现在位置:范文先生网>教案大全>数学教案>六年级数学教案>六年级数学上册教案

六年级数学上册教案

时间:2024-06-06 15:43:39 六年级数学教案 我要投稿

六年级数学上册教案(通用)

  作为一名辛苦耕耘的教育工作者,就难以避免地要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。写教案需要注意哪些格式呢?以下是小编为大家收集的六年级数学上册教案,欢迎大家分享。

六年级数学上册教案(通用)

六年级数学上册教案1

  设计说明

  本节课是在学生学习了比的意义以及比与除法、分数的关系等相关知识的基础上进行教学的,本节课的设计有以下几方面特点:

  1、充分利用教材提供的素材。在导入新课的过程中,利用教材提供的素材,让学生动手操作,亲手调制蜂蜜水,激发学生的学习兴趣,使学生在动手操作中体验到调制的过程,并说出自己调制的方法,为下面的学习打下基础。

  2、合作探究的学习方式贯穿整个教学。

  在整节课的`教学中,充分遵循以学生为主体的原则,适当的引导,提出有重要价值的问题,让学生通过观察、合作、探究的方式找到问题的答案,让学生在学习的过程中体验到成功的快乐。

  课前准备

  教师准备PPT课件课堂活动卡

  学生准备蜂蜜水量筒水杯

  教学过程

  ⊙创设情境,提出问题

  1、把学生分成四个小组进行调制蜂蜜水的实验活动。(各小组拿出课前准备好的蜂蜜、水、量筒、水杯等实验物品,动手调制蜂蜜水)

  2、各小组选出代表在全班进行汇报。出示课堂活动卡。

  预设

  生1:我调制的这杯蜂蜜水用了40mL蜂蜜、360mL水。

  生2:我调制的这杯蜂蜜水用了2小杯蜂蜜、18小杯水。

  3、议一议,哪个小组调制出的蜂蜜水更甜?你用的是什么方法?(学生讨论并交流方法)

  4、除了这些方法,我们也可以用化简比的方法来判断。(板书课题)

  设计意图:通过让学生动手操作,亲自调制蜂蜜水,激发学生学习的热情,让学生在动手操作中亲自体验调制的过程,并且用语言叙述自己的调制方法,在议一议中展开对新知的探究。

  ⊙探究新知,解决问题

  1、观察情境图,获取信息。(课件出示教材72页情境图)

  学生根据图中的内容,找出所需的信息。

  蜂蜜水

  男孩:3小杯12小杯

  女孩:4小杯16小杯

  2、体会化简比的必要性。

  (1)探究判断方法。

  联系我们学过的知识,你想到了用什么方法进行比较?

  学生小组内讨论,得出可以通过求出男孩和女孩各自杯中蜂蜜和水的比来比较。

  学生写出比。

  男孩:3∶12

  女孩:4∶16

  (2)哪杯水更甜?现在你能判断出来了吗?你又遇到了什么问题?

  引导学生发现,现在无法比较,如果能知道两杯蜂蜜水中平均1小杯蜂蜜用了几小杯水就可以比较了。

  (3)怎样才能知道平均1小杯蜂蜜用了几小杯水呢?请在小组内讨论一下。

  ①学生思考,小组内讨论。

  ②小组交流看法。

  ③指名汇报,说明理由。

  在交流的过程中教师要引导学生理解先把比转化成分数,利用分数的基本性质约分,再转化成比的方法。

  (4)得出结论。

  3∶12===1∶4

  4∶16===1∶4

  提问:你发现了什么?

  (两杯蜂蜜水中蜂蜜与水的比都是1∶4,所以两杯水一样甜)

  (5)揭示化简比的必要性。

  当比的前项和后项数值较大时,有时会给判断带来不便,这时就需要根据一定的规则,在不改变比值大小的情况下,将比的前项和后项同时缩小,这种现象称之为化简比。

  设计意图:让学生在解决“哪杯水更甜”的同时,加深对比的意义的理解,进一步感受比与除法、分数之间的关系。

  3、理解最简整数比。

  像1∶9,3∶7……这样的比我们称为最简整数比。

  (1)观察一下最简整数比的前项和后项,你发现它们之间是什么关系了吗?你能说说什么样的比是最简整数比吗?

  (2)学生汇报发现。

  根据学生的汇报教师小结:当比的前项和后项都是整数,并且比的前项和后项的最大公因数是1时,这样的比就是最简整数比。

  4、探究化简比的方法。

  下面的比是最简整数比吗?你有什么办法把它们化成最简整数比呢?

  24∶42 ∶ 0.7∶0.8

  (1)小组讨论。

  (2)学生尝试解答,教师巡视指导。引导学生采用不同的方法化简比。

  (3)全班交流化简比的方法。

  预设

  生1:我利用分数的基本性质进行化简。

  生2:我利用商不变的规律进行化简。

  生3:我利用除法进行化简。

  生4:我利用比的基本性质进行化简。比的前项和后项同时乘或除以同一个不为0的数,比值的大小不变。

  如果有学生用此法,教师因势利导进行教学,如果没有,教师从比和分数的关系入手,引导教学。

六年级数学上册教案2

  教学内容:教材67—68页。

  教学目标:

  1、使学生理解内接正方形和外切正方形的含义,掌握圆与内接正方形、外切正方形之间面积的计算方法。

  2、经历问题解决的全过程,并在解决具体问题的基础上发现更为一般的数学规律,提高发现问题、提出问题、分析问题、解决问题的能力。

  教学重点:掌握圆与内接正方形、外切正方形之间面积的计算方法。

  教学难点:在解决问题的基础上发现数学规律。

  教学过程:

  一、创设情景,生成问题

  1、计算下面各圆的.面积

  r=8dm r=12cm d=4m

  2、填表

  二、探索交流,解决问题

  (一)学习例3

  1、仔细观察:什么是内接圆和外切圆,它们都有什么特征?

  2、正方形的边长与圆的半径有什么关系?

  3、学生尝试解决外切正方形与圆之间的面积。

  (1)通过观察,学生容易看出,正方形的边长就是圆的直径。

  (2)它们之间的面积=正方形面积—圆的面积

  (3)学生独立计算,集体订正。

  4、解决内接正方形与圆之间的面积。

  (1)怎样求内接正方形与圆之间的面积?

  学生不难发现:圆的面积—正方形的面积

  (2)那正方形的面积怎样求?

  观察提示:转化成2个三角形

  (3)学生尝试解决

  5、回顾与反思:形成一般性的结论。

  当r=1m时,和前面的结果完全一致。

  (二)生活中的数学

  学生阅读教材70页资料,了解圆形在生活中的应用。

  三、巩固应用,内化提高

  1、完成“做一做”、独立解决。

  2、完成练习十五的第5—9题。

  (1)第5题:求圆环的面积

  (2)第6题:大圆的面积—小圆的面积

  (3)第7题:

  a、观察图形,明确什么是周长,什么是面积?

  b、分别说出这里的周长包含哪些长度,面积包含哪几个部分?

  c、学生独立列式解答。

  (4)第8题:小组合作完成

  (5)第9题:圆的面积—中间正方形的面积

  四、回顾整理,反思提升

  说一说这节课的收获。

六年级数学上册教案3

  单元目标:

  1.理解并掌握分数除法的计算方法,会进行分数除法计算。

  2.会解答已知一个数的几分之几是多少求这个数的实际问题。

  3.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

  4.能运用比的知识解决有关的实际问题。

  单元重点:

  理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题

  单元难点:

  理解分数除法的算理,列方程解答分数除法问题

  第一课时:分数除法的意义和分数除以整数

  教学目标:

  1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

  2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

  3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

  教学重点:

  使学生理解算理,正确总结、应用计算法则。

  教学难点:

  使学生理解整数除以分数的算理。

  教具准备:多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数除法的意义

  (1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

  (2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

  2、口算下面各题

  ×3 × ×

  × ×6 ×

  二、新知探究

  (一)、教学例1

  1、课件出示自学提纲:

  (1)出示插图及乘法应用题,学生列式计算。

  (2)学生把这道乘法应用题改编成两道除法应用题,并解答。

  (3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

  2、学生自学后小组间交流

  3、全班汇报:

  100×3=300(克)

  A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

  B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

  ×3= (千克) ÷3= (千克) ÷3=3(盒)

  4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

  分数除法的意义与整数除法相同,都是已知两个因数的积与其

  中一个因数,求另个一个因数。都是乘法的逆运算。

  (二)、巩固分数除法意义的练习:P28“做一做”

  (三)、教学例2

  (1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

  (2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

  (3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

  A、 ÷2= =,每份就是2个。

  B、 ÷2= × =,每份就是的。

  (4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

  4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

  三、当堂测评(课件出示)

  1、计算

  ÷3 ÷3 ÷20 ÷5 ÷10 ÷6

  2、解决问题

  (1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

  (2)、正方形的周长是4/5米,它的边长是多少米?

  学生独立完成。

  教师讲评,小组间批阅。

  四、课堂总结

  1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

  2、谁来把这两部分内容说一说?

  教学后记

  第二课时:一个数除以分数

  教学目标:

  1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养学生的语言表达能力和抽象概括能力。

  3、培养学生良好的计算习惯。

  教学重点:

  总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

  教学难点:

  利用法则正确、迅速地进行计算,并能解决一些实际问题。

  教具准备:多媒体课件、实物投影。

  教学过程:

  一、旧知铺垫(课件出示)

  1、计算下面,直接写出得数

  ×4 ×3 ×2 ×6

  ÷4 ÷3 ÷2 ÷6

  2、列式,说清数量关系

  小明2小时走了6 km,平均每小时走多少千米?

  (速度=路程÷时间)

  二、新知探究

  (一)、例3,

  1、实物投影呈现例题情景图。

  理解题意,列出算式:2÷ ÷

  2、探索整数除以分数的计算方法

  (1)2÷如何计算?引导学生结合线段图进行理解。

  (2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

  (3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

  (4)根据学生的回答把线段图补充完整,并板书出过程。

  先求小时走了多少千米,也就是求2个,算式:2×

  再求3个小时走了多少千米,算式:2× ×3

  (5)综合整个计算过程:2÷ =2× ×3=2×

  (二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

  (三)、计算÷,探索分数除以分数的计算方法

  1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

  ÷ = × =2(km)

  2、学生用自己的方法来验证结果是否正确。

  3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

  三、当堂测评

  1、P31“做一做”的第1、2题。

  2、练习八第2、4题。

  学生独立完成,教师巡回指点,帮助学困生度过难关。

  小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

  四、课堂总结

  1、这节课你们有什么收获呢?

