现在位置:范文先生网>教案大全>数学教案>六年级数学教案>小学六年级数学比教案

小学六年级数学比教案

时间:2024-06-10 12:44:21 六年级数学教案 我要投稿

小学六年级数学比教案(常用15篇)

  作为一名人民教师,就不得不需要编写教案,教案是教学活动的依据,有着重要的地位。我们该怎么去写教案呢?以下是小编帮大家整理的小学六年级数学比教案,仅供参考,欢迎大家阅读。

小学六年级数学比教案(常用15篇)

小学六年级数学比教案1

  教学目标:

  1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

  2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。

  3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

  教学重点:税额的计算。

  教学难点:税率的理解。

  教学过程:

  一、复习

  1、口答算式。

  (1)100的5%是多少?(2)50吨的10%是多少?

  (3)1000元的8%是多少?(4)50万元的20%是多少?

  2、什么是比率?

  二、新授

  1、阅读P122页有关纳税的内容。说说:什么是纳税?

  2、税率的认识。

  (1)说明:纳税的`种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。

  (2)试说以下税率表示什么。

  A、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?

  B、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?

  3、税款计算

  (1)出示例5(课本99页)

  一家大型饭店十月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

  (2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)

  (3)要求应缴纳营业税款多少就是求什么?

  (4)让学生独立完成?

  4、看课本98页内容。读一读,什么是纳税?什么是税率?

  三、练习

  1、巩固练习:练习三十二第4题。(要点:5%对应的单位1是营业额,7%对应的单位1是营业税。)

  2、依据第5题,学生各自发表意见。

小学六年级数学比教案2

  教学目标:

  1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

  2. 通过操作发展学生的推理能力,形成比较抽象的数学思维。

  教学重点:

  经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

  教学难点:

  运用 “鸽巢问题”,解决一些简单的实际问题。

  教具准备:

  每组都有相应数量的杯子、小球、扑克牌、多媒体课件。

  教学过程:

  一、游戏引入:

  师:我们今天来做个游戏,游戏要求,把全班分成若干小组,每小组的组长手中有3个小球和2个杯子,要求把所有小球全都放进杯子里。同学们看看老师猜的对不对。

  请三位小组长上台来猜另外三小组同学小球是怎么放的。生讲师板书。

  师小结:一定有一个杯子里至少有两个小球。

  同学们你们想不想知道为什么老师会知道呢?板书课题:鸽巢问题

  二、探究原理:

  1、动手摆一摆,感受原理。

  (1)探究物体个数比抽屉多1的情况。

  例1、现在要把4支铅笔放进3个文具盒里,会有几种不同的放法?请大家摆一摆,边摆边记录。

  全班分小组摆一摆。

  各组长边摆边记录。教师板书,全班同学报数,一起记录。

  联系小球放进杯子的游戏,引导学生讲出:不管怎么放,总有一个杯子至少放有2根小棒。

  师:总有一个杯子至少有……

  师:A、总有是什么意思?

  师:B、“至少”又是什么意思? “至少’的意思是2根或2根以上。

  师:如此往下想,7根小棒放在6个杯子里,

  10根木棒放进9个杯子里

  100根木棒放进99个杯子里会有怎么样的结论?

  要证明这个结论能想出一种简便的'方法来吗?大家讨论讨论。

  学生讨论。

  师:想出什么办法?谁来说说。

  刚才这样分是怎样分?为什么要用平均分,才能证明这个结论?

  (边摆边说。如果用算式怎样表示?板书(4÷3=1……1)

  学生得出:只要小棒数量比杯子数量多1都有这样的结论。

  2、探究商不是1的情况。

  讨论7本书放进3个抽屉里,想知道结论吗?还要摆吗?

  那8本书进3个抽屉里。

  10本书放进3个抽屉里又是怎样?你发现了什么?

