八年级上册数学教案合集【15篇】
作为一名教学工作者,常常需要准备教案,教案有助于顺利而有效地开展教学活动。教案应该怎么写才好呢?以下是小编为大家收集的八年级上册数学教案,希望能够帮助到大家。
八年级上册数学教案1
一、内容和内容解析
1.内容
三角形中相关元素的概念、按边分类及三角形的三边关系.
2.内容解析
三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.
本节课的'教学重点:三角形中的相关概念和三角形三边关系.
本节课的教学难点:三角形的三边关系.
二、目标和目标解析
1.教学目标
(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.
(2)理解并且灵活应用三角形三边关系.
2.教学目标解析
(1)结合具体图形,识三角形的概念及其基本元素.
(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.
(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.
三、教学问题诊断分析
在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神.
四、教学过程设计
1.创设情境,提出问题
问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.
师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.
【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.
2.抽象概括,形成概念
动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.
师生活动:
三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力.
补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.
师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.
【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.
3.概念辨析,应用巩固
如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.
1.以AB为一边的三角形有哪些?
2.以∠D为一个内角的三角形有哪些?
3.以E为一个顶点的三角形有哪些?
4.说出ΔBCD的三个角.
师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.
4.拓广延伸,探究分类
我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.
师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.
八年级上册数学教案2
教学目标
1.知识与技能
领会运用完全平方公式进行因式分解的方法,发展推理能力.
2.过程与方法
经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.
3.情感、态度与价值观
培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.
重、难点与关键
1.重点:理解完全平方公式因式分解,并学会应用.
2.难点:灵活地应用公式法进行因式分解.
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的
教学方法
采用“自主探究”教学方法,在教师适当指导下完成本节课内容.
教学过程
一、回顾交流,导入新知
【问题牵引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知识迁移】
2.计算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【学生活动】从逆向思维的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例学习,应用所学
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.
三、随堂练习,巩固深化
课本P170练习第1、2题.
【探研时空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、课堂总结,发展潜能
由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的`公式,主要的有以下三个:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在运用公式因式分解时,要注意:
(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.
五、布置作业,专题突破
八年级上册数学教案3
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>
2。当x
>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的.取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
八年级上册数学教案4
教学目标:
1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。
2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。
3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的.生活态度。
重点与难点:
重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
难点:分析典型图案的设计意图。
疑点:在设计的图案中清晰地表现自己的设计意图
教具学具准备:
提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。
教学过程设计:
1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)
明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。
2、课本
1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。
评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。
评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。
(二)课内练习
(1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。
(2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。
(三)议一议
生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。
(四)课时小结
本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。
通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)
八年级数学上册教案(五)延伸拓展
进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。
八年级上册数学教案5
一、内容和内容解析
1.内容
三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.
2.内容解析
本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。
理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.
本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的`高的画法及不同类型的三角形高线的位置关系.
二、目标和目标解析
1.教学目标
(1)理解三角形的高、中线与角平分线等概念;
(2)会用工具画三角形的高、中线与角平分线;
2.教学目标解析
(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.
(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.
(3)掌握三角形的高、中线与角平分线的画法.
(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.
三、教学问题诊断分析
三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.
三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.
三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.