  2、在这节课上你觉得自己表现得怎样?

  设计意图:

  这两节课的教学我从以下着手:

  1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的.理解。

  2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

  教学后记

  第三课时:练习课

  第四课时:分数混合运算

  教学目标:

  1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

  2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

  3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

  4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

  教学重点:确定运算顺序再进行计算。

  教学难点:明确混合运算的顺序。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数混合运算的运算顺序

  (1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

  (2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

  (3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

  2、说出下面各题的运算顺序。

  (1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4

  (3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)

  3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

  二、新知探究

  1、教师课件出示例4

  2、课件出示自学提纲:

  (1)例4中的哪些条件和复习中的3相同?问题相同吗?

  (2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

  (3)尝试说说自己的解题思路并解答。

  3、学生根据提纲尝试解题。

  4、全班汇报

  (1)根据学生的回答,归纳出两种思路:

  A、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。

  B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

  (2)说说运算顺序,再进行计算。

  (1)计算1/5÷(2/3+1/5)×15

  让个别学生说出运算顺序并计算题目的得数。

  教师巡回指点,搜集存在问题。

  教师黑板出示问题,学生上台改正,并说明理由。

  (2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

  三、当堂测评

  练习九第1、2、3题:

  注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

  楼楼板到地面的高度实际上只有5层楼的高度。

  学生独立完成教师点评,解决疑难。

  学生相互得分,评选优胜小组。

  四、课堂小结

  这节课有什么收获?说一说。

  还有什么不懂的?提出来小组内解决。

  设计意图

  1、在课初始,我便从复习整数及小数的运算顺序入手,

  重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

  现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

  习加强计算的训练。

  2、当堂测评题将学生置于提高之处,联系实际生活解决问

  题,让学生体会到数学知识的广泛性和严谨性

  教学后记

  第五课时:练习课

  已知一个数的几分之几是多少求这个数的应用题

  教学目标:

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重点:

  弄清单位“1”的量,会分析题中的数量关系。

  教学难点:

  分数除法应用题的特点及解题思路和解题方法。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、根据题意列出关系式。

  (1)一个数的3/4等于12.

  (2)男生人数的11/12等于220人。

  (3)甲数的5/8是40.

  (4)乙数的4/5刚好是1/6.

  2、解决问题

  根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?

  (1)看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重× =体内水分的重量

  (2)指名口头列式计算。

  二、新知探究

  (一)教学例1.

  1、课件出示自学提纲:

  (1)这一例题和复习中的题有什么不同和相同呢?想一想。

  (2)有几个问题?都和哪些条件有关?

  (3)读题、理解题意,并画出线段图来表示题意

  (4)独立解决第一个问题。

  2、全班汇报

  (1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

  小明的体重× =体内水分的重量

  (2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

  (3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

  (4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

  3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?

  (1)启发学生找关键句,确定单位“1”。

  (2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

  (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

  爸爸的体重× =小明的体重

  ①方程解:解:设爸爸的体重是χ千克。

  χ= 35

  χ=35÷

  χ=75

  ②算术解:35÷ =75(千克)

  4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、当堂测评(课件出示)

  1、根据题意列出算式,不必计算(每题15分)。

  (1)一个数的2/5是40,这个数是多少?

  (2)一个数的3/8是24,这个数是多少?

  (3)甲数是100,占乙数的4/5,乙数是多少?

  (4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

  2、解决问题(40分)。

  某校有女生160人,正好占男生的8/9,男生有多少人?

  学生独立完成,教师巡回指点,注重学困生的提高。

  小组内订正、互评,做到兵强兵。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

  设计意图:

  本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

  教学后记:

六年级数学上册教案4

  第一单元位置

  内容:P2~3位置

  目标:1、能用数对表示具体情境中物体的位置。

  2、能在方格纸上用数对确定物体的位置,初步体会坐标的思想。

  教学重点:能用数对表示具体情境中物体的位置及在方格纸上用数对确定物体的位置。

  教学难点:理解数对确定位置的意义。

  教学过程:

  一、回顾旧知,复习铺垫

  我们在前几年的课程中多次学习了位置与方向,说一说我们以前是怎样确定位置的。

  二、引导探索,学习新知

  1、揭示课题。

  今天我们继续学习位置,看一看还可以用什么方法来确定位置。

  2、教学例1。

  (1)出示P2例1,观察主题图。

  (2)问:教师是怎么知道确定张亮的位置的?

  (3)介绍操作台的情况。

  竖排叫列,横排叫行,第几列是从左往右数,第几行是从前往后数。这是一种约定。

  (4)你能指出哪个是张亮同学吗?

  (5)说一说其他同学的位置。

  (6)张亮的位置可以用(2,3)表示出来。

  张亮的位置用了几个数据?

  (2,3)中的数字分别表示什么含义?

  (7)小结:可以用有顺序的两个数组成数对表示出一个确定的位置:用括号把列数和行括起来,并在列数和行数之间写个逗号,把两个数隔开。

  (8)试一试:用数对表示出其他同学的位置。

  (9)张亮的位置用(3,2)表示可以吗?

  注意:用数对表示位置时,一般先表示第几列,再表示第几行。

  3、举出生活中的例子,说一说确定位置的方法。

  4、教学P3例2

  (1)观察动物园示意图,这幅图和以前见过的示意图有什么不同?

  ①动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容。

  ②表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上。

  ③方格纸的竖线(横线)从左到右(右到左)依次标注了0,1,2……。

  (2)找一找动物园大门的位置,可以用数对怎样表示出大门的位置?

  (3)说出熊猫馆、大象馆、海洋馆、猴山的位置。

  (4)比较大象馆和海洋馆的数对,第2个数都是4,说明什么?

  如果两个数对中的第1个数相同,说明这两个场馆的位置有什么特点?

  如果用(X,4)表示某场馆的位置,能确定在哪里吗?

  (5)在图中标出下面场馆的位置。

  飞禽馆(1,1)猩猩馆(0,3)狮虎山(4,3)

  三、巩固深化,拓展思维

  P4练习一第2题。

  四、分课小结,提高认识

  这节课学习了什么内容?怎样用数对表示位置?应该注意些什么?

  五、课堂练习,辅助消化

  P4练习一第1题。

  第二单元分数乘分数

  第一课时分数乘以整数

  教学内容:第1~2页内容。

  教学目标:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。

  重点难点:分数乘整数的计算方法

  教学过程:

  一、展示教学目标:1、理解分数乘以整数的意义2、掌握分数乘以整数的计算法则。

  二、自学:计算下面各题:

  思考:有什么特点?应该怎样计算?

  出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

  1、学生自学,教师巡视指导

  2、两名学生用两种不同方法板演

  3、用加法算:(块)

  用乘法算:(块)

  学生思考:这里为什么用乘法?乘数表示什么意思?

  得出:分数乘以整数的`意义与整数乘法的意义相同,都是求几个相同的和的简便运算。学生齐读一遍。

  练习:说一说下面式子各表示什么意思?(做一做第3题。)

  问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)

  三、巩固练习

  1.第2页做一做。

  2.练习一

  第二课时分数乘法

  教学内容:教材第10页例3,第11页例4以及“做一做”练习二中的第3、4题

  教学目标:1.理解一个数乘分数就是求一个数的几分之几是多少。2.掌握分数乘分数的计算方法,并能正确地进行计算。

  重难点、关键1.重难点:分数乘分数的计算方法。

  2.关键:理解一个数乘分数就是求一个数的几分之几是多少。

  教学过程:

  一、旧知铺垫

  1.计算下面各题。

  12×3/4 5/16×32 15×3/5 3/8×12

  2.说一说,分数乘法的计算方法、步骤。

  (1)整数与分子相乘的乘积作分子,分母不变。

  (2)能约分的要先约分,再计算.

  3.根据题意列出算式。

  (1)一袋大米,每天用去3/4千克,3天用去多少千克?

  (2)某修路队,每天修路3/2千米,5天修多少千米?

  (3)一辆汽车,每小时行驶全程的3/20,4小时行驶全程的几分之几?

  二、探索新知

  1.教学例3。

  出示题目:(出示课文插图)

  问题一:1/4小时粉刷这面墙的几分之几?

  (1)你想怎样列式?

  学生回答,教师板书。

  1/5×1/4

  (2)分数乘分数怎样计算?

  ①1/5×1/4表示什么?

  经过讨论,使学生理解1/5×1/4,就是求1/5的1/4是多少,也就是说把1/5平均分成4份,取其中的一份是多少?

  ②画示意图分析。

  ③从图上可以看出,这面墙的1/5的1/4,是哪一块?它占整面墙的几分之几?

  通过观察得出:这面墙的1/5的1/4,是占整面墙的1/20。

  板书:1/5×1/4=1/20

  ④发现分数乘分数的计算方法。

  引导学生观察算式和结果,看一看其中的联系。

  板书:1/5×1/4=( )/( )=1/20

  想一想:应该是怎样的一个计算过程呢?

  学生经过思考交流,不难发现其中的计算过程。学生回答,教师板书补充其中的计算过程。

  1/5×1/4=(1×1)/(5×4)=1/20

  然后,联系以上的算式,让学生说一说计算方法。

  学生不难发现:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

  教师可不急于作出归纳,再提出问题,继续验证学生自己的发现。

  问题二:3/4小时粉刷多少呢?

  (1)引导学生列出算式

  1/5×3/4

  (2)你认为计算结果是多少?

  学生回答,教师板书。

  1/5×3/4=1×3/5×4=3/20

  (3)画示意图加以验证。

  注意:画示意图时,要紧密结合1/5×3/4的意义加以分析。

  (4)总结分数乘分数的计算方法。

  师生共同总结,教师板书:

  分数乘分数,应该分子乘分子,分母乘分母。

  2.教学例4

  出示教材例题,学生简要了解蜂鸟。

  (1)2/3分钟能飞行多少千米?

  ①列出算式

  3/10×2/3

  ②学生尝试计算,教师巡视课堂了解学生计算情况。

  完成后,选择两位不同计算过程的学生上台板演。

  ③强调:能约分的要先约分,再计算。

  (2)5分钟能飞行多少千米?