  我发现 7÷3=2……1

  8÷3=2……2

  10÷3=3……1

  板书:至少数=商+1。

  小结:我们今天探究的原理就是数学中有名的鸽巢原理。

  三、本课总结:

  鸽子÷鸽巢 = 商…… 余数

  至少数 = 商+1

  四、用今天知识来解决生活中的一些实际问题。

  1、做一做

  2、玩扑克的游戏。

  五、板书:略

小学六年级数学比教案3

  教学目标:

  1、能正确辨认从不同方向(正面、左面、上面)观察到的立体图形

  (5个小正方体组合)的形状,并画出草图。

  2、能根据从正面、左面、上面观察到的平面图形还原立体图形(5个小正方体组合),进一步体会从三个方向观察就可以确定立体图形的形状。

  教学重点:

  能正确辨认从不同方向(正面、左面、上面)观察到的立体图形(5个小正方体组合)的形状,并画出草图。

  教学难点:

  能根据从正面、左面、上面观察到的平面图形还原立体图形(5个小正方体组合),进一步体会从三个方向观察就可以确定立体图形的形状。

  学具准备:

  每个学生准备10个棱长5厘米的小正方体纸盒,

  教师准备:

  10个棱长是15厘米的立方体纸盒,正方形纸板若干个。

  教学过程:

  一、课前复习

  我们在前面的知识中已经学习了用三个或四个正方体搭成立体图形,请大家看大屏幕的图形,你能说出从正面、侧面、上面三个方向观察到的图形吗?(展示课件)

  知道了从不同方向观察物体,现在我们就来学习更加复杂的立体图形,有兴趣吗?

  二、教学新授:(用三个比赛贯穿整个教学过程)

  1、创设“比赛”情景一

  第一轮比赛:摆(如课件)

  要求学生用5个小正方体搭成的立体图形的形状,任意搭,有多少搭多少,充分调动学习积极性。

  (小组每摆一个造型可得10分)

  时间为3分钟

  学生出现了多种答案,老师巡视课堂。

  2、想一想,从正面看是什么形状,从侧面、上面看呢?

  从比较简单的无遮挡实物入手,发现实物与观察到的图形之间的联系,发展学生空间观念。

  第二轮比赛:画

  (1)教师大屏幕出现摆好的立体图形(由5个小正方体搭成),让学生仔细观察立体图形后集体动手单独画出从三个不同方向观察到的平面图形,并总结出画平面图形的方法。——从左边开始看,先看有几列,再看每一列有几个正方形。(这种方法的教学得到了学生的大力支持,简单易学)

  (2)比赛:任选三位同学依次摆出三种图形,让全班各组的同学画,能画出来的小组获得分数50分,反之扣50分。

  3、创设“比赛”情景三

  根据从正面、側面、上面观察到的平面图形,还原立体图形(5个小正方体组合)屏幕出示,课件上从正面和上面观察到的平面图形的形状。

  师:这是一个用5个小正方体搭出的立体图形,从上面和正面观察所画下的形状。同学们,你能不能用小正方体搭出这个立体图形?

  学生小组合作操作,(根据上面两图形搭出立体图形)

  (每个小组限定在2分钟内摆,时间到时各小组摆出图形来,每摆对一个可得50分,反之,摆错了倒扣50分)

  师:请说一说你搭过程中的想法和做法。

  师:可以先根据正面图形搭出符合正面的立体图形,再根据上面观察到的图形搭出符合上面的立体图形。也可以根据上面的`形状,知道有一块是隐藏的,再根据正面的形状确定隐藏在哪一块下面。

  思考1、从二个方向观察,能不能确定立体图形形状?

  (1)出示课本78页试一试第一题图。

  (2)师:请用5个小正方体搭出这个立体图形。

  师:注意到各组搭出的立体图形,形状都不一样,你从中发现了什么?让学生自己去感悟,去体会,充分尊重并利用学生(让生认识到根据从二个方向看到的平面图形不能确定一个物体立体形状)

  思考二、(二个方向观察可确定搭成这个立体图形所需要的正方体数量范围。)

  (1)出示试一试第二题图

  (2)师:引导生先从上面看,哪个位置有正方体,哪个位置没有正方体。再从左面看哪一排最多有几个?最少有几个?进行充分想象。

  (3)学生小组合作操作

  (摆放实物搭出这样的立体图形,你从中发现了什么?让学生体会从二个方向看到的平面图形虽不能确定一个物体立体图形,但可以确定搭成这个立体图形所需要的正方体的数量范围。