八年级上册数学教案6
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的'能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0 0<≤ 6 20 30 40 50 (1)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1).15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2.5 2 1.5 1.5 1.2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约2.95万元2.约29岁3.60.54分贝 第11章平面直角坐标系 11。1平面上点的坐标 第1课时平面上点的坐标(一) 教学目标 【知识与技能】 1。知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。 2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。 3。能在方格纸中建立适当的平面直角坐标系来描述点的位置。 【过程与方法】 1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。 2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。 【情感、态度与价值观】 通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。 重点难点 【重点】 认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。 【难点】 理解坐标系中的坐标与坐标轴上的数字之间的关系。 教学过程 一、创设情境、导入新知 师:如果让你描述自己在班级中的位置,你会怎么说? 生甲:我在第3排第5个座位。 生乙:我在第4行第7列。 师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。 二、合作探究,获取新知 师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体 的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢? 生:3排5号。 师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应该怎样表示一个物体的位置呢? 生:用一个有序的实数对来表示。 师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢? 生:可以。 教师在黑板上作图: 我们可以在平面内画两条互相垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为 正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。 师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。 学生操作,教师巡视。教师指正学生易犯的错误。 教师边操作边讲解: 如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。 教师多媒体出示: 师:如图,请同学们写出A、B、C、D这四点的坐标。 生甲:A点的坐标是(—5,4)。 生乙:B点的坐标是(—3,—2)。 生丙:C点的坐标是(4,0)。 生丁:D点的坐标是(0,—6)。 师:很好!我们已经知道了怎样写出点的.坐标,如果已知一点的坐标为(3,—2),怎样在平面直角坐标系中找到这个点呢? 教师边操作边讲解: 在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是—2的点,过这一点向y轴作垂线,纵坐标是—2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为—2,所以这就是坐标为(3,—2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)这几个点。 学生动手作图,教师巡视指导。 三、深入探究,层层推进 师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限。注意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗? 生:都一样。 师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的坐标的符号吗? 生:能。第二象限内的点的坐标的符号为(—,+),第三象限内的点的坐标的符号为(—,—),第四象限内的点的坐标的符号为(+,—)。 师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(—,+),你能判断这点是在哪个象限吗? 生:能,在第二象限。 四、练习新知 师:现在我给出几个点,你们判断一下它们分别在哪个象限。 教师写出四个点的坐标:A(—5,—4),B(3,—1),C(0,4),D(5,0)。 生甲:A点在第三象限。 生乙:B点在第四象限。 生丙:C点不属于任何一个象限,它在y轴上。 生丁:D点不属于任何一个象限,它在x轴上。 师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点。 学生作图,教师巡视,并予以指导。 五、课堂小结 师:本节课你学到了哪些新的知识? 生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。 教师补充完善。 教学反思 物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系。教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力。在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣。 第2课时平面上点的坐标(二) 教学目标 【知识与技能】 进一步学习和应用平面直角坐标系,认识坐标系中的图形。 【过程与方法】 通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力。 【情感、态度与价值观】 培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法。 重点难点 【重点】 理解平面上的点连接成的图形,计算围成的图形的面积。 【难点】 不规则图形面积的求法。 教学过程 一、创设情境,导入新知 师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来。下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,—3)这三个点。 学生作图。 教师边操作边讲解: 二、合作探究,获取新知 师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形? 生甲:三角形。 生乙:直角三角形。 师:你能计算出它的面积吗? 生:能。 教师挑一名学生:你是怎样算的呢? 生:AB的长是5—2=3,BC的长是1—(—3)=4,所以三角形ABC的面积是×3×4=6。 师:很好! 教师边操作边讲解: 大家再描出四个点:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并将它们依次连接起来看看形成的是什么 图形? 学生完成操作后回答:平行四边形。 师:你能计算它的面积吗? 生:能。 教师挑一名学生:你是怎么计算的呢? 生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12。师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形: 教师多媒体出示下图: 一、教材分析教材的地位和作用: 本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。 二、学情分析 八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。 