平。
生:还得再叫一位男生上来。
师:如果不请男同学上来了,你觉得还有其它比较办法了吗?
同桌讨论。
生:求出男、女生的平均身高。......
六、教学反思:
1、情境的设置不应仅仅起到“敲门砖”的作用,也即仅仅有益于调动学生的学习积极性,还应在课程的进一步开展中自始至终发挥一定的导向作用(郑毓信语)。开课这一情境的创设,并不仅仅是为了引出平均数这一概念。从第一次、第二次简单的进行比较,学生一看就明白,当出现三人比较时,学生开始犯难了,有的学生觉得男生高,有的觉得女生高,有的认为一样高等,出现意见不一,怎么办?有的学生想到了用“切”的办法(当然这种方法不近合理,但也是学生对移多补少的形象化解释)、求和比较的方法(这一方法为求平均数打下铺垫)、还有的学生受到“移多补少”方法的影响,想出了求相差数的方法等,把学生的思维不断引向深入。通过第四次身高的比较,出现不合理的因素,逐步把学生的视线引向平均数,从而学生自发解决了求平均身高,也初步掌握了求平均数的方法。
2、新课程倡导用具体的、有趣味的、富有挑战性的素材引导学生投入数学活动。在“比身高”的情境中,让学生在一次次的观察、比较中迎接挑战,这样一个活动,在平时课堂中可以信手拈来的一个情境,在学生的争论中完成数学化的过程,并不需要花费过多的时间。在这种以情、趣开路的情境中,学生学得主动。
平均数数学教案10
教学内容:北师版小学数学五年级下册87—88页。
教学目标:
知识目标:使学生进一步理解求平均数的意义,体会平均数具有代表性,任何一个数有变化,平均数就会受影响。
数学思考与问题解决:通过计算平均数的过程,认识平均数的灵敏性。
情感态度:通过学习平均数,让学生感受数学与生活密切联系,体会数学的应用价值。
教学重点:
认识平均数具有代表性,体会一个数变化引起平均数的变化。
教学难点:体会平均数的灵敏性。
教具准备:多媒体
教学过程:
一、复习旧知,引入新课
1、我们以前学习过平均数,你能说一说平均数的意义和作用吗?可以举例说明。
2、师:生活中运用平均数的地方很多,你们看,长大后的马小跳在找工作的时候就遇到了平均数。(马小跳找工作的故事:)
招聘广告
A公司因工作需要,招聘职员1名,待遇从优,员工月平均工资1200元。
招聘广告
B公司因工作需要,招聘职员1名,待遇从优,员工月平均工资1000元。
师:马小跳选择进入A公司,一个月后该领工资了,请你们猜一猜他大约能领多少钱的工资?(学生只要是根据平均数的意义进行的猜测都可以给予肯定)
(出示工资表)
经理职员1职员2马小跳职员4职员5职员6
3500 1150 850 800 700 700 700
请学生帮忙验证马小跳是否被骗。(计算组数据的平均数)
你们认为用1200这个平均数来代表他们的平均工资水平合适吗?(预设:有的同学会认为合适,有的认为不合适)今天这节课我们就再次来探究平均数的意义,大家就会对平均数有新的认识。(揭示课题:平均数的再认识)
二、自主探究
1、理解平均数再生活中的广泛使用。
出示例1:
根据有关规定,我国对学龄前儿童实行免费乘车,即一名成年人可以携带一名身高不足1。2米的儿童免费乘车。
师:用自己的语言说一说1。2米这个数据是如何得到的?
生:可能调查了一些6岁儿童的身高,然后求平均数。
师:你们分析的很对。据统计,目前北京市男童身高平均值为119点3厘米,女童身高的平均值为118点7厘米。所以说你们解释的免票线的确定具有合理性。
2、课件出示教材第87页统计表。(少儿歌手大赛成绩统计表)
思考并回答:
这题求的是什么的平均数?
要求平均数必须要知道什么?
请学生求出3位选手的平均成绩。(先让学生分小组试着做一做,然后再汇报交流)
3、小组合作学习理解平均数的灵敏性。
师:在实际的比赛中,通常会先去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你知道这是为什么吗?
生:有的评委打的太高,有的打的太低。
师:说的很对,请按照这种记分方法重新计算3位选手的最终成绩,然后排出名次。并观察两次计算的平均数,你们有什么发现?
