现在位置:范文先生网>教案大全>数学教案>三角形数学教案

三角形数学教案

时间:2024-06-04 10:34:43 数学教案 我要投稿

三角形数学教案

  作为一名教学工作者,就不得不需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。快来参考教案是怎么写的吧!以下是小编帮大家整理的三角形数学教案,仅供参考,大家一起来看看吧。

三角形数学教案

三角形数学教案1

  教学目标:

  1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。

  2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。

  3、通过对问题的探索研究,培养学生分析问题和解决问题的能力以及思维的灵活性。

  4、培养学生大胆猜想、合理论证的科学精神。

  教学重点:

  探索并运用三角形中位线的.性质。

  教学难点:

  运用转化思想解决有关问题。

  教学方法:

  创设情境——建立数学模型——应用——拓展提高

  教学过程:

  情境创设:测量不可达两点距离。

  探索活动:

  活动一:剪纸拼图。

  操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形。

  观察、猜想:四边形BCFD是什么四边形。

  探索:如何说明四边形BCFD是平行四边形?

  活动二:探索三角形中位线的性质。

  应用

  练习及解决情境问题。

  例题教学

  操作——猜想——验证

  拓展:数学实验室

  小结:布置作业。

三角形数学教案2

  教学目标

  1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

  2、培养学生观察能力、动手操作能力和类推迁移的能力。

  3、培养学生勤于思考,积极探索的学习精神。

  教学建议

  教材分析

  本小节内容是三角形面积的计算。是在学生已经掌握了三角形的特征和平行四边形面积计算的基础上,运用转化思想和方法来学习的。牢固掌握这种解决问题的思想和方法,是将来学习数学的一条捷径。

  本小节教材分为三个部分。第一部分是用数方格的.方法求出三角形面积。通过数三个不同类型三角形的面积,使学生真正体会到这种方法太麻烦,不易数对,盟生一种探求更好、更简捷的计算公式,进一步调动学生继续探索的积极性。第二部分是用转化的方法推导出三角形面积的计算公式。用两个完全一样的直角三角形,锐角三角形和钝角三角形通过平移、旋转分别拼摆成平行四边形,通过发现每个三角形与拼成的平行四边形(或长、正方形)的面积关系,从而渗透“三角形面积=底×高÷2”的计算公式。第三部分是应用三角形面积公式计算。

  本节课的教学重点是理解掌握三角形面积的计算公式及面积计算公式的应用。难点是三角形面积公式的推导过程。

  教法建议

  教师要先复习三角形的特征,能画出并指出各种不同类型三角形的底和高,再复习平行四边形面积公式的推导过程,为解决三角形面积公式做铺垫。

  在推导三角形面积计算公式之前,先用数方格求面积的方法,然后引导学生联想平行四边形面积公式的推导过程,启发提问:能不能也把今天学习的三角形转化成我们学过的其它图形?首先利用书后材料剪下不同类型的三角形,按照书中安排的层次,先研究把两个直角三角形转化成学过的不同图形,重点解决为什么不把它们转化成三角形的道理。这样在研“两个锐角三角形”时,就不会转化成没学过面积公式的图形,第二层中要注意解决旋转的问题,为了便于理解,可借助课件,形象地展现在学生面前。第三层次则由学生自主探索完成,通过以上(三种不同情况)转化前后的对比,得出三角形的面积计算公式。并重点提问为什么要除以2?由于已有平行四边形面积计算公式的基础,关于三角形面积公式和字母公式就可由学生自己解决了。

  本节课要注重发挥学生的主体地位,注意培养学生的动手能力,在操作中学会新知。

三角形数学教案3

  教学内容

  P84~85例子1~2

  教学目标

  1理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

  2培养学生观察能力、动手操作能力和类推迁移的能力.

  知识重点

  理解三角形面积计算公式,正确计算三角形的面积

  教学难点

  理解三角形面积公式的推导过程

  学生准备的学具

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

  教学过程

  教学方法和手段

  引入

  1.出示平行四边形

  提问:

  (1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)

  (2)底是2厘米,高是1.5厘米,求它的面积。

  (3)平行四边形面积的计算公式是怎样推导的?

  2.出示三角形。三角形按角可以分为哪几种?

  3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

  教师:今天我们一起研究“三角形的面积”(板书)

  教学过程

  开始探索

  (一)推导三角形面积计算公式.

  1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.

  2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  3.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

  4.用两个完全一样的锐角三角形拼.

  (1)组织学生利用手里的学具试拼.(指名演示)

  (2)演示课件:拼摆图形(突出旋转、平移)

  教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  5.用两个完全一样的钝角三角形来拼.

  (1)由学生独立完成.

  (2)演示课件:拼摆图形

  6.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  7、引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的.面积等于拼成的平行四边形面积的一半。(同时板书)

  ③这个平行四边形的底等于三角形的底。(同时板书)

  ④这个平行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

  板书:三角形面积=底×高÷2

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  ―――――――――――――――――――――――

  教学例1

  红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

  1.由学生独立解答.

  2.订正答案(教师板书)

  课堂练习

  P85做一做

  P86~87练习16

  小结与作业

  课堂小结

  课后追记

  本课用了两个相同的三角形拼成一个平行四边形,化未知为已知,一定要让学生亲自来拼摆,把可以目前可以计算和暂时无法计算的摆放方法都摆出来,再进行区分,选择可以计算的方法,虽然会占用一点课堂时间,但是学生记忆深刻,对公式的理解也比较深刻。动手能力也得到一定的加强

  这个方法在以后的求面积上仍然会应用到,因此有必要让学生多动脑筋想想如果割补,化未知为已知。

三角形数学教案4

  教学内容:

  人教版义务教育教科书五年级上册91页《三角形的面积》,92页例2及练习题。

  教学目标:

  1、理解并掌握三角形面积计算公式,能够应用公式解决一些简单的问题,培养应用已有知识解决新问题的能力。

  2、经历探索三角形面积计算方法的过程,培养学生观察、操作、推理、概括的能力,体会转化的思想。

  3、在解决实际问题的过程中体验数学与生活的联系,进一步培养学生学习数学的兴趣。

  教学重点:

  三角形面积公式的推导及应用公式进行计算。

  教学难点:

  理解三角形面积的推导过程,感受转化的数学思想和方法。

  教学准备:

  教师准备:多媒体课件、红领巾、实验记录单。

  学生准备:各种完全相同的三角形。

  教学过程:

  (一)复习铺垫,创设情境。

  1、复习旧知,做好铺垫。回忆平行四边形面积计算公式及推导过程。

  【复习铺垫是小学数学重要的环节,对于引起学生对已有知识的回忆,帮助学生更有效地参与到新知的探究过程中有着重要的作用。】

  2、猜谜语:一块布料三角样,颜色鲜红真漂亮。少先队员才能有,每天佩戴不要忘。学生猜谜。

  3、创设情境:要想做这样的一条红领巾,需要多少布呢?也就是计算什么?

  4、揭示课题。

  【设计意图:在这个环节中利用学生熟悉的红领巾实物猜谜,以及做一条红领巾要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。】

  (二)动手操作,探索交流。

  活动一:小组合作拼一拼、摆一摆。要求:请你用手中两个完全一样的三角形拼一拼,看看能拼成我们以前学过的哪种图形,快来试一试吧!小组动手操作并展示交流。

  活动二:观察讨论,完成下面的实验记录。实验记录两个完全一样的三角形可以拼成平行四边形。

  通过观察我们发现:

  1、三角形的底和拼成的平行四边形的底( ),三角形的高和拼成的平行四边形的高( )。

  2、拼成的平行四边形的面积是三角形面积的( ),三角形的面积是拼成的平行四边形面积的( )。

  3、因为,平行四边形的面积等于( )X( ), 所以,三角形的面积=( )学生根据要求进行小组活动,然后交流汇报。

  【设计意图:本环节让学生充分经历了操作、观察、推理、概括等数学活动与数学思考,发现了三角形的面积计算公式。在合作探究过程中,把自主学习的权力还给了学生,培养了学生的动手能力和分析能力,顺利实现原有数学知识结构的扩充和新知结构的建立,使学生真正感受到数学方法的内在魅力。】

  (三)运用公式,解决问题。

  出示例2:学校计划做的红领巾的.底是100㎝,高是33㎝,红领巾的面积是多少?

  (1)学生尝试完成。

  (2)交流做法和结果。

  【设计意图:本环节的设计既解决了课前的问题,还让学生感知到数学学习能够方便生活,有效的提高学生学好数学的自信心。】

  (四)巩固应用,举一反三。

  第一关:辨一辨。

  1、两个面积相等的三角形可以拼成一个平行四边形。

  2、三角形的面积等于平行四边形面积的一半。

  3、用两个完全一样的直角三角形可以拼成一个长方形,也可以拼成一个平行四边形。

  第二关:指出下面三角形的底和高,并说出怎样计算它的面积。 (单位:厘米)

  第三关:制作两个这样的交通警示标志,需要多少铁皮?第四关:求出下图中三角形和平行四边形的面积。你发现了什么?

  【设计意图:本环节我依据教学目标和学生在学习中存在的问题,采用智慧闯关的形式设计有针对性、层次分明的练习题组,激发了学生的学习兴趣,让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。同时也强化了本节课的教学重点。】

  (五)质疑总结,反思评价。

  课件出示:今天你有什么收获?

  (2)你要提醒大家注意什么?

  (3)你感觉自己今天表现如何?

  (4)我还想说……

  【设计意图:让学生以同桌为单位,每位学生充分发言,交流学习所得。在评价方面,先让学生自我评价,接着让学生互相评价,增强学生学习数学知识的自信心和荣誉感,同时培养了学生敢于质疑、勇于创新的精神。】

  五、板书设计。

三角形数学教案5

  教学建议

  知识结构

  重难点分析

  本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

  本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.

  教法建议

  1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

  2.对于定理的'证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

  教学设计示例

  一、教学目标

  1.掌握中位线的概念和三角形中位线定理

  2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

  3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

  4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

  5. 通过一题多解,培养学生对数学的兴趣

  二、教学设计

  画图测量,猜想讨论,启发引导.

  三、重点、难点

  1.教学重点:三角形中位线的概论与三角形中位线性质.

  2.教学难点:三角形中位线定理的证明.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、常用画图工具

  六、教学步骤

  【复习提问】

  1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

  2.说明定理的证明思路.

  3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?

  分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

  4.什么叫三角形中线?(以上复习用投影仪打出)

  【引入新课】

  1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

  (结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)

  2.三角形中位线性质

  了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

  如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

  三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

  应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

  由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

  (l)延长DE到F,使 ,连结CF,由 可得AD FC.

  (2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.

  (3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.

  上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .

  (证明过程略)

  例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

  (由学生根据命题,说出已知、求证)

  已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

  求证:四边形EFGH是平行四边形.‘

  分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

  证明:连结AC.

  ∴ (三角形中位线定理).

  同理,

  ∴GH EF

  ∴四边形EFGH是平行四边形.

  【小结】

  1.三角形中位线及三角形中位线与三角形中线的区别.

  2.三角形中位线定理及证明思路.