  ①学生独立列式解答,请一位学生上台板演。

  ②教师出示算式,学生判断可以不可以。

  ③说明分数和整数相乘时约分的方法。

  强调:整数约分后的结果要写在整数的上面,并与分子相乘。

  三、巩固练习

  1、完成例题后“做一做”

  2、完成练习二第3、4题

  第三课时运算定律的应用

  教学内容:整数乘法运算定律推广到分数乘法(教材第14页例5、例6,练习三的1、2、4、5题)

  教学目标

  1、使学生会用整数乘法的运算定律推广运用到分数乘法,并使一些计算简便。

  2、培养学生灵活计算的能力,发展学生逻辑思维能力。

  重难点、关键:运用运算定律进行简便运算。

  教学过程

六年级数学上册教案5

  第五单元圆

  一、教学内容

  1.圆的认识

  2.圆的周长

  3.圆的面积

  4.扇形的认识

  二、教学目标

  1.使学生认识圆,学会用圆规画圆,掌握圆的基本特征。

  2.使学生会利用直尺和圆规,在教师指导下设计一些与圆有关的图案。

  3.使学生通过实践操作,理解圆周率的意义,理解和掌握圆的周长计算公式,并解决一些相应的实际问题。

  4.引导学生探索并掌握圆的面积计算公式,并解决一些简单的实际问题。

  5.使学生认识扇形,掌握扇形的一些基本特征。

  6.使学生经历尝试、探究、分析、反思等过程,培养数学活动经验,在解决一些与圆有关的数学问题的过程中,提高问题解决的能力。

  7.使学生在推导圆的周长与面积的计算公式过程中体会和掌握转化、极限等数学思想。

  8.通过生活实例、数学史料,感受数学之美,了解数学文化,提高学习兴趣。

  三、主要变化与具体编排

  (一)主要变化

  1.改变圆的各部分名称的引入方式。

  实验教材在引入圆时,先让学生利用圆形杯盖、圆柱体物体、三角板上的圆孔描出圆,再把圆剪下来,通过多次对折等方式引出圆心、半径、直径等概念;在认识了圆的半径和直径的特点之后,再专门教学用圆规画圆的方法。

  考虑到学生在生活中已经具备初步的用圆规画圆的知识,本次修订时,对于“你能想办法在纸上画一个圆吗”这一问题,教材同时给出了用杯盖、三角尺上的圆孔、圆规画圆的方法,符合真实的学情。接下来,利用圆规画圆的方法引出圆心、半径、直径等概念,水到渠成,这样的引入方式也能更好地体现圆“一中同长”的本质特征。接下来,通过让学生用圆规画几个大小不同的圆,探讨直径、半径的特点,在这一过程中,使学生进一步熟练掌握用圆规画圆的方法。

  2.增加圆心决定圆的位置、半径决定圆的大小的内容。

  “圆,一中同长也”,这是《墨子》中对圆的定义。只要确定了“中”和“长”,圆的位置与大小就确定下来了。解析几何中圆的解析式(x-a)2+(y-b)2=r2中也很好地体现了这一点。圆心决定圆的位置、半径决定圆的大小这一事实,过去虽然没在教材中明确指出,但实际上学生已经在自觉应用了。例如,用圆规画圆时,不可避免地会遇到“针尖定在哪儿”“画多大的圆”等问题,如果要画半径是3 cm的圆,针尖到纸边缘的距离必须大于3 cm,才能在纸上画出一个完整的圆来。在本册教材中,接下来还要安排利用圆设计图案的内容,在设计图案的过程,学生会时时处处遇到“要画一个多大的圆”“这个圆的圆心应该在哪儿”等问题。因此,教材增加这一部分内容,能帮助学生在应用知识的过程中更好地认识圆的数学特征。

  3.正文中降低圆的对称性的篇幅,新增利用圆设计图案的内容。

  由于在“轴对称图形”的相关内容中,已经对圆的对称性有过比较充分的探讨,所以,本单元不再单独编排圆的对称性的例题,只在相关练习中加以巩固。

  在修订过程中,新增了利用圆设计图案的内容。先让学生模仿教材上提供的步骤,画出美丽的图案,再放手让学生试着画出教材上提供的图案。在这一过程中,需要用到用圆规画圆的方法,需要观察这些图案是由哪些图形组成的,是如何组成的。需要学生对圆心位置的确定、半径大小的确定、圆的对称性等知识加以综合应用,一方面,帮助学生进一步了解圆的特征,另一方面,使学生充分体会数学的对称美、和谐美。

  例如,下面左图中大圆内部的每个“水滴”是由三个半圆围成的,其中两个半圆的直径是大圆半径的一半,还有一个半圆的直径是大圆的半径,除此之外,还要关注这些半圆的圆心位置在哪里。右图中,大圆的内部有八个小圆,这些圆的直径都是大圆的半径,依次排列在大圆的八等分线上,互相重叠,形成了美丽的图案。

  教学时,还可以让学生自由创作出更多的作品。此外,还可以借助这些图案,复习轴对称、平移、旋转等图形变换的知识。由于这一内容的操作性、综合性、探究性都很强,也可以把它设计成一个“综合与实践”活动。

  4.增加求圆与外切正方形、内接正方形之间面积的内容。

  在“圆的面积”部分,增加了解决实际问题的内容,即求圆与外切正方形、内接正方形之间的面积。要求学生利用图形之间的关系,灵活计算这两部分的面积,并在“讨论”环节进一步得出更为一般化的结论。

  要计算正方形的面积,首先要求出正方形的边长,这是比较常规的思路。例如,求圆的外切正方形的面积时,观察到正方形的.边长和圆的直径相等,所以很容易求出来。但在求圆的内接正方形的边长时却遇到了困难,圆的直径和正方形的对角线相等,但没有办法直接求出正方形的边长。此时,教材引导学生改变观察角度,把正方形分割成两个三角形,这两个三角形的底是圆的直径,高是圆的半径,很容易求出其面积。在解决几何问题时,经常会有这种“山重水复疑无路,柳暗花明又一村”的情形。有时,换一个角度看问题,会发现一个全新的世界。经历这样的问题解决过程,有助于提高学生多角度分析问题的意识和能力。

  解决了圆半径是1m的特殊问题后,教材在“回顾与反思”环节,进一步讨论半径为r的情况,使学生发现,圆的外切正方形面积是4r2,外切正方形与圆之间的面积是0.86r2,内接正方形的面积是2r2,圆与内接正方形之间的面积是1.14r2。这些结果中隐藏着很多有意思的数学事实,如:外切正方形的面积始终是内接正方形面积的2倍,外切正方形与内接正方形之间的面积正好是2r2,即和内接正方形面积相等,等等。

  5.“扇形”由选学变为正式教学内容。

  扇形的内容是学习扇形统计图的必要基础,根据《标准(20xx年版)》对相关内容的调整,此次修订把这部分内容由选学变为正式教学内容。

  (二)具体编排

  1.圆的认识

  (1)圆的各部分名称、圆的性质。

  教材首先呈现了自然界和社会生活中形形色色的“圆”,其中包括许多同心圆。丰富的圆形图案,使学生感受到圆很美,同时,感受到数学就在身边,激发起良好的学习情绪。

  接下来,请学生想办法在纸上画一个圆,学生可以调动以前的经验,用茶杯盖、三角尺上的圆洞等圆形物体进行描摹,也可以用圆规画圆。用实物画圆也是很有意义的动手实践机会,但画出的圆的大小是固定的,不能随意变化。而用圆规画圆却可以在两脚叉开的范围内画出任意大小的圆来。在画圆环节出现用圆规画圆,也是尊重学情的一种体现。学生在课外应该都尝试过用圆规画圆,但是如何画得标准,画得轻松,还需教师进一步指导。

  利用圆规画圆,引出圆的各部分名称。一方面,与前面的活动自然衔接;另一方面,画圆的过程非常切合“圆是到定点的距离等于定长的所有点的集合”这一几何学的定义。通过这一过程引出圆心、半径、直径等概念,将动手操作、观察思考、概念引出融为一体,自然流畅。

  对圆特征的认识,分四个层次编排:首先,让学生将画好的圆折一折、画一画、量一量,发现沿着任意一条直径对折,两边可以重合,说明了圆是轴对称图形。

  第二,通过对折痕的观察和想象,让学生理解半径和直径都有无数条。

  第三,通过测量与比较,让学生认识到同一圆内所有的半径都相等,所有的直径也都相等,并且直径的长度是半径的2倍。第四,结合画圆的经验,理解圆心可决定圆的位置,半径可决定圆的大小。

  (2)利用圆设计图案。

  尺规作图是一项有着悠久历史、充满魅力的数学技能。教材在认识圆之后,安排了这样一个实践性内容,既可以让学生进一步熟练用圆规画圆的技能,促进学生对圆的特征的进一步认识,又能让学生在用尺规画出漂亮图案的过程中提高动手操作的能力,学会欣赏数学的美,培养热爱数学学习的情感。

  教材先以分解的步骤,展示了如何利用圆的特征,一步一步画出四个花瓣式的漂亮图案。这中间,涉及到充分利用圆的对称性,需要学生学会确定某个圆或半圆的圆心和半径,这也是圆心和半径分别确定圆的位置与大小的最直接应用。此外,还需要学生添加一些辅助线。因此,这样的活动体现了很强的综合性。

  之后,教材呈现了两个更复杂的图案,让学生尝试画一画,这需要学生综合运用观察、思考、动手等多方面的技能。教材给出了一些辅助线加以提示,需要学生对已经成形的图案进行“分解”,知道每一部分是怎么来的。用直尺画出基本的图形后,再进行涂色,涂不同的颜色,也会形成不同的作品。

  2.圆的周长

  (1)圆的周长计算公式的推导。

  圆的周长计算在实际生活中有广泛的应用,因此,教材从“要在圆桌和菜板的边缘箍上一圈铁皮,求铁皮的长度”这一学生熟悉的实际情境引入,帮助学生理解圆的周长的概念。

  学生已经具备了测量一般图形(物体)周长的技能,因此,面对“分别需要多长的铁皮”的问题,他们完全能想到解决的办法:拿卷尺直接绕一圈量,或者把圆形物体在直尺上滚一圈再量出长度,或者拿线在圆形物体上绕一圈,量出线的长度。学生在解决实际问题的过程中感受了方法多样性和“化曲为直”的转化思想。更重要的是,圆周长概念的内涵,就在这样的过程中得以清晰化、直观化。