学生独立完成,教师巡视指导,汇报交流。
生:去掉最高分和最低分求平均数的方法更公平,更具有带表性。
生:这组数据中任何一个数发生变化,平均数都会有反应,平均数是很灵敏的。
5、巩固提升
师:你们的理解和分析很准确,的确平均数是一个很灵敏的数,它具有代表性。现在我们再来看看刚才马小跳的这张工资表,请你们帮他分析分析1200元这个平均数能很好的代表这些员工的一般工资水平吗?为什么?(不能,因为经理的'工资太高了,所以导致平均数比一般的员工工资都要高)
师:我们在数学中把一组数据中特别大或特别小的数称为极端数据,平均数会受极端数据的影响。这一组数据就是因为经理的工资这个极端数据的影响而让平均数比大部分人的工资都要高,不能很好的代表这些员工的一般工资水平。现在你有没有办法帮忙把这张招聘广告上的这个平均工资改一改,免得大家在拿到工资时都有上当的感觉。
生:可以把经理的工资去掉,再算其他员工工资的平均数。
师:这个办法真好,请大家去算一算。
学生独立计算,汇报结果。
师:刚才我们是站在马小跳的角度来分析这些员工的工资水平的,如果我们站在招聘人的角度想要吸引更多的人前来应聘还是用哪个平均数比较好?为什么?
三、训练反馈
1、淘气调查了操场上做游戏的小朋友的年龄情况:
7岁、7岁、7岁、8岁、8岁、8岁、9岁、9岁。
计算这些小朋友的平均年龄。
这时,老师也加入游戏的队伍。他的年龄是45岁,估计并计算此时做游戏的人的平均年龄。说一说你估计的理由是什么?
2、今年四个学生的父亲的年龄分别是42岁、39岁、38岁、41岁,求今年这思四位父亲的平均年龄。再过十年,年龄最大的父亲比年龄最小的父亲大多少岁?
3、某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九三班的演唱打分情况为:89分、92分、92分、95分、95分、96分、97分,从中去掉一个最高分和一个最低分,剩下的分数的平均值为最后得分。求该班的得分。
四、拓展延伸
某大商场策划了一次让利顾客的活动,凡一次购买100元以上者均可当场抽奖。奖金分配如下表。商场提醒:平均每份奖品249元,莫失良机。
五、全课小结:
这节课你学会了什么,请和大家一起分享。
你还想知道平均数的那些知识呢?
平均数数学教案11
教学内容:
第43页的例2及练习十一的3~5题。
教学要求:
1、使学生根据简单的统计表求平均数。
2、让学生体会平均数在统计学上的作用。
3、培养学生的分析、综合能力。
教学重、难点:
1、理解平均数的概念。
2、掌握求平均数的.方法。
教学用具:口算卡片、挂图等。
教学过程:
一、复习
计算:
(8+3+2+7)÷5(2+3+6+7)÷3
88÷8 279÷9
二、探究新知
1、教学例2
(1)看图,了解图意。
(2)出示统计表,了解信息。
欢乐队
单位:厘米
王强 谢明 李雷 王小飞 刘思
148 142 139 141 140
开心队
单位:厘米
杨阳 周小杰 陶晓 卢浩 蔡志
144 146 142 145 143
⑶你看到了什么信息?
王强最高,李雷最矮。
⑷怎样比量队身高?
先求出两个球队的各自的平均身高,再比较。
⑸计算:
快乐队:(148+142+139+141+140)÷5
=710÷5
=142(厘米)
开心队:(144+146+142+145+143)÷5
=720÷5
=144(厘米)
142<144,所以开心队的平均身高高一些。
明确:平均数能较好地反映一组数据地总体情况。
三、巩固练习
第44页练习十一第4题。
尝试解答,交流解答过程。
四、作业设计。
第44页练习十一第3、5题
平均数数学教案12
学习内容:
练习十一13题,教材42页例1
学习目标:
1、掌握平均数的意义和求平均数的方法
2、知道移多补少求平均数的方法
3、会根据数据列出算式求平均数
学习重点:
掌握求平均数的方法
学习难点:
正确计算平均数
学习准备:
课件,小黑板,统计表
学习流程:
一、导入
拿8枝铅笔,指4名同学,要平均分怎样分?
每人2枝,每人手中一样多,叫平均分。2是平均数
二、学习交流
1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图
(1)从图中,你知道了什么信息?