  七、布置作业

  教材P188中1(2)、4、7

三角形数学教案6

  一、活动目标:

  1、通过认识、操作和游戏活动,使幼儿初步了解三角形的基本特征,激发幼儿对图形的兴趣,并学会目测分类。

  2、发展幼儿的手工操作能力和思维的敏捷性。

  3、通过各种感官训练培养幼儿对计算的兴致及思维的准确性、敏捷性。

  4、喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。

  二、活动准备:

  1、三角形教具、三角形拼图学具人手一套,圆形、三角形、正方形的头饰每人一个,相应的实物若干。

  2、运用三角形、圆形和正方形等几何图形组成画布置,用几何图形积木作幼儿的椅子。

  三、活动组织:

  1、出示三角形平面娃娃,引导幼儿学习兴趣,指导幼儿观察、分析,启发幼儿说出并记住图形名称和基本特征。

  2、请大班幼儿扮演三角形娃娃,由他向大家介绍自己的朋友(形状与三角形相同的实物),然后让幼儿帮助三角形娃娃找朋友,巩固对三角形的`认识。

  3、出示用三角形拼成的各种物体,引导幼儿观察这些物体是哪些几何图形组成的。

  4、用大小不同的三角形拼成各种图案,鼓励幼儿大胆想象,并粘在作业纸上,然后把作品挂在活动室里作装饰,教师和幼儿一起欣赏。

  四、活动延伸:

  鼓励幼儿回家以后用小棍继续练习拼图。

三角形数学教案7

  教材分析

  1、本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

  2、本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

  学情分析

  1、学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的`特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

  2、在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

  教学目标

  知识技能:1、理解掌握等腰三角形的性质。

  2、运用等腰三角形的性质进行证明和计算。

  数学思考:1、观察等腰三角形的对称性,发展形象思维。

  2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

  情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

  教学重点和难点

  重点:等腰三角形的性质及应用。

  难点:等腰三角形的性质证明。

三角形数学教案8

  活动目标

  1、让孩子们知道三角形的特征。

  2、提高孩子们的握力。

  3、培养孩子们的组织力和创造力。

  活动准备 三角形的物品, 铁砧, 彩泥, 签字笔

  活动内容

  [导入]1.通过唱“形状歌”来提高孩子们的.注意力。

  - 做个圆形 做个圆形

  我们用手做个圆形

  圆形 圆形 做个圆形

  我们用手做个圆形

  做个方形 做个方形

  我们用手做个方形

  方形 方形 做个方形

  我们用手做个方形

  [展开]1、找一找周围的三角形物体。

  - 我们教室里有哪些东西是三角形的?

  - 一起来观察老师准备的三角形物品。 (三角铁, 三明治, 三脚架, 三角帽)

  2、研究一下三角形的物品,它们有什么共同特征。

  - 观察三角铁,三明治,三脚架和三角帽,它们有什么共同点? (尖尖的,末端很尖锐,摸起来刺刺的。)

  3、用铁砧制作三角形。

  ① 用铁砧做出三角形的模子。

  ② 在模子里面用彩泥填满。

  ③ 填满后把模子取下来,研究三角形的彩泥。

  ④ 把三角形的物品用铁砧做出来,并用粘上彩泥。

  4、用活动纸中的三角形装饰出各种图案。

  ① 说说在我们周围有哪些东西是三角形的。

  ② 用活动纸中的三角形物品画出各种图画。

  ③ 说说你画的是什么。

  [结尾]1、让孩子们把自己的作品介绍给朋友们

  2、总结活动

三角形数学教案9

  一、教学内容:

  1、三角形的特性

  包括:认识三角形、三角形的稳定性、三角形两边之和大于第三边

  2、三角形的分类

  包括按角分类和按边分类

  3、三角形的内角和

  4、图形拼组

  二、教学目标:

  1.使学生认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是180°。

  2.使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。

  3.联系生活实际并通过拼摆、设计等活动,使学生进一步感受三角形的特征及三角形与四边形的联系,感受数学的转化思想,感受数学与生活的联系,学会欣赏数学美。

  4.使学生在探索图形的特征、图形的变换以及图形的设计活动中进一步发展空间观念,提高观察能力和动手操作能力。

  三、总体印象:

  1、与解决实际问题相联系。

  本单元的许多内容都是从生活实际中引入,在解决问题的过程中需要用到数学知识来解释、解决问题时出现的。如:篮球架等为什么做成三角形?这里需要用到“三角形具有稳定性”来解释、小明上学走哪条路最近?需要用到“三角形两边之和大于第三边”这个数学知识。学生在解决问题的过程中学习、探索数学知识,学得非常有兴趣!

  2、让学生在动手操作中掌握知识。

  这是本单元最突出的一个特点。“要让学生动手做数学,而不是用耳朵听数学”。概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。例如,三角形三条边之间的关系、三角形的内角和、三角形与四边形的联系等,均是让学生在操作、探索中发现,形成结论。

  3、加强对图形之间的关系的'认识。

  本单元增加了“图形的拼组”,让学生再次感受三角形的特征及三角形与四边形的联系与区别,从而了解数学知识之间的内在联系。

  四、教学思考

  教学要体现教材的编写意图,渗透思想。

  1、加强概念教学

  第一学段对图形的认识停留在直观层面上,从第二学段开始要更突出概念的本质特征。如:第一课时:《三角形的认识》对三角形的定义是:由三条线段围成的图形(每相邻居两条线段的端点相连)叫做三角形。教师要引导学生领会“围成”的意思。

  2、进行充分的实践、探索活动。

  在实际教学过程中要让学生进行充分的实践、探索活动,让学生在活动中认识图形、体会图形特征、把握知识的本质。如:三角形的内角和是180度,应让学生进行操作、验证,才能让他们有深刻体会。三角形两边之和大于第三边也要让学生利用小木棒进行相应的操作。而且,要让学生充分展开探索活动,用多种方法来证明。如:刚才所说的三角形内角和除了教材展示的两种验证方法:测量、拼摆,还可以通过折叠来证明。(见录像)

  3、培养空间想象能力、认识图形之间的联系。

  对空间想象能力、空间观念的培养不能停留在第一学段的直观层面上。如:用几个相同的三角形能拼出哪些四边形?让学生更清楚三角形与四边形之间的关系,为学生在五年级时学习求各种平面图形的面积作出了很好的铺垫作用。教学时要有整体观念。又如:用七巧板拼三角形、用三角形创造美丽的图案等,教师都应重视,开展好这些活动。

  4、在生活情境中运用知识。

  在生活情境中学习相应的数学知识,学生学习会更有动力、更有兴趣!如:在三角形稳定性的学习当中,让学生多举一些实际例子。三角形两边之和大于第三边,可以让学生猜一猜:姚明一步能走3米远吗?等等。学生会觉得很有意思!对知识的理解也会更加深刻!