  方法需要优化,思维需要提升。教材在此基础上提出“除了上面的方法,还可以怎样求圆的周长呢?”要求学生跳出绕、滚、围等策略的测量方法,找到一种更为一般化的方法。通过“圆的周长和圆的大小有关系,圆的大小取决于……”,启发学生将问题解决的方向放在从圆本身的特征去想办法突破。

  上方的表格,是引导学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。

  在这个内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程,理解并掌握圆的周长计算方法。

  教材通过直接介绍的方式说明周长与直径的比值是一个固定的数,叫做圆周率,用字母“π”来表示。为了方便学生计算,教材规定“π”这个无限不循环小数常常只取它的近似数,即两位小数3.14。根据圆的周长和直径的倍数关系,可以得出求圆的周长的计算公式:C=πd或C=2πr。

  (2)例1。

  本例是一个与圆的周长计算有关的实际问题。通过学生经常看到或使用的自行车引出问题,能让学生体会到数学知识的广泛应用。自行车的后轮半径是33cm,它滚一圈能走多远,那就是求它的周长。这样的问题,是“化曲为直”思想的应用--用曲的车轮周长计量自行车前进的距离。第二个问题带有更强的现实性,“小明从家到学校1km,轮子大约转了多少圈?”学生必须通过计算,才能解决这个问题。得出的相关结果,也能加强学生的生活经验。

  3.圆的面积

  (1)圆的面积计算公式的推导。

  教材首先通过计算圆形草坪占地面积的实际情境提出圆面积的概念,一方面使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”,另一方面使学生体会在实际生活中计算圆面积的必要性。

  学生以前所学的图形都是多边形(如三角形、长方形、正方形、平行四边形、梯形等),像圆这样的曲线图形的面积计算,学生还是第一次接触到。把圆分割成若干等份后拼成近似的长方形的方法,学生很难自主发现,因此,教材直接给出明确的提示,让学生把圆分成若干等份,拼一拼。接下来的过程,则主要交给学生自主探索。

  教材让学生通过观察,看到拼出的是近似的长方形(或平行四边形),随着分的份数越来越多,拼出的图形越来越接近于长方形,体会“无限逼近”的极限思想。这个近似的长方形的的长和宽与圆的周长、半径有着紧密的联系。引导学生通过观察、对比,利用圆与长方形之间的关系,自行推导出圆的面积计算公式。

  (2)例1。

  本例是在学生推导出了圆面积计算公式以后,用此公式解决本节开头的实际问题。求的是铺满草皮需要多少钱,这一问题比“求草皮面积是多少”更有现实意义、更自然。要求铺满草皮需要多少钱,首先要求圆形草皮的面积。

  (3)例2。

  本例是求圆环的面积,教材通过插图帮助学生了解什么叫圆环,理解求圆环的面积是用外圆面积减去内圆面积。教材给出了两种算法:3.14×62-3.14×22和3.14×(62-22)。教材也有意引导学生根据乘法分配律,采用相对简便的算法,这样,可以大大减少计算的繁杂程度,减少计算出错的可能性。

  (4)例3。

  本例通过让学生解决圆的内接正方形、外切正方形与圆之间部分的面积这一实际问题,经历问题解决的全过程,并在解决具体问题的基础上发现更为一般的数学规律,提高发现问题、提出问题、分析问题、解决问题的能力。

  例题以中国古建筑中“外方内圆”和“外圆内方”两种经典设计为情境,直观清晰地提出了需要解决的数学问题--求正方形与圆之间的那部分面积。两个图中的圆大小相同,但正方形位置与大小都不同。很自然地引出一个问题:中间部分的面积与圆的面积有没有关系?有什么样的关系?例3是给出一个特殊的圆半径,先解决特殊问题,在“反思”部分再讨论一般性的规律。

  “分析与解答”引导学生根据图示寻找正方形与圆之间的关系。第一个图,很容易看出正方形的边长就是圆的直径;第二个图,正方形的边长不知道,不能用边长的平方直接计算面积。此时,就需要转换思路,将正方形看成两个底是圆的直径、高是圆的半径的三角形(或四个小三角形)。

  在前面的解题环节,学生发现正方形与圆之间的面积与圆的半径是有关的,那到底有什么样的关系呢?因此,在“回顾与反思”这一环节,需要继续延伸讨论,进一步探讨一般化的结论。圆的半径是r与半径是1m的解题思路完全相同,因为半径1m只是其中的一种特例。让学生利用刚才的方法,得到一个代数式的结果。把r=1m代入,与前面的结果相符,以此检验这个代数式的正确性。

  4.扇形的认识

  教材呈现了三个名称中含有“扇”的物体,引出问题:什么是扇形?这样的引入方式,把扇形这个数学名词与学生已有的生活经验建立联系,有助于激发学生的研究兴趣。

  教材结合图示,以直接介绍的方式,揭示了“弧”“扇形”“圆心角”等术语的含义。事实上,扇形就是弧和圆心角所组成的图形。《几何原本》中这样定义扇形:由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形叫做扇形。

  扇形的大小与圆心角的大小紧密相关,也与所在圆的半径大小有关。到第七单元学习扇形统计图时,还用到了各部分扇形的大小占整个圆的百分数。这些,需要学生直观感知并理解,但总体要求并不高,例如,扇形统计图中没有提出计算各扇形圆心角的明确要求。因此,教材上只列出了两类特殊的扇形:半圆为弧的扇形对应的圆心角是180°,圆为弧的扇形对应的圆心角是90°。

  四、教学建议

  1.引导学生动手操作、自主探索圆的特征。

  2.注重引导学生运用和体验转化、极限等数学思想方法。

  3.紧密结合生活素材,培养学生在日常生活中应用数学的意识和能力。

  确定起跑线

  一、教学内容

  确定标准运动场400m跑的各跑道起跑线。

  二、教学目标

  1.使学生了解田径场以及环形跑道的基本结构,学会综合运用圆的周长等知识来计算并确定400m跑的起跑线。

  2.使学生经历观察、计算、推理等数学活动过程,发展综合运用数学知识解决实际问题的能力,体会抽象、推理等基本的数学思想。

  3.使学生体会数学知识在生活中的广泛应用,增强数学学习的积极性。

  三、具体编排

  本活动主要由以下三个部分组成。

  (1)发现和提出问题。

  教材以400 m跑为背景,呈现起跑时的真实情况,引导学生发现生活问题:为什么都是跑400m,运动员要站在不同的起跑线上?使学生通过对起跑线位置的关注和思考,进一步提出更多的数学问题,例如:是不是起跑线在前面的选手跑的路程更短些?比赛是公平的,每个人跑的路程应该同样长,那为什么起跑线是不同的呢?难道每条跑道的终点线也设置得不同?引导学生学生根据生活经验发现:终点是相同的,但外圈和内圈的长度是不同的。如果起跑线相同的话,外圈的同学跑的距离长,不公平。所以外圈跑道的起跑线位置应该往前移。在此认知基础上,很自然地提出本活动的核心问题:各条跑道的起跑线应该相差多少米?即如何确定每条跑道的起跑线。

  (2)分析和解决问题。

  教材第二幅图中呈现了小组同学测量有关数据的场景,旨在帮助学生了解一个标准运动场环形跑道的结构以及各部分的数据:标准运动场中间是个长方形,两边分别是两个半圆。长方形的长是85.96 m,宽是72.6 m。跑道是由一些平行线段和一些同心的半圆组成的。这些平行线段的长度是85.96 m,最内侧半圆的直径为72.6 m,越往外侧,半圆的直径越大,每条跑道宽度为1.25 m。短跑比赛时,不允许变更跑道,但在过弯道时,选手一般会贴着跑道内侧跑,因为这样距离最短。

  学生对已获得的数据进行整理,通过讨论明确以下信息:

  (1)两个半圆形跑道合在一起就是一个圆。

  (2)各条跑道直道长度相同。

  (3)每圈跑道的长度等于两个半圆形合成的圆的周长加上两个直道的长度。

  在学生明确解决问题的思路和方法后,教材在第四幅图中给出了一个表格。通过让学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长,从而计算出相邻跑道长度之差,确定每条跑道的起跑线。在计算时,有的学生是分别先计算出每条跑道中半圆的半径,再计算出圆周长,再计算出跑道长度,计算比较繁琐。而有的学生发现相邻跑道的长度之差只体现在圆的周长之差,相邻两个圆的周长之差都相等,即1.25πm。这样,通过推理,每往外一圈,跑道的长度就多1.25πm,为了保证比赛公平,每往外一圈,起跑线就要往前挪1.25πm。

  (3)发现和提出新的问题。

  问题解决不应止于解决某个具体问题,而应在此基础上引发进一步的思考。例如,教材在最后引导学生继续思考:200 m赛跑中的跑道起跑线应如何设置?

  四、教学建议

  1.借助学生的生活经验,自然提出问题。

  2.教师可以帮助学生提前搜集相关数据。

  3.引导学生灵活解决问题。

  4.教师可以介绍更多的体育比赛的知识。

六年级数学上册教案6

  一、学生情况分析

  本班共有学生56人,其中男生35人,女生21人,学生的听课习惯已初步养成,并班上同学思想比较要求上进,有部分学生学习态度端正学习能力强,学习有方法,学习兴趣浓厚;另一部分学生表现为学习目的不明确,学习态度不端正,作业经常拖拉甚至不做。从去年的学习表现看,学生的计算的方法与质量有待进一步训练与提高。故在新学期里,我们在此方面要多下苦功,面向全体学生,全面提高学生的素质,全面提高教育教学质量,为培养更多的四化建设的新型人才而奋斗。

  二、教材分析和教学目标

  (一)数与代数

  1.第二单元“百分数的应用”。学生将在这个单元的学习中,在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解;能利用百分数的有关知识或运用方程解决一些实际问题,提高解决实际问题的能力,感受百分数与日常生活的密切联系。

  2.第四单元“比的认识”。学生将在这个单元的学习中,经历从具体情境中抽象出比的过程,理解比的意义及其与除法、分数的关系;在实际情境中,体会化简比的必要性,会运用商不变的性质和分数的基本性质化简比;能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。

  (二)空间与图形

  1.第一单元“圆”。学生将在这个单元的学习中,结合生活实际,通过观察、操作等活动认识圆及圆的对称性,认识到同一个圆中半径、直径、半径和直径的关系,体会圆的本质特征及圆心和半径的作用,会用圆规画圆;结合具体情境,通过动手实验、拼摆操作等实践活动,探索并掌握圆的周长和面积的计算方法,体会“化曲为直”的思想;结合欣赏与绘制图案的过程,体会圆在图案设计中的应用,能用圆规设计简单的图案,感受图案的美,发展想象力和创造力;通过观察、操作、想象、图案设计等活动,发展空间观念;结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象,解决一些简单的实际问题;结合圆周率发展历史的阅读,体会人类对数学知识的不断探索过程,感受数学文化的魅力,激发民族自豪感,形成对数学的积极情感。