(2)他们四人怎样分才能一样多?
(3)平均分后是多少个?
2、课件展示统计图的变化过程
(1)指名展示
(2)这种方法叫什么?
点拨:移多补少
3、要求平均数,还可以怎样想?
(1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?
14+12+11+15=
(2)平均分成4份,怎么办?
524=
4、归纳
要求平均数,可以先求出( )数,再平均分几份
5、算一算你们小组的平均身高,交流展示求平均数的方法和过程
6、算出各小组的平均体重,说说你们是怎么算的'?
三、交流展示
展示自己的学习成果,说清求平均数的方法和过程
四、达标测评
1、练习十一第2题
(1)什么是最高温度?什么是最低温度
(2)你知道了哪些信息?
(3)填写统计表:本周温度记录
(4)计算出一周平均最高温度和最低温度
(5)说说你是怎么算的?
2、测量小组跳远成绩,求平均数
五、总结
通过这节课的学习活动,你有什么收获?
平均数数学教案13
教学目标
1、在具体情境中,通过实践操作和思考体会平均数的意义,能用自己的语言解释其意义,体会平均数的作用,感受求平均数是解决一些实际问题的需要,能计算平均数。
2、运用平均数的知识解释简单生活现象、解决简单实际问题,进一步积累分析和处理数据的方法,发展统计概念。
3、在活动中,进一步增强与他人交流的意识和能力,体验运用已学的统计知识解决问题的兴趣,建立学习数学的信心。
教学重点
理解平均数的实际意义,掌握求平均数的方法。
教学难点
体会平均数的特征,用平均数解释简单的生活现象。
一、谈话引入,激发兴趣
你乘车买票吗?六岁以前买票吗?你对乘车是否买票这方面的常识了解吗?我们把1.2米这条线叫“儿童乘车免票线”。看,就是这条线,经过相关部门研究决定,六岁以下儿童乘车免票线为1.2米。你知道怎么去确定这个标准吗?调查谁?如果数据来了,有高的,有矮的,如何处理?让我们一起通过这节课的学习来解决这些问题。
(设计意图:通过学生熟悉的生活实例,让学生带着问题自然进入课堂,激发学生的学习兴趣,学生体会为什么要学均数。)
二、探究新知,自主构建
(一)理解平均数的意义
上个月我校开展了保护环境,争优环保小队活动,我班成立了三个小分队:快乐队、天使队、阳光队。
1、相同数据,初步体会平均数的代表性。
出示快乐队数据:宁宁12个,丁丁12个,冰冰12个。
你能提出什么数学问题?要表示快乐队每个人的收集情况,用哪个数比较合适呢?
小结:快乐队每人都收集了12个矿泉水瓶。12能代表快乐队每个人的收集情况。
2、不同数据,深入体会平均数的意义。
出示天使队数据:小红12个,小兰14个,小丽11个,小明15个。
你看到了什么信息?你能提出什么问题?现在,每个人收集的数量各不相同,该用哪个数据代表第二小队每人的收集情况呢?14能代表吗?12呢?(如果每人同样多就好了)怎样把他们的瓶子变成同样多?
小组合作学习,用学具摆一摆。并在组内说一说你是怎么把它们变的同样多的。
交流汇报。
学情预设:
生1:可以移动瓶子,将小红移1个给小兰,小明移2个给小亮,然后每个人就一样多了。(刚才这些同学都是通过把多的瓶子移出来,补给少的同学,让每个同学的瓶子数量同样多,这种方法就叫“移多补少”。板书:移多补少)
生2:计算的方法(14+12+11+15)÷4=13,说说你是怎么想的。
(先把四个人的瓶子数合起来,再平均分给四个人)为什么要除以4?除以3可以吗?4表示什么。括号里的表示什么?关系式:总数量÷份数。板书:先求和再平分)
总结:其实无论是移多补少,还是先求和再平分,目的只有一个,那就是使原来不同的数变得——同样多。在数学上,我们把这个数叫做平均数。(板书课题:平均数)
3、追问中理解平均数的虚拟性。
继续看天使队的收集情况:13是小红收集的数量吗?是小兰收集的数量吗?是小明收集的数量吗?
13到底是什么呢?是哪个同学收集矿泉水瓶的数量吗?