三、教学目标及重点、难点的确定 根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下: (一)教学目标: 1、知识技能 (1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴. (2)理解并掌握轴对称的概念,对称轴;了解对称点. (3)了解轴对称图形和轴对称的联系与区别. 2、过程与方法目标 经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力. 3、情感、态度与价值观 通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。 (二)教学重点:轴对称图形和轴对称的有关概念. (三)教学难点:轴对称图形与轴对称的联系、区别 .四、教法和学法设计 本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的: 【教法策略】采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的知识水平得到恰当的发展和提高。 【学法策略】:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。 【辅助策略】我利用多媒体课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率 五、说程序设计: 新的课程标准指出学生的学习内容应该是现实的有意义的,有利于学生进行观察、试验、猜测、验证、推理与交流等数学活动。为了达到预期的教学目标,我对整个教学过程进行了设计。 (一)、观图激趣、设疑导入。 出示图片,设计故事。一日,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。你能说出为什么长得象吗?今天我们就来共同探讨这一问题――轴对称。 [设计意图]以兴趣为先导,创设学生喜闻乐见的故事情景,激发了学生浓厚的学习兴趣, (二)、实践探索、感悟特征. 《活动一(课件演示)观察这些图形有什么特点?》在这个环节中我首先出示一组常见的具有代表性的典型的轴对称图形,出示后先让学生自己观察,并引导学生感知,无论是随风起舞的风筝,凌空翱翔的飞机,还是古今中外各式风格的典型建筑很多图形都给我们以美得感受。然后,教师适时提出问题:这些图形有什么共同特征?是如何对称?怎样才能使对称?部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。从而引出轴对称图形和对称轴的概念。在得出概念之后再引导学生例举生活中的事例。以便加深对轴对称图形概念的理解。 为了进一步认识轴对称图形的特点又出示了一组练习 (练习1)这是一组常见几何图形,要求学生判断是否是对称图形,若是对称图形的,画出它的对称轴 [设计意图]通过这个练习题不仅让学生巩固了轴对称图形的概念,而且让学生认识到我们常见的图形,有些是轴对称图形,有些不是轴对称图形。并且还让学生认识轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条甚至无数条,对称轴的方向不仅仅是垂直的,有可能是水平的`或倾斜的。 (练习2)国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。次题进一步巩固了轴对称图形的概念,培养了学生的观察能力、想象能力,同时通过展示各国的国旗,不仅激发了学生的学习兴趣,而且也拓展了学生的知识面。 (三)、动手操作、再度探索新知。 将一张纸对折,用笔尖扎出一个图案,然后将纸展开后,铺平,观察各自得到的图案与轴对称图形的不同。教学中注重学生活动,鼓励学生亲自实践,积极思考,在乐学的氛围中,培养学生的动手能力,从而引出轴对称概念。 再次引导学生讨论、归纳得出轴对称的概念……。之后再结合动画演示加深对轴对称概念的理解,进而引出对称轴、对称点的概念.并结合图形加以认识。 (四)、巩固练习、升华新知。 出示几幅图形,请同学们辨别哪幅图形是轴对称图形哪些图形轴对称, 在这组练习中让学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既加深了对两个概念的理解,又锻炼了同学的各方面能力。完成这组练习题后让学生,归纳轴对称图形及轴对称区别与联系,先让学生自己归纳,然后用多媒体展示。 (课件演示)轴对称图形及两个图形成轴对称区别与联系 (五)、综合练习、发展思维。 1、抢答;观察周围哪些事物的形状是轴对称图形。 2、判断: 生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。 (1)下面的数字或字母,哪些是轴对称图形?它们各有几条对称轴? 0123456789ABCDEFGH 3、像这样写法的汉字哪些是轴对称图形? 口工用中由日直水清甲 (这几道题的练习做到了知识性、技能性、思想性和艺术性溶为一体。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边) (六)归纳小结、布置作业 [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。作业布置要有层次,照顾学生个体差异使不同的人在数学上获得不同的发展! 六、设计说明 这节课,我依据课程标准、教材特点、遵循学生的认知规律。通过六个环节的教学设计,通过观察生活中的一些图案以及动画演示,由感性到理性,让学生轻松掌握了轴对称图形与关于直线成轴对称两个概念,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获。这就是我对本节课的理解和说明。 【教学目标】 知识目标: 解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。 能力目标: (1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力; (2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。 情感目标: 充分调动学生学习的`积极性、主动性 【教学重点】 单项式与多项式的乘法运算 【教学难点】 推测整式乘法的运算法则。 【教学过程】 一、复习引入 通过对已学知识的复习引入课题(学生作答) 1.请说出单项式与单项式相乘的法则: 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。 (系数×系数)×(同字母幂相乘)×单独的幂 例如:( 2a2b3c) (-3ab) 解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c = -6a3b4c 2.说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1 问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算? 这便是我们今天要研究的问题。 二、新知探究 已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c) 现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc 上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评) 结论单项式与多项式相乘的运算法则: 用单项式分别去乘多项式的每一项,再把所得的积相加。 用字母表示为:m(a+b+c)=ma+mb+mc 运算思路:单×多 转化 分配律 单×单 三、例题讲解 例计算:(1)(-2a2)· (3ab2– 5ab3) (2)(- 4x) ·(2x2+3x-1) 解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ② (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ① 第二环节:探索发现勾股定理 1、探究活动一 内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形: 问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现: 结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。 意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边。通过对特殊情形的探究得到结论1,为探究活动二作铺垫。 效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力; 2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望。 