  2.第三单元“图形的变换”。学生将在这个单元的学习中,通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,能有条理地表达图形的平移或旋转的变换过程,发展空间观念;经历运用平移、旋转或作轴对称图形进行图案设计的过程,能灵活运用平移、旋转和轴对称在方格纸上设计图案;结合欣赏和设计美丽的图案,感受图形世界的神奇。

  3.第六单元“观察物体”。学生将在这个单元的学习中,能正确辨认从不同方向(正面、侧面、上面)观察到的立体图形(5个小正方体组合)的形状,并画出草图;能根据从正面、侧面、上面观察到的平面图形还原立体图形(5个正方体组合),进一步体会从三个方向观察就可以确定立体图形的形状;能根据给定的两个方向观察到的平面图形的`形状,确定搭成这个立体图形所需要的正方体的数量范围;经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点、观察角度的变化而改变,能利用所学的知识解释生活中的一些现象。

  (三)统计与概率

  第七单元“统计”。学生将在这个单元的学习中,通过投球游戏、两城市降水量等实例,认识复式条形统计图和复式折线统计图,感受复式条形统计图和折线统计图的特点;能根据需要选择复式条形统计图、复式折线统计图有效地表示数据;能读懂简单的复式统计图,根据统计结果做出简单的判断和预测,与同伴进行交流。

  (四)综合应用

  本册教材安排了三个大的专题性的活动,即“数学与体育”、“生活中的数”,旨在促使学生综合运用所学的知识解决某一生活领域的实际问题。教材还安排了“看图找关系”的专题,旨在使学生体会图能直观、清晰、简捷地刻画关系。同时,还在其他具体内容的学习中,安排了某些综合运用知识解决简单的实际问题的活动。学生在从事这些活动中,将综合运用所学的知识和方法解决实际问题,感受数学在日常生活中的作用;获得一些初步的数学活动经验和方法,发展解决问题和运用数学进行思考的能力;感受数学知识间的相互联系,体会数学的作用;在与同伴合作和交流的过程中,发展数学学习的兴趣和自信心。

  (五)整理与复习

  教材安排了两个整理与复习。整理与复习改变单纯做题的模式,注重发展学生自我反思的意识。每个整理与复习都分成三部分:对所学内容的整理,提出数学问题并尝试解答一些练习题目。

六年级数学上册教案7

  教学目标

  1.认识掌握圆柱各部分名称,建立圆柱体空间概念;

  2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。

  教学重点和难点

  1.教学重点:推导圆柱体侧面积的计算方法。

  2.教学难点:圆柱体侧面积公式的推导过程。

  教学过程设计

  (一)复习准备

  师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?

  生:长方形。

  师把长方形贴在黑板上。

  师:面积如何求?

  生:长方形面积=长宽。(师板书)

  师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。

  师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?

  然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。

  师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?

  师:今天我们就来学习一种新的形体圆柱体。(板书课题圆柱)

  (二)学习新课

  1.圆柱体的认识。

  师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)

  生:上、下两个面和周围一个面。

  师:上、下两个面是什么形状?它们的面积大小怎样?

  生:上、下两个面是圆形,面积相等。

  师:我们把圆柱上、下两个面叫做底面。(板书:底面)

  师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)

  师:我们把一个圆在平面上滚动一周,痕迹是一条线段。如果把这个圆柱在平面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?

  生:是一个长方形。

  师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)

  师接着拿出两个高矮不一样的圆柱体。

  师问:为什么有高有矮呢?由什么决定的?

  生:由高决定的。

  师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。

  师出示投影,让学生指出高。

  师:圆柱的高有多少条?

  生:无数条。

  师:高都相等吗?

  生:都相等。

  师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)

  师:我们讲的圆柱体都是直圆柱。

  2.圆柱的侧面积。

  (1)推导公式。

  师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。

  讨论题目是:

  a:这个长方形与圆柱体有哪些关系?

  b:你能推导出圆柱体侧面积计算方法吗?

  然后学生汇报讨论结果。

  生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长高。用字母公式表示为:S侧=Ch。

  老师板书公式。

  (2)利用公式计算。

  例1 一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

  老师在黑板上板演。

  下面同学们进行练习。投影练习题:

  ①一圆柱底面半径是5厘米,高5厘米,求侧面积。

  ②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。

  ③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。

  师:你能知道第③题圆柱侧面展开图是什么图形吗?

  3.圆柱的表面积。

  师在课题圆柱后面接着写的表面积。

  (1)推导公式。

  师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)

  生汇报讨论结果,老师板书公式:

  S表=S侧+2S圆

  (2)利用公式计算。

  (投影出示)

  例2 计算圆柱体的表面积(见下图)。(单位:厘米)

  同学说思路,老师板书,注意每一步结果写计量单位。

  解 ①侧面积:23.14515=471(平方厘米)

  ②底面积:3.1452=78.5(平方厘米)

  ③表面积:471+78.52=628(平方厘米)

  答:它的表面积是628平方厘米。

  例3 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)

  同学说思路,列式。老师把正确的解答用投影打出来。

  (1)水桶的侧面积

  3.142024=1507.2(平方厘米)

  (2)水桶的底面积

  3.14(202)2

  =3.14102

  =3.14100

  =314(平方厘米)

  (3)需要铁皮

  1507.2+314=1821.21900(平方厘米)

  答:做这个水桶要用铁皮1900平方厘米。

  小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?

  (三)巩固反馈

  (1)看书第54页第1题。

  (2)投影,指出下面圆柱体的高是几?

  (3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少平方米?(只列式)

  (4)一种轧道机,后轮直径1.32米,长1.27米。如果后轮每分钟转动6周,每分钟可轧路面多少平方米?(只列式)

  (5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少平方分米?(结果保留一位小数。)

  (6)一种圆柱形小油漆桶,底面周长50.24厘米,高20厘米。每个桶用铁皮多少平方分米?(四人讨论后口头回答。)

  学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。

  思考题:

  (1)你要做一个圆柱体,先确定什么条件?你是怎样做的?

  (2)我们在学习圆面积时,用两个完全一样的`圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?

  提示:

  课堂教学设计说明

  本节课的教学设计分三个层次。

  第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。

  第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。

  首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转平面、形变量不变的辩证关系,培养同学们的观察分析能力。

  第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。

六年级数学上册教案8

  第3单元分数除法

  【教学内容】教材37页例4及练习八的1-5题

  【教学目标】

  知识与技能:

  1.使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

  过程与方法:

  2.进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  情感、态度与价值观:

  3.培养学生良好的学习习惯。

  【教学重难点】

  重点:能熟练地列方程解答这类应用题

  难点:提高解答应用题的能力。

  【导学过程】

  【自主预习】

  1、下面各题中应该把哪个量看作“1”。

  ⑴小军的体重是爸爸体重的3/8;

  ⑵故事书的本数占图书总数的3/5;

  ⑶棉田的面积占全村耕地面积的2/5;

  ⑷汽车的速度相当于飞机速度的.2/3。

  2、填空

  ⑴白兔的只数占总只数的2/3,总只数×2/3=();

  ⑵男生人数的2/5恰好和女生同样多,()× 2/5=();

  ⑶甲数正好是乙数的3/8,()×()=()。

  3、一个儿童体重35千克,他体内所含的水分占体重的4/5。他体内的水分有多少千克?

  请写出它的数量关系并解答。

  4、请把上题改为一道除法应用题。

  5、自学教材37页的内容。

  【合作探究】

  小组讨论交流,说说自己的想法:

  1、说一说占体重的4/5这句话是什么意思?并根据题意判断把哪个量看作单位“1”?

  2、请用线段图表示题中的条件和问题。请结合自己画的线段图分析解答。

  ①4/5是哪个数量的4/5?以哪个数量为标准把它看作单位“1”?单位“1”是已知的还是未知的?

  ②哪个数量占体重的4/5?换句话说,体重的4/5是什么?可以用怎样的数量关系式表示?

  ③要求这个儿童的体重可以用什么方法解答?

  A、用方程的方法

  B、还可以用算术方法

  3、比较例1和自学题(小组讨论)

  ①这两道题在结构上的异同点,相同点:题中给出的数量(),数量间的关系也();不同点:已知条件和问题不同。

  ②这两道题在解法上的异同点,相同点:都要先确定单位“1”;不同点:自学题中的单位“1”是已知的,用乘法算;例1中的单位“1”是未知的,可以用方程(或除法)解答。

  ③解答分数应用题的一般步骤:

  A、要认真审题,确定好单位“1”.

  B、分析它是已知的还是未知的

  C、正确找出题中的数量关系。

  D、根据数量关系确定方法并解答。

  【知识梳理】

  本节课你学习了哪些知识?

  【随堂练习】

  1、完成37页“回顾与反思”。

  2、文字题

  ⑴56米的是多少?

  ⑵一个数的是,这个数是多少?

  3、王新买了一本书和一枝钢笔。书的价格是4元,正好是钢笔价格的。钢笔的价格是多少元?

  4、练习八的1-5题。

六年级数学上册教案9

  第六单元《百分数》

  第1课时教学课题百分数的意义和写法

  教学目标

  知识与技能:使学生理解百分数的意义;能够正确的读写百分数、运用百分数解决简单的实际问题。

  过程与方法:使学生经历收集、分析、处理信息的过程,培养学生分析、比较、抽象、概括的能力和与人交流合作的能力。

  情感态度与价值观:使学生感受百分数在实际生活中的广泛应用,同时结合相关信息对学生进行思想教育。

  教学重点:

  百分数的意义和写法。

  教学难点:

  百分数与分数的联系和区别

  教学流程

  (一)谈话引入,揭示课题。(2分钟)

  师:同学们,课前教师让大家收集生活中的百分数,收集到了吗?在哪儿收集的?容易找吗?这说明了什么?

  既然百分数这么有用,这节课我们就来学习百分数好吗?你想学习有关百分数的哪些知识?

  这节课我们重点学习百分数的意义和写法。(板书课题)

  (二)探究百分数的意义和写法。(20分钟)

  1、百分数的意义

  师:请同学们看大屏幕:(出示三杯糖水)

  你认为哪杯糖水更甜?