小结:13是天使队平均每人收集的`数量。它代表天使队收集矿泉水瓶的一般水平。
(设计意图:由浅入深,快乐队每人收集12个,用12代表每人的收集数量;天使队每人的数量各不相同,该用哪个数代表呢?学生体会到:都不合适,如果和快乐队一样,每人同样多就好了。通过移多补少或求和平分,用一个虚拟的13来代表。这样由浅入深、层层递进,让学生慢慢体会平均数良好的代表性。在追问中让学生感受平均数的虚拟性特征,以加深对平均数意义的理解。)
(二)在具体情境中体会平均数的作用
出示阳光队收集矿泉水瓶统计表。阳光队一共收集了多少个?哪个小队能评为“环保小队”呢?和你的同桌说一说。
学情预设:
生1:快乐队收集了36个,天使队收集了52个,阳光队收集了60个,第三小队收集的多。
生2:他们人数不同,这样不公平!
生3:人数不同,应该比较平均数。怎么求阳光队的平均数呢?
学生列式:(13+11+14+10+12)÷5=12(个)
12代表什么?哪个小队能评为“环保小队”?
小结:在人数不相等的情况下,用平均数作比较更公平!
平均数13能代表天使队的一般水平,12能代表快乐队、阳光队的一般水平。(板书:反映一组数据的一般水平)
(设计意图:人数不等,哪个队能评为“环保小队”?引导学生展开辩论。在辩论中学生清楚:比总数不公平,而平均数能代表每队收集的一般水平,所以用平均数作比较更公平。从而加深对平均数作用的理解。)
(三)思考交流,理解平均数的敏感性
如果阳光小队的王林收集的瓶子变多了或变少了,平均数会怎样呢?你发现了什么?
小结:平均数就是这么敏感!这组数据中任何一个数发生变化,都能引起平均数的变化。
结合平均数观察表格,平均数处于什么位置呢?
平均数正如你们所说,可以代表一组数的一般水平,而且知道平均数在值和最小值之间,相信大家对平均数有了一定的认识。
(四)首尾呼应,引起共鸣。
相关部门是怎么确定这个儿童乘车免票线的呢?和你们想的一样,相关部门就是参照了平均身高确定免票线的。据统计:6岁男童平均身高119.3厘米,6岁女童平均身高118.7厘米。
看来,平均数的作用真不小,连确定免票线的高度都可以参照它。
(五)联系生活,体会平均数的用途。
生活中在哪儿用到过平均数呢?出示平均数资料。如果学校订做校服,用平均身高订做可以吗?平均数的用途很广泛,可是也要根据实际情况而定。
三、应用拓展,巩固提高
1、小明家每人每天月平均用水量是多少?
在严重缺水地区平均每人每天用水量约为3千克,你知道3千克的水有多少吗?
老师还给大家带来一则信息。
请选择正确答案。(2)第(1)式和第(3)式分别求的是什么呢?
小刚家平均每人每天用水88千克,严重缺水地区平均每人每天用水3千克,比较这两个数据,你有什么感受?
2、小明会遇到危险吗?
游泳池平均水深只有120厘米,小明身高130厘米,小明站在游泳池里学游泳,会不会有危险?为什么?
四、回顾反思,结束全课
谈谈你对这节课的收获,把你感受最深的一点说一说。
平均数数学教案14
教学内容:
课本第52---53页练习八第5---10题和“你知道吗”。
教学目标:
1、使学生加深对平均数意义的认识和理解,进一步掌握根据统计数据求平均数的方法,能估计一组数据的平均数;初步了解抽样估计的方法。
2、使学生经历用平均数解释简单生活现象、解决简单的平均数实际问题的过程,进一步感受平均数的意义和有关特点,提高解决平均数问题的能力,积累分析和处理数据的方法,发展数据分析观念和估计意识。
3、使学生获得应用平均数知识的成功体验,体会学习平均数在日常生活中的作用,感受数学服务于生活;能够在他人的指导下,发现数学活动中的错误并及时改正。
教学重点:
加深理解平均数的意义,解决简单的'平均数实际问题。
教学过程:
一、回顾整理,深化理解。
1、回顾、交流。
(1)引导:举出一个平均数的例子,说说怎样求几个数的平均数。
(2)揭示课题;平均数能比较好地反映一组数据的总体情况的数,它介于这组数据最多的和最少的数之间。两种方法:移多补少 先合再分。
2、联系实际,加深理解。
出示练习八第5题,引导学生读一读三小题的说法。
引导:哪些是合理的,哪些是不合理的?为什么?你是怎样想的。
小结:平均数不是指一组数据的每个数都是这个数,而是有些数据比平均数大,有些数据比平均数小。平均数是移多补少匀得同样多得到的数,它的范围在最大和最小的数之间。
二、解决问题,掌握方法。
1、做练习八第6题。
(1)思考口答。
学生阅读条件和统计图,交流知道了些什么。
引导:根据统计结果,你想到了些什么?