  4、计算各小组所得分数,宣布获胜小组

  三、反馈练习,深化体会认识。

  79页练一练1、2。

  四、小结

  今天学习的观察物体,要从几个方向才能确定物体的位置呢?(3个)2个方向是不能确定立体图形形状的,但可确定搭成这个立体图形所需要的正方体数量范围。

小学六年级数学比教案4

  教学目标

  1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;

  2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;

  3、培养学生分析和解决实际问题的能力,发展学生的思维;

  4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。

  教学关键 培养学生分析和解决实际问题的能力

  教学重点 复习分数乘除法应用题,掌握解题方法。

  教学难点 找准单位“1”

  教学步骤 教学过程 教学课件演示 教学意图

  一、基础训练导入。

  师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的.是什么?

  专项训练:

  课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。

  在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?

  我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?

  常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。

  二、根据看线段图列式

  师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】

  注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。

  三、基础练习

  基础练习只列式不计算

  师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?

  归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。

  尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?

  【教学课件演示】

  培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。

  四、对比练习

  1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。

  通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。

小学六年级数学比教案5

  1.联系实际,建立图形放大、缩小的概念。

  数学里图形放大或缩小的含义与生活中的放大、缩小经常是不同的。生活中会把图形由小变大视作放大,由大变小视为缩小。数学里的图形放大或缩小,它的每条边都按一定的比例变化,即每条边的长度都放大到原来的几倍或缩小到原来的几分之一。例1教学图形放大、缩小的含义,先观察在电脑上放大长方形的现象,分别研究长方形放大后与放大前长、宽的关系。然后联系长方形放大揭示图形放大的数学含义。教材依次讲了三句话:首先是长方形的每条边放大到原来的2倍,这是对长放大到原来的2倍,宽也放大到原来2倍的概括。然后是放大后的长方形与原来长方形对应边长的比是2∶1,用比描述图形放大时边的长度变化。这里把放大前、后两个长方形的长称为对应边,宽也称为对应边,必须把放大后图形的边的长度作为前项,原来图形的边的长度作为后项。最后是把原来的长方形按2∶1的比放大,让学生体会由于放大后与放大前两个长方形的对应边的长度关系是2∶1,因而把图形的放大说成2∶1。这里还示范了图形放大的规范表述按2∶1的比放大。

  在初步理解图形放大的基础上,教材引导学生主动迁移,认识图形的缩小。让学生说说缩小后的长方形的长、宽分别是原来长方形的几分之几,解释图形按1∶2缩小的含义,初步形成图形缩小的概念。

  例2在方格纸上画图形。利用方格纸等形式按一定比例将简单图形放大或缩小是《标准》的要求,因为方格能直观显示每条边的变化情况,操作方便,有利于概念的应用和巩固。教材引导学生在画图前先思考放大(或缩小)后图形的长、宽各是几格,应用概念进行推理,为正确画图做准备。在画图以后,还要观察原来的图形、放大后的图形、缩小后的图形,再次体会图形放大、缩小时,每条边的长度都按相同的比变化。练习九第1题能使学生进一步清晰图形放大、缩小的概念。方格纸上的⑤号图形是①号长方形放大后的图形,因为⑤号图形的长、宽分别是①号图形长、宽的3/2;③号图形是①号长方形缩小后的图形,因为③号图形的长、宽分别是①号长方形长、宽的1/2。而②号、④号图形与①号长方形比,各条边没有按相同的比变化,它们都不是①号长方形缩小或放大后的图形。

  根据图形的放大或缩小,可以写出许多关于线段长度的比。在例3的情境中,长方形照片放大后与放大前的长的比是9.6∶6.4,宽的比是6∶4;放大前长方形长与宽的比是6.4∶4,放大后长方形长与宽的比是9.6∶6。前面两个比在例1和例2里已经多次接触,例3引导学生写出后面两个比,利用这两个比教学比例的意义。先分别计算6.4∶4和9.6∶6的比值,从比值都是1.6得出这两个比相等,可以写成6.4∶4=9.6∶6或6.4/4=9.6/6,指出表示两个比相等的式子叫做比例,突出比例是比值相等的两个比组成的等式。然后让学生思考放大后与放大前两张照片长的比和宽的比也能组成比例吗,经历写出比、算比值、发现比值相等、组成比例的过程,体会比例的意义。练一练的四组比中,如果同组的两个比的比值相等,就可以组成比例;如果比值不相等,两个比就不能组成比例,进一步巩固比例的概念。