  5、要注意的几个问题:

  (1)《三角形两边之和大于第三边》操作认识上有困难。如:两边之和等于第三边表面上看上去是能构成一个三角形,但是实际上两边不可能完全连接,肯定是有空隙的,但学生不承认。教师课前可以先说明存在这种情况。

  (2)关于作三角形的高。

  习题中出现根据三角形指定的一条底作相对应的高,学生掌握起来有一定难度,教学时要留出充分时间让学生学习。作钝角三角形的三条高,因为有延长线出现,参考书上说不作要求。我们觉得如果有能力的话,可以让学生先进行尝试,不要求每个同学掌握。这个问题以后还是逃避不了的,可以在这里先作一下铺垫。

三角形数学教案10

  一、教学目标

  1、使学生了解直角三角形相似定理的证明方法并会应用。

  2、继续渗透和培养学生对类比数学思想的认识和理解。

  3、通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。

  4、通过学习,了解由特殊到一般的唯物辩证法的观点。

  二、教学设计

  类比学习,探讨发现

  三、重点及难点

  1。教学重点:是直角三角形相似定理的应用。

  2。教学难点:是了解直角三角形相似判定定理的证题方法与思路。

  四、课时安排

  3课时

  五、教具学具准备

  多媒体、常用画图工具、

  六、教学步骤

  [复习提问]

  1、我们学习了几种判定三角形相似的方法?(5种)

  2、叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写)。

  其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)

  3、什么是“勾股定理”?什么是比例的合比性质?

  【讲解新课】

  类比判定直角三角形全等的“HL”方法,让学生试推出:

  直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

  已知:如图,在中,

  求证:

  建议让学生自己写出“已知、求征”。

  这个定理有多种证法,它同样可以采用判定定理1、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。应让学生对此有所了解。

  定理证明过程中的“都是正数……其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。

  例4已知:如图……当BD与、之间满足怎样的关系时。

  解(略)

  教师在讲解例题时,应指出要使∽。应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边。

  还可提问:

  (1)当BD与、满足怎样的关系时?(答案:)

  (2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)

  (答案:或两种情况)

  探索性题目是已知命题的结论,寻找使结论成立的`题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式。”

  这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度。

  [小结]

  1、直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用。

  2、让学生了解了用代数法证几何命题的思想方法。

  3、关于探索性题目的处理。

  七、布置作业

  教材P239中A组9、教材P240中B组3。

三角形数学教案11

  教学目标

  通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。

  教学重难点

  三角形的内角和

  课前准备

  电脑课件、学具卡片

  教学活动

  一、计算三角尺三个内角的和。

  出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?

  引导学生说出90度、60度、30度。

  出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。

  提问:请同学们任选一个三角尺,算出他们三个角一共多少度?

  学生计算后指名回答。

  师:三角尺三个角的和是180度。

  二、自主探索,解决问题

  提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上

  任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。

  学生小组活动,教师了解学生情况,个别同学加以辅导。

  全班交流:让学生分别说出三个角的度数以及它们的和。

  提问:你发现了什么?

  :任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。

  三、试一试

  要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。

  教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以

  计算的结果为准。

  四、巩固提高

  完成想想做做的题目。

  第1题

  学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。

  第2题

  指导学生看图,弄清拼成的三角形的三个内角指的.是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。

  第3题

  通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。

  第4、5、6

  引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。

三角形数学教案12

  教学内容:

  新课程实验教科书小学数学四年级下册85页例5。

  设计思路:

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。先让学生思考直角三角形的另外两个角是什么角,再设疑让学生判断一个三角形中有两个角是直角,引出课题。接着让学生猜想是不是所有的三角形的内角和是180°。学生通过用量的方法得出三角形的内角和大约是180°(存在误差),再引导学生通过剪拼、折拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。接着引导学生理解将一个长方形按对角线剪成两个直角三角形,让学生发现可以用360度除以2推算所有直角三角形的内角和是180度。这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力。让学生体验数学学习的快乐。

  教材分析:

  依据是《新课程标准》(实验稿)。新课标中,分两个阶段分层写进了“三角形内角和”:1、在第二学段“几何与图形”第七条中说:“通过观察、操作了解三角形内角和是180°”;2、在第三学段“空间与图形”第4条第3点中说:“利用同位角、对角相等的基本事实证明三角形的内角和定理。

  三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  学生分析

  1、四年级的学生已经有了探索三角形内角和的知识(或技能)基础。如掌握了锐角、直角、钝角、平角的概念;知道直角或平角的度数、会用量角器度量角的度数。认识长方形、正方形,知道他们的四个角都是直角,认识了三角形,知道了三角形根据角分,有锐角三角形、直角三角形和钝角三角形。已经知道了等腰三角形和正三角形。

  2、学生的起点。已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。

  教学目标:

  1、通过量、剪、拼等方法,探索和发现三角形内角和是180°。

  2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

  3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

  教学重点:引导学生发现三角形内角和是180°

  教学难点:用不同方法验证三角形的内角和是180°

  教具学具准备:课件、学生准备不同类型的三角形各一个,长方形。剪刀、量角器。

  教学过程:

  一、创设情景,引出问题

  导语

  师:第几次来这里上课?在这里上课和在教室有什么不一样吗?

  (交代话筒的分布)

  今天有很多听课的老师都想了解你,能向老师介绍你自己吗?

  你介绍了自己的姓名

  你介绍的内容更丰富了,有姓名、岁数。

  你的声音很响亮,有更响亮的吗?