  学生争论后得出不好判断的结论。

  老师给出三杯糖水中糖的含量:7克、13克、9克。问:这下能判断吗?还需要什么条件?

  再给出糖水的重量:20克、50克、25克。问:这下能判断吗?看什么?

  生:看糖占糖水的几分之几?

  根据学生的回答板书:

  师:这样能判断哪个杯更甜吗?怎样就容易看出来了?(通分)

  师:百分数表示的是两个数量之间的倍数关系,是一个分率,后面不能带单位名称,所以百分数又叫百分率或百分比。(板书)

  2、百分数的写法:

  师:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。(板书)师示范写35%。

  请一位学生板演26%、36%,其他学生在本上写。

  师生交流:百分数怎样写规范、美观?

  ①两个小圆圈要写的小一点。②斜线的倾斜程度。

  3、由刚才的不好判断,到现在的一目了然,是谁帮了我们的忙?大家在课前已经收集了许多生活中的百分数,你现在能说说这些百分数的具体含义吗?好,下面我们就来交流一下:四人小组交流,说说你收集的百分数,表示什么意思?

  (全班交流)谁愿意向大家展示你收集的百分数?说说它的意义。

  4、老师也收集了一些百分数,想不想看?

  出示:读一读

  (1)我国的耕地面积占世界耕地面积的7%;

  (2)我国人口占世界人口的22%;

  (3)在北京奥运会上,我国体育健儿共获得51枚金牌,占金牌总数的16.9%;

  (4)我国发射人造卫星的成功率是100%。

  这些百分数都表示什么意义,你知道吗?

  看了这些信息,你想说什么?

  (三)百分数与分数的区别和联系。(5分钟)

  1、小组讨论:百分数与分数有什么区别和联系?

  2、学生:

  学生可能回答:①分子②分母③读法④意义等的不同。

  课件出示:

  下面哪个分数可以用百分数来表示?哪个不能?说说为什么?

  一堆煤吨,运走了它的。

  百分数是分数吗?分母是100的分数是百分数吗?

  得出结论:分数即可以表示两个数之间的倍数关系,也可以表示一个具体的数量,百分数只能表示两个数之间的倍数关系。百分数是特殊的分数。

  (四)、拓展应用

  1、百分数在我们的生活中无处不在,成语里也有百分数。

  课件出示:请将下列词语用百分数表示出来

  十拿九稳百里挑一百战百胜一举两得

  (设计意图:使学生认识到生活中处处有数学)

  (五)、总结

  1、这节课你对自己的表现满意吗?用一个百分数表示你的满意程度。

  2、对教师满意吗?也用一个百分数表示。

  3、最后,教师送给同学们一句名言,与大家共勉。

  天才=99%的汗水+1%的灵感。

  作业设计做一做

  板书设计百分数的意义和写法

  14%读作:百分之十四

  65.5%读作:百分之六十五点五

  120%读作:百分之一百二十

  反思

  第2课时教学课题百分数与小数互化

  教学目标

  知识与技能:使学生理解并掌握百分数和小数互化的方法,能正确地把小数化成百分数或把百分数化成小数;在计算、比较,分析、探索百分数小数互化的规律的过程中,发展学生的`抽象概括能力。

  过程与方法:通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。

  情感态度与价值观:学生在教师的精心引导下,主动参与到数学活动中,通过合作交流,得出结论,提高数学素养。

  教学重点:

  百分数与小数互化的方法,能正确进行两者之间的互化。

  教学难点:

  归纳百分数与小数互化的方法。

  教学流程

  一、复习导入

  1、百分数的意义是什么?指生回答。

  生1:带有百分号的数叫百分数。

  生2:表示一个数是另一数的百分之几的数叫百分数。

  2、百分数与分数的区别在哪里?为什么要把百分数单独列一单元?

  百分数表示两个数之间的倍比关系,又叫百分比或百分率,不能带计量单位;分数既可以表示两个数之间的倍比关系,叫分率,也可以表示具体的数量,能带计量单位。

  百分数与分数既有联系又有区别,它在生活中广泛的运用到,所以有必要单独为一单元。

  3、我们学过了整数、小数、分数、百分数,板书课题

  二、看到这个课题,你想知道什么?

  生1:为什么要转化?

  生2:怎样转化?

  师:对呀,为什么要相互转化呢?引导学生说出转化的意义。一是便于计算,二是便于比较。(板书),那怎么转化呢?这就是我们今天主要研究的内容。不过,百分数怎么转化成小数,小数又怎么转化成百分数,老师想把讲台让给你们,请同学们来当小老师,让讲台成为你们的舞台。

  三、合作探究,学习新知

  1、学生自学课本84页(两分钟)

  2、小组讨论(三分钟)

  3、指生上台汇报,集体交流小数转化成百分数的方法

  (1)出示例1:(要求学生讲)

  (2)小老师甲:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。

  3÷5=0.6= =60%

  4÷6≈0.667 = =66.7%

  (3)小老师乙:请大家观察一下,这个过程先把小数化成了分数,显得麻烦了些。而我可以将小数直接化成百分数的。只要把小数点向右移动两位,同时在后面添上百分号就行了。

  (4)教师说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。

  4、师:学到这里也累了,今天要学习的内容学完了吗?(没有,还有百分数转化成小数的方法没学),噢,那我们接着学百分数如何转化成小数的。

  (1)出示例2:(要求学生讲)

  (2)小老师丙:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。

  (3)启发学生口述每题的转化过程,板书:

  750×20%

  =750÷

  =750×0.2

  =150(人)

  750×20%

  =750×

  =750×

  =150(人)

  (4)小老师丁:老师,我的方法更简便,能将百分数很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)

  (5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变四、拓展应用:做一做

  五、总结:通过这节课的学习你想和大家说点什么?

  作业设计练习十八6、7题

  板书设计百分数与小数互化

  例1、3÷5=0.6= =60%

  4÷6≈0.667 = =66.7%

  例2 750×20% 750×20%

  =750÷ =750×

  =750×0.2 =750×

  =150(人)=150(人)

  反思

六年级数学上册教案10

  设计说明

  1.立足于学生已有的知识经验,借助旧知展开教学。

  本设计充分利用“黄豆营养成分”这一情境,对教材内容略做调整,通过让学生自己提出问题并解决问题的活动方式,自然引出“求一个数的百分之几是多少,用乘法计算”这一新知,调动学生已有的知识储备,与分数乘法应用题作比较,体会两种问题的共同特征,以实现新旧知识的自然过渡。

  2.渗透数学思想,促进学生对数学本质的探究。

  在对一个数乘百分数的算法的探究中,当学生发现可以将百分数转化成分数和小数来计算时,我向学生提出了“将新知识转化成学过的知识来解决问题”是学习数学的好方法这一理念,这既能对学生的学习方法进行指导,也能对学生进行数学思想的渗透。一节好的数学课,不仅要求教师完美地将数学知识呈现给学生,更重要的是让学生从数学学习中获得有价值的思想方法,这些在学生的后续学习中会用到,数学课的魅力应该体现在对学生思想的启迪上。

  课前准备

  教师准备,PPT课件

  学生准备,收集有关食物营养含量的信息

  教学过程

  ⊙创设情境,激趣导入

  1.创设情境。

  师:(手里拿一把黄豆)请同学们估一估,这些黄豆大约有多少克?(约250g)

  师:你们知道黄豆中含有哪些营养成分吗?(蛋白质、脂肪、碳水化合物等)

  师:你们的想法和营养学家检测出来的结果是一样的,营养专家还检测出了有关数据,让我们一起来看一看吧!

  课件出示:黄豆中的蛋白质含量约占36%,脂肪含量约占18%,碳水化合物含量约占25%。

  师:你能从中发现哪些数学信息?

  2.引入新课。

  师:你们知道我手中的这些黄豆含有多少克蛋白质吗?这节课我们就来解决有关蛋白质含量的问题。(板书课题:营养含量)

  设计意图:教师通过手拿黄豆的情境,结合课件,让学生了解到原来黄豆含有这么多有营养的物质。教学从生活实际出发,激发学生的学习兴趣,让学生在现实情境中体会和理解数学,发现生活中的.数学问题。

  ⊙自主合作,探究新知

  1.解决蛋白质含量的问题,应该如何列式?

  (1)师:我们已经收集到了很多关于黄豆营养含量的问题,你们能利用收集到的信息,设计一个求蛋白质含量的问题吗?

  (学生提取有用信息,编写题目:黄豆中的蛋白质含量约占36%,在250g黄豆中,蛋白质约有多少克)

  (2)师:下面请同学们独立列出算式解决这个问题,要注意解释清楚为什么要这样列式。

  学生独立思考,列式并汇报交流。

  ①你能试着用画图法来理解吗?学生试着画图。

  通过画图我们知道,求蛋白质约有多少克,就是求250g的36%是多少。

  ②学生试着列式:250×36%。

  ③列式依据:“求一个数的几分之几是多少,用乘法计算”,这道题是求250的36%是多少,所以也要用乘法计算。(36%化成分数是,这道题也可以理解为“求250的是多少”,所以用乘法计算)

  2.计算蛋白质含量,学习百分数化成小数、分数的方法。

  (1)师:你们有办法解决吗?请同学们以250×36%为研究对象,4人一组展开交流,共同商量解决的办法,并将计算过程写在练习本上。

  (2)学生交流并展示学习成果。

  方法一:把百分数化成分数计算。

  36%==250×36%=250×=90(g)

  方法二:把百分数化成小数计算。

  36%=0.36 250×36%=250×0.36=90(g)

  (3)方法总结:将新知识与旧知识联系起来,将新知识转化成我们已经学过的数学知识来解答,这是我们解决数学问题的好方法。

六年级数学上册教案11

  单元分析:

  一、教材分析

  1.本单元教材是在学生已经认识了圆,并学习了长方形、正方形等平面图形以及它们的周长、面积计算的基础上学习圆的知识,为以后学习圆柱、圆锥等知识打下基础。

  2.本单元的主要内容是:圆的认识、圆的周长和圆的面积。

  二、单元教学目标

  1.结合生活实际,通过观察、操作等活动,认识圆及圆的特征;认识半径、直径,理解同圆中直径与半径的关系;会用圆规画圆。

  2.理解圆周率的意义,掌握圆周率的近似值;掌握圆的周长与面积的计算公式,并能正确计算。

  3.在探索圆的周长与面积的计算公式的过程中,体会“化曲为直”、“化圆为方”的思想。

  三、教学重点、难点

  圆的特征和圆面积的推导过程,以及圆周长和面积的计算。

  四、课时安排:6课时

  圆的认识

  教学目标

  1.结合生活实际,通过观察、操作等活动,认识圆及圆的特征;认识半径、直径,理解同一圆中直径与半径的关系。

  2.初步学会用圆规画圆,培养学生的作图能力。

  3.结合具体情境,体验数学与日常生活的密切联系,能用圆的知识来解释生活中的简单现象,解决一些简单的实际问题。

  教学重点

  圆的各部分名称及其各部分之间的关系。

  教学难点

  掌握圆的正确画法。

  课前准备

  圆形纸、圆规、直尺、三角板、圆形实物。

  课时安排: 1课时

  授课人

  授课时间

  教学过程

  一、创设情境

  谈话:同学们,你认识这些交通工具吗?仔细观察他们有什么共同点?