你估计平均每个小组植树多少课,是怎样想的?
(2)计算交流。
引导:这四个数据的平均数究竟是几棵呢,算一算,比一比,看看估计得怎么样。
交流:这“8”是哪几个数据的平均数。
2、做练习八第7题。
学生阅读题目,说说知道什么,要解决什么问题。
要求:先算出平均每个橘子重多少克,再算出这箱橘子大约多少克,是多少千克?
交流:怎样算的?
追问:这里最后解决了什么问题?为什么说“大约”多少克?
为了得出这箱橘子大约多少克,题里是怎样做的?为什么要任意取5个,不是挑选5个呢?
3、做练习八第8题。学生了解每人每场得分情况。
估计:你觉得谁平均每场的得分最高?你是怎样估计的?
学生计算各人每场得分情况,比较结果。
交流:强调求平均数可以先求出一组数据的和,再用除法计算平均数。
提问:计算的结果谁平均每场得分最高,和你估计一样吗?
追问:平均数可以怎样计算?
4、做练习八第9题。
(1)说说每个评委老师打出的分数。
口答第(1)题,估计平均得分。
了解计算比赛平均分的规则,按规则完成计算得出平均得分。
交流:选手的最后得分是怎样计算的?
(2)阅读“你知道吗”
谈话:比赛时的平均分为什么压平先去掉一个最高分和一个最低分再计算呢?
交流:你知道比赛时为什么要这样计算平均分吗?说说你知道了什么。
5、做练习八第10题。
把收集的时间填写在第10题的统计表里。 学生计算这一周做家庭作业时间的平均数,填在表格里。
提问:对于合理安排时间,你有哪些体会。
三、课堂总结,交流收获。
你对平均数的内容有了哪些更深的认识?还有哪些新的收获和体会。
平均数数学教案15
教学内容:
教材第90页例1、第92页“做一做”第1题和第93页练习二十二的1-3题。
教学目标:
1、结合具体情境,在动手操作、观察、讨论等活动中理解平均数的意义,知道求平均数的方法。
2、初步学会简单的数据分析,灵活运用平均数相关的知识解决简单的实际问题,进一步体会统计在现实生活中的作用。
3、在轻松愉快的活动中体会运用知识解决问题成功的愉悦,增强学生学习数学的兴趣和学好数学的自信心。
重点难点:
1、理解平均数的意义,理解并掌握求平均数的方法。
2、理解并掌握求平均数的方法。
教学准备:
多媒体课件,有关平均数的数据统计表。
情景导入:
师:同学们,我今天带来了一些我们生活学习中的信息,请看屏幕。(课件出示信息)
(1)四(1)班踢毽子的4位选手平均每人1分钟踢50个。
(2)一年级第一小组的3位男生的平均身高是120厘米。
(3)三年级平均每个班开展了3项课间活动。
(依次出示信息,分别请3名同学读题,其他同学认真的看屏幕并倾听)
师:同学们,在这些信息中都用到了同一个词,你们发现了吗?
生:都有“平均”这个词。(课件再次用红色显示信息中的“平均”)
师:对,(指着50个,120厘米,3项,课件同时用粉色显示这些数据)这些数据都是“平均数”。(板书课题:平均数)
师:看到这个课题,你想通过今天的学习了解那些知识?
生:平均数是一个什么数?
生:平均数与平均分有什么关系?
生:怎样计算平均数?
生:平时在生活中那些地方常用平均数?
……
师:让我们带着这些问题来研究今天的知识。
[设计意图:选取学生熟悉的数学信息,让学生感知平均数,激发学习兴趣,培养问题意识,感受数学与生活的密切联系。]
新课讲授:
(一)平均数的意义
通过课前的导入,大家说一说什么叫平均数?学生讨论后交流。师归纳:平均数是指在一组数据的平均值。
(二)平均数的求法
教学例:出示例1情景图。
1、分析问题
师:这个月我校开展了保护环境,争优环保小卫士的活动,大家看看这是我班一个小队同学收集的矿泉水瓶。课件出示相关情景和统计表,学生读题。
师:你看到什么信息?