  看来我们虹桥镇一小四一班的同学真的很棒。

  可以上课了吗?上课。同学们好

  我们先来猜个谜语,请大家齐读一遍。

  猜谜语:(课件)

  形状似座山,稳定性能坚

  三竿首尾连,学问不简单(打一几何图形)三角形(板书)

  1、小游戏

  猜三角形(课件)

  师:这个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?

  师:被遮住的两个角是什么角?

  生:两个角都是锐角。

  师:如果有人说被遮住的两个角中还有一个角是直角,你们觉得对吗?为什么?

  (这个环节容易忘记)

  生:在一个三角形里面不可能有两个直角

  生:这样就不是三角形了

  生:三角形的内角和是180度,如果有两个角是直角,另一个角不是没有度数了。

  (让学生拿出直角三角板上来说明三角形的内角和是180°)

  2、引出课题

  这就是三角形里角的奥秘,这节课我们就来研究有关三角形角的知识”三角形内角和“。(板书课题)

  二、探究

  1、三角形的内角、内角和

  (1)三角形内角(课件)

  三角形里面的三个角都是三角形的内角。为了方便研究我们把每个三角形都标上内角∠1、内角∠2、内角∠3。

  (2)三角形内角和

  师:内角和指的是什么?

  生:三角形的三个角的度数的和,就是三角形的内角和。

  (多让几个学生说一说)

  2、猜一猜

  师:这个三角形的内角和是多少度?

  生:180°

  师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

  生:是。

  生:不是

  预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

  预设2师:可以用什么方法验证三角形的内角和是180度。

  生:量一量。(量角器)

  师:用量角器度量,你能说的更明白一些吗?

  3、量一量

  (1)出示要求(课件)

  师:(我在信封里为大家准备了三个不同的三角形和一张表格)三个三角形和一张表格,四人小组合作,你们觉得怎样分工度量的速度会最快?

  生:每一个同学量一个三角形的内角度数另一个人记录。

  师:量的同学:量出的每个角的度数,把每个角的度数写在三角形里面。三个角的度数都量好后,再汇报给记录的同学登记。(还要在实物投影上例举)

  师:记录的同学:要监督小组其他同学量的是不是很准确、真实,不能改掉小组成员度量出来的数据。(开始)

  量一量、算一算不同类型三角形内角和各是多少度?

  (2)小组合作探究

  (大部分的同学已经量好了。没有量好的小组,先停下来。让我们一起来分享其他同学的测量成果。我这里收集到了两个小组的测量记录表,这张是那个小组的?请这个小组的组长带上三个三角形上来给大家介绍他们组的测量情况。请你给大家介绍你们组测量的三角形的形状,每个角的.度数和内角和是多少?)学生汇报的时候教师板书。

  (3)汇报交流

  测量记录表

  三角形的形状

  每个内角的度数

  三个内角和

  (实物投影)选择有代表性的作品展示

  学生的汇报中可能会出现答案不是惟一的情况。如180°179°181°等

  (板书)

  (分别对这几个数进行统计)

  我们来统计测量出来是多少度的同学最多。例如、179°的有2人,180°的有13人,181的有1人等等。(度量结果是181度的同学请举手,179度的请举手,还有不一样的吗?)

  师:观察这些测量结果你能发现什么?

  生:都在180°左右。

  生:从大到小的顺序。

  4、剪拼、折拼

  (1)剪拼、撕拼

  (学生的注意力要集中)

  预设1师:用度量的方法验证,得到的结果不统一,有没有比度量更精确的验证方法?(让学生多思考),也就是不用度量你能用别的方法验证吗?

  预设2师:不着急,看黑板(板书),内角和就是(~~)

  生:就是把内角合并在一起。

  度量的验证方法是分别量出每个角的度数,分成单个研究。

  如果把三个角合在一起考虑呢?你还有什么验证方法?

  求三角形内角和就是把三角形的三个角和起来考虑问题,三个角和起来是什么角?三个角和起来是多少度的角,你有办法吗?

  预设3师:如果三角形的内角和是180度,180度的角就是我们以前学过的平角

  把三角形的三个角拼起来是不是一个平角?

  有什么方法能把三角形的三个内角合并在一起?

  预设4师:我在电脑里收索一个验证方法。(课件演示)

  生:把三角形的三个角剪下来,再拼成一个角。

  师:你能说的更明白一些吗?

  让学生在实物投影上演示(可以把剪下来的三个角,用固体胶固定在白色的长方形卡纸上。)

  师:你们觉得他得方法可行吗?

  要求

  请大家四人小组合作,用他的方法验证。

  全班小组操作

  大部分的小组已经拼好了,还没拼好的小组先停一停。我们一起来分享其他小组的验证结果

  汇报交流

  预设1师:(把学生的作品展示)把三个角拼在一起你们有什么发现?

  (你能看出这是用什么三角形拼成的?为什么?三个角拼在一起你有什么发现?)

  预设2让学生上来介绍

  师:你怎么做?发现了什么?(课堂纪律)

  让学生展示不同类型的三角形拼成一个平角。说明三角形的内角和是180°

  (板书:剪拼一个平角)

  课件演示

  师:这种验证方法是谁第一个发现的,我们用掌声来祝贺他。

  (2)折拼

  师:用剪拼的方法是比较精确,美中不足就是把三角形给剪了或是撕了,有没有更好验证方法?

  预设1生:用折的方法

  小组合作把剩下的一个三角形的折成一个平角。

  展示

  师:要把三角形的三个角折成一个平角靠我们现在的经验是有点难。看电脑是怎样折的。

  课件演示

  师:先要找到两条边的中点,用线连接起来,再按这条线折起来。再把另外的两个角折起来就可以了。

  预设2学生不会想到用折的方法。

  师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)

  5、计算,推理(看学生基础选用)

  A、将一个长方形按对角线剪成两个完全一样的直角三角形。因为长方形的四个角都是直角,长方形的内角和是360°,所以剪成后的直角三角形的内角和是180°

  (回家以后,同学们可以剪一个三角形折一折,我在信封里还为大家准备一个长方形彩色卡纸,如果将一个长方形剪成两个直角个三角形)

  师:你发现了什么?