  出示情境图,学生观察。

  谈话:这些轮子都是圆形的。根据这些信息,能提出什么数学问题?

  轮子为什么设计成圆形的呢?……

  二、探索新知

  1.谈话:轮子为什么设计成圆形的呢?今天,我们就来解决这个问题。下面,请大家画一个圆,研究一下。

  谈话:同学们得到圆了吗?谁能说说你是怎样画出圆的呢?

  学生交流。

  学生可能会出现不同的方法;

  ①用图钉、细线和铅笔画图,画时图钉要固定好,细线要拉紧,就可以画出一个圆。

  ②用圆形的瓶子盖可以画出一个圆。

  谈话:我们来看这几个同学画的,有什么问题吗?(不圆)为什么会不圆呢?你们画的时候有问题吗?

  学生阐述自己的想法,师生予以评价。

  谈话:怎样才能画出一个规范的'圆呢?给大家介绍一种画圆的仪器——圆规。请大家用圆规画圆试一试。谁来说说你是怎样画的?

  学生交流:用圆规画圆时,先把圆规的两脚分开,定好两脚之间的距离,再把有针尖的一脚固定在一点上,把有铅笔的一脚旋转一周。

  谈话:有针尖的一脚固定的这一点,叫做圆心,用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。(教师边讲边板书在黑板上)

  请同学们打开书,看自主练习第2题:找出下面圆的直径和半径。(生答)

  2.谈话:直径和半径是圆中不同的线段,它们之间有什么关系呢?请同学们小组合作研究一下试试?

  谈话:哪个小组说一说你们是怎研究的?有什么发现?

  学生可能会出现下列情况:

  ①通过对折,发现圆有无数条直径。

  ②通过画一画,我发现圆有无数条半径。

  ③通过测量发现同一个圆里所有的直径都相等,所有的半径都相等。

  ④通过对折或测量发现这个圆中,直径是半径的两倍,半径是直径的一半。用字母可以表示为:r=1÷2d; d=2r。

  3.谈话:谁能用今天学习的内容解释轮子为什么设计成圆形的?

  三、巩固应用

  1、自主练习第2题(多媒体出示)。

  2、自主练习第3题(多媒体出示,学生自主做在书上,集体交流)。通过练习,进一步巩固半径直径的关系。

  直径(D)

  半径(R)

  圆形桌面

  90 CM

  压路机前轮

  0.62M

  自行车轮

  7.1DM

  钟面

  120MM

  四、全课小结

  谈话:这节课你有什么收获?你对自己的表现满意吗?

  板书设计

  圆的认识

  圆心o,画圆时固定的一点,确定圆的位置。

  半径r,从圆心到圆上任意一点的线段,半径决定圆的大小,同圆或等圆中有无数条半径,半径都相等。

  圆直径d,通过圆心两端都在圆上的线段,同圆或等圆中有无数条直径,直径都相等。

  关系:同圆或等圆中,半径是直径的二分之一,直径是半径的2倍。

  对称性:圆是轴对称图形,直径所在的直线是圆的对称轴。

  圆是曲线图形。

  课后札记:

六年级数学上册教案12

  一、教材说明;

  九年义务教育六年制小学数学[人教版]第十一册《圆的认识》

  二、教学目标;

  1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。

  2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。

  3、能正确熟练地掌握用圆规画圆的操作步骤。

  4、培养学生动手操作、主动探究、自主发现、交流合作的能力。

  三、教学流程;

  1、导入新课

  (1)学生活动(边玩边观察)。

  ①球、球相碰玩具表演。②线系小球旋转玩具表演。

  [教师要求学生将观察到的形状告诉大家,学生异口同声回答:圆形。这里,教师采用学生感兴趣的玩具表演活动,既直观形象,又易于发现,进而抽象出“圆”。学生从“玩”入手,不知不觉进入学习状态。学习兴趣浓厚,乐于参与,利于学习。]

  (2)师生对话(学生可相互讨论后回答)。

  教师:日常生活中或周围的'物体上哪里有圆?

  学生:在钟面、圆桌、人民币硬币上……都有圆。

  教师:请同学们用手摸一摸,体会一下有什么感觉?

  学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。

  教师(多媒体演示:圆形物体→圆):这(指圆)和我们以前学过的平面图形,有什么不同呢?

  学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆)这种图形是由曲线围成的图形。

  教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗?

  学生讨论后回答:圆是平面上的一种曲线图形。(这时,教师请同学们把眼睛闭上,在脑子里想圆的形状,睁开眼睛再看一看,再闭上眼睛想一想,能否记住它。)

  教师在此基础上揭示课题,并请学生回答:你还想认识圆的什么?学生说:还想认识圆的圆心、直径、半径……

  [这里通过生生交流、师生互动,形象感知、抽象概括,帮助学生正确建立“圆”的概念。]

  2、探索新知。

  (1)探究——圆心

  ① 徒手画圆。

  教师请两个学生一同在黑板上徒手画圆,然后请同学们评一评(3个人)谁画的圆好呢?……师生认为用工具画圆才能画得好。[师生共同表演、平等相待、大家评说、其乐融融。]

  ②用工具画圆。

  教师请同学们用自己喜欢的工具画圆。学生画圆:a.用圆规画圆;b.用圆形物体画圆。[画圆方法任学生自选,既体现因人而宜、因材施教,又体现尊重学生(个性)、教学民主。]

  ③找圆心。

  学生动手剪一剪、折一折,再议一议、找一找……自我探索发现圆的“圆心”。[教师放手让学生在动手操作中探索,在探索中发现新知,培养探究能力。]

  教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“O”表示。(学生在圆形纸片上点出圆心,标出字母。)

  ④游戏趣味题。

  在操场上,体育老师在地上画了一个大圆,给同学们做游戏。老师说,不管你站在什么位置,都会派上用场。你喜欢站在什么位置呢?请你点出来。

  [教师请学生边点边说明这点与圆的位置关系,同时给予评说。如学生点到“圆心”,师评说:“你很有雄心,喜欢别人围着你转,将来必成大器。”如学生点到“圆内”,师评说:“你比较守规矩,喜欢在一定的范围内活动,将来不容易犯错误。”如学生点到“圆上”,师评说:“你做事很有规律,能够遵循原则,同时与‘上司’相处喜欢保持一定距离。”如学生点到“圆外”,师评说:“你很了不起,思维活跃,思路开阔,做事不愿受条条框框的束缚,喜欢创新,有开拓精神,将来定会大有作为。”……这样教学,生动有趣,其乐无穷,激励性强,学生乐学,学得轻松愉快、积极主动。学生对圆、圆心、圆内、圆上、圆外等基本概念能够有深刻的理解。]

  (2)探究——圆的直径、半径及其关系。

  教师:你还想知道什么?

  学生:还想知道圆的直径、半径,直径与半径之间有什么关系?……

六年级数学上册教案13

  学习内容

  教科书第54页例1,课堂活动第1题,练习十五第1~3题。

  育人目标

  1.在实际情境中理解按比例分配的意义。掌握按比例分配解决问题的方法,能正确解决简单的按比例分配的问题。

  2.经历探索按比例分配解决问题方法的产生过程,培养学生的分析问题、解决问题的能力。

  3.通过自主学习等活动发展学生自主探究的意识,渗透转化的数学思想,并从中感受数学与生活的密切联系。

  4.在分笔记本的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  1.能正确运用按比例分配的方法解答简单的数学问题。

  2.正确解决按比例分配的实际问题。

  学习评价设计

  1.学生思考用不同的策略来解决问题。

  2.在按比例分配解决问题的过程中,积累按比例分配解决问题的经验,能根据实际情况进行科学、合理地分配。

  教学过程

  情境引入

  同学们都有买文具的经历,请看大屏幕(实物投影出示与学生生活紧密联系的实例)几个同学凑钱批发文具,我们来看看他们是怎样买的?

  ①李芸和张倩各拿出8元钱,一共买了10支水彩笔。他俩该怎么分这些笔?

  学生回答后,教师及时做出评价,板书教学。

  ②这儿还有两个同学,也批发了一些文具,陈红拿出6元,赵青拿出4元,一共买了15本同样的笔记本。(指导学生读题)

  这两个同学怎样分这些笔记本?

  学生说出自己的想法,教师组织评议。

  小结得出:按拿钱的多少来分配笔记本最合理,这种分配方法通常叫做按比例分配。(板书课题:按比例分配(一)

  学生口答,独立思考,再交流:

  生:平均分,一人5支。

  生:陈红多点,赵青少点。

  在分笔记本的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  探究新知

  1.理解按比例分配的意义。

  把10支水彩笔平均分给两个同学,为什么要平均分呢?让学生理解,因为两人拿出的钱数同样多,也即拿出的钱数比是1:1,所以要平均分。

  陈红和赵青分笔记本,为什么不平均分呢?

  组织学生思考交流,因为两人拿出的钱数不一样多,再平均分是不公平的。要做到公平,应根据出钱多少来分配才合理。两人拿出的钱数的比是3:2,那么,15本笔记本应按3:2分配。

  最后,教师指出:像这样把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。

  2.例举身边的事例,进一步理解按比例分配的意义。

  生活中还有很多这样的例子,需要把某一物品按照一定的比来进行分配,比如:实物投影出示物品配料标签。

  (1)某配方奶粉调配时,奶粉和水的比为1∶7,按照这个调配建议,我们在冲奶粉时能平均放奶粉和水吗?