  长方形放大后与放大前的长的比和宽的比相等,是例1教学的图形放大的含义。在例3中,又发现长方形放大前长与宽的比和放大后长与宽的比相等,从新的视角体会了图形放大的含义。例3既从放大前长与宽的比和放大后长与宽的比组成比例,又从放大后与放大前长的比和宽的比组成比例,引导学生利用比例的意义进一步完善图形放大的概念。

  除了图形放大与缩小,从常见的数量关系中也能找到比例。练习九第3题,一辆汽车上午行驶的路程和时间的比与下午行驶的路程和时间的'比能组成比例。第7题购买同一种铅笔,总价与数量的比能组成比例;大小不同的正方形,周长与边长的比能组成比例。这些素材能加强对比例的理解,还为以后教学正比例作了铺垫。

  2.联系实际,发现和应用比例的基本性质。

  例4教学比例的基本性质,大致分五步进行: 第一步在按比例缩小三角形的情境中写出一些比例,为研究比例的基本性质准备充分的素材;第二步教学比例的内项和外项,这是认识比例基本性质必须具备的概念;第三步观察已经写出的几个比例,初步发现比例的两个外项的积等于两个内项的积;第四步重新写出一些比例,看看是否具有同样的规律,并在字母表示的比例上概括这样的规律;第五步指出发现的规律是比例的基本性质,并在写成分数形式的比例上体会这一性质。

  把三角形按比例缩小,联系图形缩小的含义,学生可能想到缩小后与缩小前两个三角形底的比和高的比相等,或者高的比和底的比相等,还可能想到缩小前、后每个三角形底与高的比相等,或者高与底的比相等。于是,在交流时出现四个不同的比例。教材指出3∶6=2∶4里的3和4是比例的外项,6和2是比例的内项,让学生说说其他三个比例的内项和外项各是几。学生容易发现,如果6和2同时做比例的外项,那么3和4是比例的内项;如果6和2同时做比例的内项,那么3和4是比例的外项,从而体会这几个比例两个外项的积等于两个内项的积。再写出一些比例,看看是否有同样的规律,检验前面四个比例的规律是不是适用于所有的比例。通过更丰富的实例,进一步体会两个外项的积等于两个内项的积是所有比例的共同规律。在此基础上,把比例用字母表示成a∶b=c∶d,写出ad=bc,概括了上面的规律,通过符号化的方式表示了比例的基本性质。

  试一试应用比例的基本性质,判断3.6∶1.8和0.5∶0.25能否组成比例。思考线索应该是: 如果这两个比能够组成比例,那么3.60.25的积与1.80.5的积应该相等;如果这两个比不能组成比例,那么3.60.25的积与1.80.5的积不相等。于是分别计算3.60.25和1.80.5,并比较两个积的大小。练一练是试一试的延伸,由于612=418,所以6、4、18和12这四个数能组成比例。而4、5、6和8这四个数不能组织积相等的两个乘式,因而它们不能组成比例。把6、4、18和12组成比例,可以把6和12同时作外项,4和18同时作内项,也可以把6和12同时作内项,4和18同时作外项,一共能写出8个不同的比例。对于每个学生来说,只要求写出一个比例,并在交流时知道还能写出其他比例,不要求每个学生都写出8个比例。

  例5应用比例的知识解决图形放大的实际问题,包括根据图形放大的含义列出比例,以及利用比例的基本性质解比例两个内容。先根据照片放大后与放大前长的比和宽的比能组成比例这个知识写比例,发现要写的比例里有三个项是已知数,另一个项是未知数,于是想到把放大后照片的宽设为x厘米,列出比例解决问题。这个比例也是一个方程,教材写出了解方程的第一步6x=13.54,让学生思考这一步计算的依据是什么,体会这里应用了比例的基本性质,最后还指出求比例中的未知项叫做解比例。