  生:直角三角形的内角和是180°

  师:你能说得更明白一些吗?

  师:你能算出这个直角三角形的内角和吗?

  生:90°乘4等于360°,在把360°除以2就等于180°(板书)

  师:我们给这种验证方法娶个名字?(推算)

  师:这个直角三角形可以用推算的方法验证,是不是所有的直角三角形都可以用这种方法推算呢?

  (课件演示)

  师:推算的验证方法是谁先发现的,我们也对他表示祝贺。

  小结

  师:这节课通过我们班同学共同合作,我们用了几种验证方法。

  师:撕拼和折拼方法有什么相同点?(注意说话有说服力)

  生:都是把三角形的三个角拼成一个平角。

  师:为什么度量的方法会得到不同的结果?

  师:可能是度量的时候有误差,如果准确测量结果就是180°(把不是180°的数据擦掉)

  数学文化

  师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

  6、解疑

  为什么在一个三角形中不可有两个角是直角或两个角是钝角?

  生:因为三角形的内角和是180°

  反思:在活动中,我没有像过去那样告诉学生怎样去做,让学生做机械的操作员,也不是随意放开,让学生盲目地做,而是把放与引有机结合,鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。

  三、应用三角形的内角和解决问题

  我们就用这个结论来解决问题

  1.看图求出未知角的度数。

  180°-55°-65°180°-(55°+65°)

  =125°-65°=180°-120°

  =60°=60°

  刚才是已知两个内角的度数,求另一个内角的度数。如果只告诉你一个内角的度数,你会求出另外两个内角的度数吗?如果一个内角的度数也不告诉你,你能知道三个内角的度数吗?

  2、请说出下列每个三角形每个角的度数。

  180°÷3=60°180°-96°=84°180°-90°-40=50°

  84°÷2=42°90°-40°=50°

  3、判断(请大家用手语来判断)

  (1)一个三角形的三个内角度数是:80°、75°、24°。()

  (2)大三角形比小三角形的内角和大。()

  教师准备两个大小不一样角度一样的三角形

  (3)两个小三角形拼成一个大三角形,大三角形的内角和是360°()

  师:你能改正吗?

  生:两个小的三角形拼成一个大四边形,四边形的内角和是360。

  (准备两个三角形刚好可以拼成四边形)

  师:小三角形的两个直角角已经不是大三角形的内角,要减去180°所以大三角形的内角和是180°

  4、求四边形、五边形、六边形的内角和

  下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?

  图形

  名称

  三角形

  四边形

  五边形

  六边形

  有几个三角形

  1

  内角和

  180°

  如果要求10边形的内角和,你会求吗?你有什么发现?

  四、回顾

  这节课你有什么收获?我们是怎样研究三角形的内角和是180°?

  师:这节课我们分别用度量、撕拼、折拼推算个的方法对猜想进行验证,最后运用三角形内角和是180°的知识解决问题。如果给你重新选择,你会选择什么方法验证?

  我们用360度除以2推算出所有直角三角形的内角和是180度,你会应用直角三角形的内角和是180度,推算这个大锐角三角形的内角和吗?(课件)

  (4)、一个锐角三角形、钝角三角形分成两个直角三角形。也可以推出锐角三角形的内角和是180°

  板书

  三角形内角和180°

  猜想实验验证

  度量180°179°181°182°183°

  剪拼一个平角

  折拼

三角形数学教案13

  【教学目标】:

  1、帮助学生总结一般三角形全等的判定条件,使他们自觉运用各种全等判定法进行说理;

  2、通过一般三角形全等判定条件的归纳,帮助学生认识事物间存在着的因果关系和制约的关系。

  【重点难点】:

  1、重点:让学生识别三角的哪些元素能用来确定三角形的形状与大小,因而可用来判定三角形全等。

  2、难点:灵活应用各种判定法识别全等三角形。

  【教学准备】:

  卡纸剪出的图1、2中的六个三角形。

  (图1)(图2)

  【教学过程】:

  一、复习

  1、判定两个三角形全等的条件有哪些?

  (有SAS、ASA、AAS、SSS。HL)

  2、一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种判定法,还有其他的三角形全等判定法吗?比如说“SSA”、“AAA”能成为判定两个三角形全等的条件吗?

  二、新授

  1、演示

  (1)演示图1中的I、II三角形,它们间有两边及一对角对应相等,这两个三角形能完全重合,是全等形。但再取出III的三角形与I叠在一起后,发现它们不重合不是全等形,因此我们进一点证实了:有两边和其中一边的对角对应相等的两个三角形不一定全等。“SSA”不是判定三角形全等的方法。

  (2)演示图2中的I、II三角形,它们间有三个角对应相等,这两个三角形能完全重合,是全等形,但再取出III的三角形与I叠在一起后,发现它们不重合,不是全等形。因此我们进一步证实了:三个角对应相等的两个三角形不一定全等“AAA”也不是判定三角形全等的方法。

  2、填下表(挂出小黑板,让学生思考、讨论,共同填答)。

  两个三角形中对应相等的元素两个三角形是否全等依据的判定法反例

  SSS√SSS

  SAS√SAS

  SSAX可举反例

  ASA√ASA

  AAS√AAS

  AAAX可举反例

  3、范例

  例:如图,,,点F是CD的中点,吗?试说明理由。

  教学要点:

  (1)分析题目结论假定,可转化为,需证它们所在的两个三角形全等;

  (2)观察图形,、中,并不在三角形中,为此添辅助线AC、AD;

  (3)在△ACF与△ADF中,已知AF是公共边,CF= FD,尚缺一条件,它只能是AC与AD相等;

  (4)为证AC与AD相等。又要找它们分别在的.△ACB与△ADE;

  (5)△ACB与△ADE,由已知条件可由SAS证它们全等;

  (6)书写范例。

  解:连结AC、AD,由已知AB=AE,,BC=DE

  由SAS三角形全等判定法可知:

  △ABC≌△AED

  根据全等三角形的对应相等可知

  由,,(公共边),根据SSS可知△ACF≌△ADF

  根据全等三角形的对应角相等可知

  又由于F在直线CD上,可得,即。

  你们可有其他方法吗?