2、探究活动二 内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图: (2)填表: A的面积 (单位面积)B的面积 (单位面积)C的面积 (单位面积) 左图 右图 (3)你是怎样得到正方形C的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)。 学生的方法可能有: 方法一: 如图1,将正方形C分割为四个全等的直角三角形和一个小正方形。 方法二: 如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的.面积减去四个直角三角形的面积。 方法三: 如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法。 (4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出: 结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。 意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质。由于正方形C的面积计算是一个难点,为此设计了一个交流环节。 效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2. 3、议一议 内容:(1)你能用直角三角形的边长,来表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗? (3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。2中发现的规律对这个三角形仍然成立吗? 勾股定理:直角三角形两直角边的平方和等于斜边的平方。如果用,分别表示直角三角形的两直角边和斜边,那么。 数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名(在西方文献中又称为毕达哥拉斯定理)。 意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理。 效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力; 2.通过作图培养学生的动手实践能力。 一、教学目标 1、理解分式的基本性质。 2、会用分式的基本性质将分式变形。 二、重点、难点 1、重点:理解分式的基本性质。 2、难点:灵活应用分式的基本性质将分式变形。 3、认知难点与突破方法 教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。 三、练习题的意图分析 1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。 2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。 教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。 3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。 “不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的`应用之一,所以补充例5。 四、课堂引入 1、请同学们考虑:与相等吗?与相等吗?为什么? 2、说出与之间变形的过程,与之间变形的过程,并说出变形依据? 3、提问分数的基本性质,让学生类比猜想出分式的基本性质。 五、例题讲解 P7例2.填空: [分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。 P11例3.约分: [分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。 P11例4.通分: [分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。 教学内容 本节课主要介绍全等三角形的概念和性质. 教学目标 1.知识与技能 领会全等三角形对应边和对应角相等的有关概念. 2.过程与方法 经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角. 3.情感、态度与价值观 培养观察、操作、分析能力,体会全等三角形的应用价值. 重、难点与关键 1.重点:会确定全等三角形的对应元素. 2.难点:掌握找对应边、对应角的方法. 3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备 四张大小一样的纸片、直尺、剪刀. 教学方法 采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程 一、动手操作,导入课题 1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点? 2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点? 【学生活动】动手操作、用脑思考、与同伴讨论,得出结论. 【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形. 学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的.两张纸,注意整个过程要细心. 【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示. 概念:能够完全重合的两个三角形叫做全等三角形. 【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗? 【学生活动】动手操作,实践感知,得出结论:两个三角形全等. 【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边. 【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点? 【交流讨论】通过同桌交流,实验得出下面结论: 1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合. 2.这时它们的三个顶点、三条边和三个内角分别重合了. 3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置. 【教学目标】 知识与技能 能确定多项式各项的公因式,会用提公因式法把多项式分解因式. 过程与方法 使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解. 情感、态度与价值观 培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值. 【教学重难点】 重点:掌握用提公因式法把多项式分解因式. 难点:正确地确定多项式的最大公因式. 关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂. 【教学过程】 一、回顾交流,导入新知 【复习交流】 下列从左到右的变形是否是因式分解,为什么? (1)2x2+4=2(x2+2); (2)2t2-3t+1=(2t3-3t2+t); (3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my; (5)x2-2xy+y2=(x-y)2. 问题: 1.多项式mn+mb中各项含有相同因式吗? 2.多项式4x2-x和xy2-yz-y呢? 请将上述多项式分别写成两个因式的乘积的形式,并说明理由. 【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的`公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y. 概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法. 二、小组合作,探究方法 教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么? 【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂. 三、范例学习,应用所学 例1:把-4x2yz-12xy2z+4xyz分解因式. 