生:我知道了这个小队有四位同学。
生:我知道了小红收集了14个、小兰12个、小亮11个、小明15个。
生:要求平均每个人收集了多少个矿泉水瓶?
师:什么是平均?
生:平均就是指每个人一样多。
师:那大家想想,应该怎样求这个小队平均每人收集多少个瓶子?
生:可以通过画图表来解决,每个人先都画出11个,然后将剩下的'8个平均分下去,每人就是13个了。
生:把他们每个瓶子用一个圆圈表示,再进行移动,使每个人的瓶子一样多为止。
生:可以把所有的瓶子加起来,再平均分成4份,每份就是平均每个人收集的瓶子数量。
2、方法总结
师:请看屏幕(课件出示主题图),这是他们4人收集瓶子的简单统计图,你能发现什么数学信息吗?
生:他们不一样多。
师:那怎么办呢?
生:可以通过移动瓶子来解决。
师:怎样移动?
生:将小红移1个给小兰,小明移2个给小亮,最后每个人都是一样多。同时利用书本等器材进行简单操作,并交流方法。
师:通过刚才的操作,想一想:你为什么要把小红的瓶子移给小兰?
生:小红的多,小兰的少。
师:他是把多的移给少的,这样每个人收集的瓶子数量就怎么样了?
生:同样多。
师:刚才这几位同学都是通过把多的瓶子移出来,补给少的同学,让每个同学的瓶子数量同样多,这种方法就叫“移多补少法”。
(板书“移多补少法”)
师:还有没有其他的方法呢?请说一说。
生:有,可以用平均分的方法来解决。
师:怎么算呢?
生:先算他们的总数再除以4。
师:你可以把你的想法告诉大家,并把算式写在黑板上吗?
生:(14+12+11+15)÷4=52÷4=13(个)
师:指着算式(14+12+11+15)÷4,我们来看看这位同学的方法?请你说说你是怎么想的。
生:我是先把他们4个人收集的瓶子总数加起来,再平均分成4份或我是先算他们一共收集了多少个瓶子,再算平均每个人收集多少个瓶子。
师:听懂了吗?谁和他的方法一样?再给大家说一说。(学生交流)
师:会用这种方法的同学请举手?我们一起来算一算,结果是多少,学生在练习本上列式计算。
师:52表示什么?
生:4个人收集瓶子的总数。
师:是呀,是把小红他们4人收集瓶子的总数量先求出来,是52个。(教师板书“总数量”)
师:为什么要再除以4?
生:把总数平均分给4个人,就是求出了平均每人收集了13个。
生:平均分成4份,4表示总份数。
师:4就是总份数,除以4表示平均分成4份,这13个就是他们每个人收集瓶子数量的平均数。(板书“平均数”)
师:那么用式子怎么表示呢?
生:平均数=总数量÷总份数。
师:真不错,大家鼓励一下,向他学习。师小结:我们用“移多补少”的方法和计算的方法都得到了平均数是13个。板书:平均数的求法:(1)移多补少。(2)平均数=总数量÷总份数。
[设计意图:联系学校生活实际,利用活动课创设问题情境,引发探究兴趣,在学生理解平均数意义的基础上,让学生通过动手算一算,发现求平均数的方法,经历数学概念、方法形成的过程,使学生初步理解了求平均数的两种不同方法。]
课堂作业:
1、完成教材第92页“做一做”第1题。理解怎样使每个花瓶里的花相等是求平均数。学生独立完成后交流。
2、完成教材第93页练习二十二的第1题。学生独立完成后集体订正。
课堂小结:
通过今天这节课,大家有什么收获?小结:平均数是一组数据平均水平的代表,我们可以用“移多补少法”和平均分的方法算出平均数是多少。
课后作业:
1、完成教材第93页练习二十二第2-3题。
2、完成练习册本课时练习。
【平均数数学教案】相关文章:
数学教案-平均数08-17
平均数数学教案05-27
数学教案-求平均数08-16
数学教案-平均数(一)08-16
数学教案-平均数的综合运用08-16
平均数数学教案【锦集15篇】05-30
平均数08-17
平均数教案08-17
平均数(一)08-16
求平均数08-16