 三、巩固练习

  1、如图,在△ABC中,,,试说明△AED是等腰三角形。

  2、如图,AB∥CD,AD∥BC,与,与相等吗?说明理由。

  四、小结由学生对本节的学习过程进行总结。

  五、作业

  (一)、填空题:

  1、有一边对应相等的两个三角形全等;

  2、有一边和对应相等的两个三角形全等;3、有两边和一角对应相等的两个三角形全等;

  4、如图,AB∥CD,AD∥BC,AC、BD相交于点O。

  (1)由AD∥BC,可得=,由AB∥CD,可得=,又由,于是△ABD ≌△CDB;

  (2)由,可得AD=CB,由,可得△AOD≌△COB;

  (3)图中全等三角形共有对。

  (二)、选择题:

  1、若△ABC≌△BAD,A和B、C和D是对应顶点,如果,,,则BC的长是()

  A、 B、 C、 D、无法确定

  2、下列各说法中,正确的是()

  A、有两边和一角对应相等的两个三角形全等;

  B、有两个角对应相等且周长相等的两个三角形全等;

  C、两个锐角对应相等的两个直角三角形全等;

  D、有两组边相等且周长相等的两个三角形全等。

  (三)、解答题:

  1 、如图,,,AC、BD交于点,图中共有几对长度相等的线段,你是通过什么办法找到的?

  2、如图,,,(1)等于多少度?

  (2)图中有哪几组平行线?

  (3)与的和是定值吗?

三角形数学教案14

  一、单元教学目标:

  1、在观察、操作、画图和实验等活动中,发现并认识三角形的有关特征,知道什么是三角形的底和高,认识直角三角形、锐角三角形和钝角三角形以及等腰三角形和等边三角形,知道三角形的内角和是180度。

  2、会按要求在方格纸上画三角形,会测量或画出三角形底边上的高(高在三角形内),能根据三角形内角和以及两边之和大于第三边等知识解释简单生活现象或解决简单实际问题,能判断一个三角形是什么三角形。

  3、在由实物到图形的抽象过程中,以及探索图形特征和相关结论的活动中,发展空间观念,锻炼思维能力。

  4、积极参与数学活动,并能和同学合作交流,进一步体验数学问题的探索性和数学结论的确定性,增强学习数学的兴趣和爱好数学的自信心。

  二、教材分析和设计理念:

  本单元主要教学三角形的认识。在第一学段,学生已经直观认识了三角形和其他一些简单的平面图形;在四年级相对集中地认识了角,认识了两条直线的位置关系--平行和相交。这些都是本单元学习的基础。通过这部分内容的学习,既为认识平行四边形和梯形提供学习经验,又能为进一步学习多边形的面积打好基础。本单元的'内容分三段安排:第一段,认识三角形的基本特征,包括认识三角形的底和高,了解三角形两边之和大于第三边;第二段,学习三角形的分类和内角和;第三段,认识等腰三角形,等边三角形及其特征。最后安排了练习三,让学生巩固和加深理解本单元的学习内容。

  设计和教学时应遵循以下三个要点进行:一是注意引领学生联系现实情境认识三角形,从而形成三角形的初步概念。二是注重在丰富的活动中探索并发现三角形的一些特征,充分体现让学生在数学活动中自主发现和主动建构的特点。三是强调在动手实践和解释交流中加深对所学内容的认识,促使新知生成更加深刻,更加完整,体现系统性。

  三、教学时间安排:

  六课时

  四、课时教学设计:

  第一课时

  三角形的认识

  仪征市真州小学俞万军

  教学内容:苏教版国标本四年级(下册)第22-23页内容,第24页“想想做做”第1、2、3题。

  教学目标:

  1.使学生联系实际和利用生活经验,通过观察、操作、测量等学习活动,认识三角形的基本特征,初步形成三角形的概念,了解三角形两边之和大于第三边。

  2.使学生在认识三角形有关特征的活动中,体会认识多边形特征的基本方法,发展观察能力和比较、抽象、概括等思维能力。

  教学重点:认识三角形的一些基本特征。

  教学难点:探究三角形较小两边长度之和大于第三边的原理。

  设计理念:通过对实验结果的观察、比较、分析、综合,培养他们的逻辑推理能力。

  教学准备:小棒。

  教学步骤

  教师活动

  学生活动

  一、联系实际,引入课题。

  我们已经初步认识过三角形,生活中你在哪儿见过三角形?

  揭示课题。

  回忆。

  互相交流生活中的发现。

  二、认识三角形。

  1.感知三角形。

  2.介绍三角形各部分的名称。

  3.练习。

  4.感受三角形三条边的关系。

  ⑴分组操作。

  ⑵组织交流。

  ⑶小结。

  展示例题场景图。

  有三角形吗?能想办法做一个三角形吗?

  巡视指导

  你是怎么做的三角形?

  展示做出的三角形并汇报过程与方法。

  这些三角形有什么共同点?

  能在本子上画一个三角形吗?

  提问:仔细观察画出的三角形,你知道三角形是由几条线段围成的图形。指出:三角形是由三条线段围成的图形。

  说明并板书各部分名称。

  出示“想想做做”第1题。

  提示:可先点点,后连线。

  要求:拿出教师指定的小棒,拼三角形,分别是:(单位:厘米)

  2、3、7;

  2、3、5;

  3、5、7

  3、7、9

  5、7、9

  哪三根不可以围成三角形?