  (2)市场上出售一种5升装的混合油,其中橄榄油与花生油的比是1∶1,这是一种什么样的分装方法?这5升油中,花生油有多少升?

  (组织学生分组讨论反馈.

  交流后,教师及时做出评价)

  你们在生活中有没有遇见这样的例子?介绍给大家听听。(学生举例)

  3.学习例1。

  同学们理解了什么是按比例分配,下面(第54页例1)大家开动脑筋,帮助陈红和赵青分一下笔记本,看看谁分配得最合理,分配的方法最容易操作!

  (1)学生独立思考、计算,教师巡视指导

  (2)反馈学生做法,集体分析解法。

  方法1:陈红、赵青拿出钱数的比是:6∶4=3∶2

  解:设每份是x本。

  3x+2x=15

  5x=15

  x=3

  陈红应分的本数是3×3=9(本)

  赵青应分的本数是2×3=6(本)

  方法2:先求出每份是多少本,再分别求出两人应分的本数。

  15÷(3+2)=3(本)

  陈红应分的本数是3×3=9(本)

  赵青应分的本数是2×3=6(本)

  方法3:总份数是3+2=5,因为陈红应分的本数占15本的`,赵青应分得本数占15本的,所以:陈红应分的本数:15×=9(本)。赵青应分的本数:15×=6(本)。

  答:陈红应分9本,赵青应分6本。

  学生交流解法,并说明解题思路。通过评价,鼓励学生用不同的策略来解决问题。

  (3)同学们想出了这么多不同的方法来解决问题,真棒!可是你们如何证明自己的解法是正确的?(引导学生用不同的方法进行检验)

  方法1:把求得陈红、赵青所分到的笔记本数加起来,看是否等于总数15本。

  方法2:把陈红、赵青所分到的笔记本数写成比的形式,看化简后是不是等于3∶2。

  (4)引导反思:这道题有什么特点?我们是怎样解决的?

  特点:把15本笔记本作为总量,按照给定钱数的比进行分配,像这种方法:用份数的思路解答;用分数的思路解答;用方程解答。

  如果按1∶1分配,是怎样分?

  指出:平均分是按比例分配的特例。

  独立思考再交流理解为什么要平均分。

  结合生活实例讨论交流理解按比例分配的实际意义。

  举例交流。

  学生独立完成再汇报交流不同的解题思路。

  用不同的方法进行检验。

  反思交流按比例分配这类型的特点及解题方法。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  巩固练习

  1.练习十五第1题(学生交流解法,并说明解题思路,并鼓励学生用不同的策略来解决问题。)

  2.学生独立完成练习十五第2、3题,完成后用投影仪集体订正。

  3.课件出示课堂活动第一题(阅读资料,结合自己班的人数,设计一个合适的比,将全班学生分成两部分来参加两项公益活动,然后全班交流。)

  学生独立完成,再交流不同的解题策略。

  课堂小结

  同学们,这一节课你学得愉快吗?你有什么收获?(指名说一说)在这么多解决问题的方法中,你最喜欢哪一种?为什么?

  谈收获。

六年级数学上册教案14

  教学目标

  1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。

  2.使学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。

  3、在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。

  教学重点

  让学生理解分数乘整数的算理,掌握分数乘整数的计算方法。

  教学难点

  引导学生探究分数乘整数的计算方法以及算法的优化。

  教(学)具

  准备练习材料、课件。

  教学过程

  修议1

  教师活动学生活动

  活动一:谈话引入

  师:同学们,老师学校要举行一次小手艺展示活动,老师班里有一位小强同学也想参加。看,他准备制作一个漂亮的风筝,这个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的时候,小强遇到困难了,不知道该用多少材料,咱们都来帮帮他,好吗?

  活动二:教学分数乘整数的意义

  每一种列式各是怎样想的?

  怎么知道求6个相加的和,也可以用乘法计算?

  明确:相同整数连加可以用乘法算式表示,那么可以联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。

  活动三:探索分数乘整数的'计算方法

  谈话:尝试计算×6,你觉得怎样算好就怎样算,不仅要会算,还要把道理说清楚。

  学生活动,教师巡视指导,了解信息,并相机让学生把几种典型做法板书在小黑板上。

  ①×6=0、5×6=3(米)

  ②×6=+++++==3(米)

  ③×6===3(米)

  ④×6==(米)

  ⑤×6==(米)

  谈话:请同学们认真观察黑板上几种不同的做法,只看结果,判断哪些是对的?哪些是错的?

  明确:第④和第⑤种做法是错误的,因为结合实际情况,所需6根布条总长度不能小于或等于一根布条的长度。

  (1)请学生当小老师讲解每种算法的计算道理,鼓励学生互相质疑、答疑。老师针对一些重点问题进行提问:

  ×6=0、5×6=3(米)怎么会想到用这种方法解决问题的?(引导学生体会转化的数学思想与方法。)

  ×6和+++++这两部分相等吗?为什么?是怎样得来的?

  在方法③中,为什么分母2不变,单单只把分子1和6相乘呢?

  (2)课件演示方法③的计算道理。

  (3)再回顾×6==和×6==两种做法,指出错误原因。

  活动四:沟通优化,促进发展

  (一)独立计算9×。

  (二)组间交流:说说计算的道理。

  (三)全班交流:

  1、请1位学生说计算过程,课件板演。

  为什么不用第①和第②种方法计算?(引导学生体会第①和第②种方法或有局限性,或者麻烦,所以用第③种方法较普遍,适用于任何一道分数乘整数题。)

  2,、学生小结分数乘整数的计算方法。

  活动五:探索计算中的简便方法。灵活运用

  1、独立计算10×,之后请一位同学说计算过程。

  2、独立计算×36。

  ①质疑:怎么这次的做题速度明显落后了,你们遇到什么问题?(使学生产生探究简便方法的心理需求)

  ②课件出示简便算法:先约分再计算。

  3、计算×21

  活动六:课堂回顾,交流收获

  师:时间过得真快,一节课就要结束了,大家有什么收获?谁会用一个字母式子表示分数乘整数的计算方法?

六年级数学上册教案15

  教学内容:

  人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

  教学目标:

  1、联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

  2、让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3、能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

  教学重点:

  掌握分数乘整数的计算方法。

  教学难点:

  理解分数乘整数和一个数乘分数的意义。

  教学准备:

  课件。

  教学过程:

  一、情境创设,探求新知

  (一)探索分数乘整数的意义

  1、教学例1(课件出示情景图)

  师:仔细观察,从图中能得到哪些数学信息?这里的“2/

  9个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

  师:想一想,你还能找出不一样的方法验证你的计算结果吗?

  2、小组交流,汇报结果

  预设:(1)2/

  9+2/

  9+2/

  9=6/

  9=2/

  3(个);

  (2)2/

  9×3=6/

  9=2/

  3(个);

  (3)3×2/

  9=6/

  9=2/

  3(个);

  (4)3个2/

  9就是6个1/

  9就是6/

  9,再约分得到2/

  3(个)。(根据学生发言依次板书)

  3、比较分析

  师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设,

  生1:每个人吃2/

  9个,3个人就是3个2/

  9相加。

  生2:3个2/

  9个相加也可以用乘法表示为2/

  9×3。

  提出质疑:3个2/

  9相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示“求3个2/

  9相加是多少”。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  4、归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

  【设计意图:呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。】

  (二)分数乘整数的计算方法

  1、不同方法呈现和比较

  师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,2/

  9×3的计算过程用式子该如何表示?预设,

  生1:按照加法计算2/

  9×3=2/

  9+2/

  9+2/

  9=6/

  9=2/

  3(个)。

  生2:2/

  9×3=6/

  9=2/

  3(个)。

  师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个1/

  9。

  2、归纳算法

  师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

  引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

  3、先约分再计算的教学

  师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

  预设:一种算法是先计算再约分,另一种是先约分再计算。

  师:比较一下,你认为哪一种方法更简单?为什么?

  小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的`数与原数上下对齐。

  【设计意图:通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。】

  二、巩固练习,强化新知

  1、例1“做一做”第1题

  师:说出你的思考过程。

  2、例1“做一做”第2题

  师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

  三、探索一个数乘分数的意义

  教学例2(课件出示情景图)

  (1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

  预设1:求3桶共有多少升?就是求3个12 L的和是多少。

  预设2:还可以说成求12 L的3倍是多少。

  预设3:单位量×数量=总量,所以12×3=36(L)。

  (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

  交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的1/

  2是多少。”

  (3)出示第2小题学生自练。引导说出:“12×1/

  4表示求12 L的1/

  4是多少。”在这里都是把12 L看作单位“1”。

  (4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

  归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

  四、课堂练习,深化理解

  1、出示例2“做一做”。一袋面粉重3千克。已经吃了它的3/

  10,吃了多少千克?

  师:你能说说这个算式表示的意义吗?“求3千克的3/

  10是多少。”

  2、比较两种意义

  出示:一袋面包重3/

  10千克,3袋重多少千克?

  师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

  预设1:一个是分数乘整数,另一个是整数乘分数。

  预设2:它们表示的意义相同但有所区别。

  引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

  师:那么,它们有什么是相同的呢?(计算方法和结果)

  【设计意图:对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。】

  五、联系实际,灵活运用

  1、算式3/

  16+3/

  16+3/

  16+3/

  16可以列成_________× _________,表示;或者表示_________;

  也可以列成_________ ×_________,表示。

  师:选择一个算式进行计算,想一想,计算时要注意什么?

  2、比较练习

  (1)一堆煤有5吨,用去了2/

  11,用去了多少吨?

  (2)一堆煤有2/

  11吨,5堆这样的煤有多少吨?

  你能编写出类似的问题并加以解决吗?

  3、拓展练习

  1只树袋熊一天大约吃6/

  7 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

  【设计意图:练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。】

  六、课堂小结,拓展延伸

  1、这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

  2、谁会用含有字母的式子表示分数乘整数的计算方法?a/

  b×c=ac/

  b,其中a,b,c均为整数且a≠0。

  【设计意图:通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。】

【六年级数学上册教案】相关文章:

数学上册教案01-15

数学六年级上册《利率》教案08-22

六年级上册数学的教案09-28

苏教版数学六年级上册教案11-17

小学数学六年级上册教案11-18

六年级上册数学比的教案01-08

六年级上册数学教案11-16

六年级数学上册教案12-13

六年级上册数学《比的应用》教案08-30

苏教版小学数学六年级上册教案05-09