解:-4x2yz-12xy2z+4xyz =-(4x2yz+12xy2z-4xyz) =-4xyz(x+3y-1) 例2:分解因式:3a2(x-y)3-4b2(y-x)2 【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法. 解法1:3a2(x-y)3-4b2(y-x)2 =-3a2(y-x)3-4b2(y-x)2 =-[(y-x)2·3a2(y-x)+4b2(y-x)2] =-(y-x)2[3a2(y-x)+4b2] =-(y-x)2(3a2y-3a2x+4b2) 解法2:3a2(x-y)3-4b2(y-x)2 =(x-y)2·3a2(x-y)-4b2(x-y)2 =(x-y)2[3a2(x-y)-4b2] =(x-y)2(3a2x-3a2y-4b2) 例3:用简便的方法计算: 0.84×12+12×0.6-0.44×12. 【教师活动】引导学生观察并分析怎样计算更为简便. 解:0.84×12+12×0.6-0.44×12 =12×(0.84+0.6-0.44) =12×1=12. 【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同? 四、随堂练习,巩固深化 课本115页练习第1、2、3题. 【探研时空】 利用提公因式法计算: 0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69 五、课堂总结,发展潜能 1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂. 2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止. 六、布置作业,专题突破 课本119页习题14.3第1、4(1)、6题. 一、教学目标 1、认识中位数和众数,并会求出一组数据中的众数和中位数。 2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。 3、会利用中位数、众数分析数据信息做出决策。 二、重点、难点和难点的突破方法: 1、重点:认识中位数、众数这两种数据代表 2、难点:利用中位数、众数分析数据信息做出决策。 3、难点的突破方法: 首先应交待清楚中位数和众数意义和作用: 中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。 教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。 在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。 三、例习题的意图分析 1、教材P143的例4的意图 (1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。 (2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的'求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述) (3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。 (4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。 2、教材P145例5的意图 (1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。 (2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述) (3)、例5也反映了众数是数据代表的一种。 四、课堂引入 严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。 五、例习题的分析 教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。 教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。 六、随堂练习 1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件) 1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150 求这15个销售员该月销量的中位数和众数。 假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。 2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示: 1匹1.2匹1.5匹2匹 3月12台20台8台4台 4月16台30台14台8台 根据表格回答问题: 商店出售的各种规格空调中,众数是多少? 假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定? 答案:1. (1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。 2. (1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。 七、课后练习 1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是 2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是. 3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( ) A.97、96 B.96、96.4 C.96、97 D.98、97 4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( ) A.24、25 B.23、24 C.25、25 D.23、25 5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表: 温度(℃) -8 -1 7 15 21 24 30 天数3 5 5 7 6 2 2 请你根据上述数据回答问题: (1).该组数据的中位数是什么? (2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天? 答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天 【教学目标】 1.了解分式概念. 2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 【教学重难点】 重点:理解分式有意义的条件,分式的值为零的条件. 难点:能熟练地求出分式有意义的.条件,分式的值为零的条件. 【教学过程】 一、课堂导入 1.让学生填写[思考],学生自己依次填出:,,,. 2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 设江水的流速为x千米/时. 轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=. 3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母. [思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义. 二、例题讲解 例1:当x为何值时,分式有意义. 【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围. (补充)例2:当m为何值时,分式的值为0? (1);(2);(3). 【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解. 三、随堂练习 1.判断下列各式哪些是整式,哪些是分式? 9x+4,,,,, 2.当x取何值时,下列分式有意义? 3.当x为何值时,分式的值为0? 四、小结 谈谈你的收获. 五、布置作业 课本128~129页练习. 【八年级上册数学教案】相关文章: 八年级上册数学教案11-09 八年级上册人教版数学教案02-27 八年级上册数学教案12-11 人教版八年级上册数学教案02-22 [推荐]八年级上册数学教案05-23 (集合)八年级上册数学教案05-24 八年级上册数学教案优秀05-08 [精华]八年级上册数学教案06-08 八年级上册数学教案(15篇)11-10 八年级上册数学教案15篇11-09八年级上册数学教案7
八年级上册数学教案8
八年级上册数学教案9
八年级上册数学教案10
八年级上册数学教案11
八年级上册数学教案12
八年级上册数学教案13
八年级上册数学教案14
八年级上册数学教案15