  哪三根可以围成三角形?

  为什么同样都是三根小棒,有的能围成,有的却不行呢?

  比较它们的长度,你有什么发现?(提示:用2根长度的和与第3根比)

  用3、11、6厘米的小棒围成三角形。

  三角形的特征:

  较小两边长度之和大于第三边。

  观察,交流。

  学生运用自带材料独立做一些三角形。

  交流做三角形的方法:小棒摆、钉子板上围、沿三角尺边画、用直尺在方格纸上画、......

  讨论交流(教师引导,明确三角形是有三条线段围成的)。

  独立完成画三角形。

  讨论:三角形有几条边、几个角和几个顶点?

  交流后明确:三角形有3条边、3个角和3个顶点。

  独立完成。

  并标出三角形的边、顶点和角。

  分组操作,并记录每一种情况。(以表格的形式让学生填)

  2、3、7;

  2、3、5;

  3、5、7

  3、7、9

  5、7、9

  分组计算、比较、分析。

  交流结果(2根长度的和大于第3根时,能围成,小于或等于时,不能围成三角形)。

  学生思考、讨论、交流。

  学生独立思考、选择。交流:各位同学是如何选的,并说明能拼成的理由。

  交流发现:你觉的刚才的发现该如何修改?

  自由练读:三角

  形的较小两边长度之和大于第三边。

  三、巩固练习。

  出示第24页“想想做做”第2题。

  根据每组中三条线段的长度直接作出判断,并简要说明理由。

  出示第24页“想想做做”第3题。

  先指一指从学校到少年宫的不同路线,并回答第一问;再让学生找出最近的一条路,并要求解释理由。

  读题,分析、判断并交流(第2、3两组都可以......)。

  观察交流(有三条:①学校-电影院-少年宫;②学校-少年宫;③学校-邮局-少年宫)。

  (第②条最近;因为①、③两条路线都与第②条围成了一个三角形,根据三角形两条边长度的和大于第三边,所以第②条最近。)

  互相交流。

  四、评价总结。

  通过本节课的学习,你知道了哪些知识?你是通过哪些方法获得这些知识的?

  交流,评价总结。

  五、作业设计。

  1.三角形有()条边、()个角和()个顶点。

  2.以下长度的线段:(单位:厘米)

  5、6、7、8、9、11、12、15

  你能选择三根围成一个三角形吗?

三角形数学教案15

  教学内容

  探索与发现:三角形内角和(教材24~26页)。

  教学目标

  1.知识目标:让学生通过“测量、撕拼、折叠、猜想、验证”等方法,探索并发现“三角形内角和等于180°”。

  2.技能目标:能运用三角形内角和的性质解决一些简单的问题。

  3.情感目标:在活动中,让学生体验主动探究数学规律的乐趣,激发学生学习数学的热情。

  重点难点

  教学重点:探索并发现三角形内角和等于180°。

  教学难点:掌握探究方法,学会运用三角形内角和的性质。

  学具准备

  各种 三 角形、剪刀、量角 器、课件。

  教学 过程

  一、创设情境,揭示课题。

  1.播放课件,提问: 这些三角形在争论什么?

  教师:是在争论关于自己内角和的大小。

  2.教师:什么是三角形的内角和?( 板书:内角和)

  讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

  二、自主探究,合作交流。

  (一)提出问题。

  1.你认为谁说得对?你是怎么想的?

  2.你有什么办法可以比较一下这些三角形的内角和呢?

  学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

  (二)探索与发现。

  1.初步探索。

  (1)量一量。

  了解活动要求:

  A.在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确。)

  B.把测量结果记录在表 格中,并计算三角形内角和。

  C.讨论:从刚才的测量和计算结果中,你发现了什么?(引导学生发现每个三角形 的三个内角和都在180°左右。)

  (2)提出猜想。

  刚才我们通过测量和计算发现了三角形内角和都在180°度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?

  2.动手操作,验证猜想。

  教师:这个猜想是否成立呢?我们要想办法来验证一下。

  教师引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

  (1)小组合作,讨论验证方法。

  (2)分组汇报,讨论质疑。

  学生可能会出现的方法:

  ①撕拼的方法。

  把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°。

  教师:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

  ②折一折的方法。

  把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与

  角1的顶点互相重合,证明了各种三角形内角和都等于180°。

  3.课件演示,归纳总结,得出结论。

  (1)引导学生得出结论。

  孩子们,三角形内角和到底等于多少度呢?“

  学生一定会高兴地喊:“180°!”

  (2)总结方法,齐读结论。

  教 师:我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的'得到了这个结论,让我们为自己的成功鼓掌!

  (3)解释测量误差。

  教师:为什么我们刚才通过测量,计算出来的三角形内角和不是正好180°呢?

  那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一的误差。实际上,三角形内角和就等于180°。

  三、探究结果汇报。

  教师:现在你知道这些三角形谁说得对了吗?(都不对!)

  学生:因为三角形内角和等于1 80°。 (齐读)

  教师小结:三角形的形状和大小虽然不同,但 是三角形的内角和都是180度。

  四、课堂应用,巩固加深。

  1.试一试。

  数学课本25页。

  2.练一练。

  (1)数学书25页第一题。(生独立解决。)

  (2)数学书25页第二题。(动手量一量。)

  拼成的四边形的内角和是( )。

  拼成的三角形的内角和是( )。

  五、课堂作业设计。

  教材26页4、5、6题。

【三角形数学教案】相关文章:

数学教案-相似三角形08-17

数学教案-三角形面积08-16

三角形的特性数学教案08-19

数学教案-认识三角形08-16

数学教案-三角形的认识08-16

数学教案-全等三角形08-16

三角形的内角数学教案02-08

三角形分类数学教案02-02

数学教案三角形面积03-25