  试一试解写成分数形式的比例,进一步熟悉比例的内项和外项。已经写出1.2x=引导学生应用比例的基本性质,体会这是解比例的关键步骤。练一练解分别由整数、分数或小数组成的三个比例,要应用整数、分数或小数的乘、除计算。教材里没有出现分数与小数共同组成的比例,是因为《标准》不要求进行分数与小数的乘、除计算。

  3.以图形的放大、缩小为基础,教学比例尺。

  平面图是把现实的平面按一定比例缩小绘制成的,从平面图想像实际平面的数学活动是把图形放大,比例尺刻画了平面图和实际平面之间的放大、缩小关系。

  例6教学比例尺的意义,首先要让学生在实际情境中识别实际距离和图上距离,这些是与比例尺有关的概念。其次分别写出草坪长的图上距离和实际距离的比,宽的图上距离和实际距离的比。在写比的时候,要指导学生统一图上距离与实际距离的单位,便于写比和化简比。通过交流,体会把实际距离改写成以厘米为单位的数量,写出的是整数比,把图上距离改写成以米为单位的数量,写出的是小数比,前者比后者更方便一些。例题的教学重点是建立比例尺的概念,先指出图上距离和实际距离的比叫做平面图的比例尺,由于学生已经两次写出这样的比,所以建立比例尺的概念是感性认识的抽象提升;再用数量关系式进一步表达比例尺的意义和计算方法,教材里同时出现图上距离∶实际距离=比例尺和图上距离/实际距离=比例尺。

  比例尺1∶1000表示图上距离是实际距离的1/1000,实际距离是图上距离的1000倍,这是对比例尺1∶1000的意义作出的具体解释。教材让学生说出这些关系,进一步体会比例尺的意义。从图上距离与实际距离间的倍数关系,还能得到图上距离1厘米表示实际距离10米,这就引出了比例尺的另一种表示形式线段比例尺。数值比例尺和线段比例尺都是比例尺的表示形式,它们可以相互转化。例题从数值比例尺引出线段比例尺,练一练第1题分别解释数值比例尺与线段比例尺的具体含义,两种形式的比例尺之间的关系就能得到沟通。第2题求平面图的比例尺,学生在例题里进行过写出图上距离与实际距离的比并化简的活动,应该有能力独立完成这道题。

  例7已知平面图的比例尺以及明华小学到少年宫的图上距离,求两地之间的实际距离。由于学生对比例尺1∶8000的意义会有不同的解释,因而可能出现不同的解题思路和方法。有的学生会从图上距离与实际距离的倍数关系进行思考,有的学生会把数值比例尺转换成线段比例尺,列式和计算比较方便。例题还引导学生用解比例的方法解题,表示比例尺意义的数量关系式是列比例依据的相等关系。试一试里根据已知的比例尺和实际距离,求图上距离。虽然已知条件和要求的问题与例题不同,但解题思路是一致的,对比例尺的意义作出具体解释是思考的关键,教材允许学生按自己的思路选择解法。要注意的是,试一试要求在例7的平面图上表示出医院的位置,算出学校到医院的图上距离后解题并没有结束,还要在学校正北方3厘米处作个记号表示医院,并在学校与医院之间连条线段。

  4.进一步研究图形放大,发现面积与长度变化的关系。

  《面积的变化》分三段设计实践活动。第一段的活动有:分别测量放大前、后两个长方形的长和宽,根据图形放大的含义写出对应边长的比;估计两个长方形面积的比;利用测量得到的边的长度计算两个长方形的面积比。

  这一段活动的目的是进一步巩固图形放大的概念,体会图形放大,面积扩大的倍数与边长扩大的倍数是不相同的。第二段的活动有:依次测量正方形、三角形、圆放大前、后的有关长度;分别计算各个图形放大前、后的面积,把长度与面积的数据填入教材的表格里;研究图形放大后与放大前的边长比与面积比之间的关系。这一段活动要通过几个实例的研究,发现图形放大,面积扩大的倍数是长度扩大倍数的平方。第三段在东港小学的校园平面图里选择一幢建筑或一处设施,测量图上的长度,算出实际占地面积,应用前面发现的规律。因为这幅平面图的比例尺是1∶1000,实际距离是图上距离的1000倍,所以实际面积是图上面积的倍数就是1000的平方,计算必须细心,防止错误。当然,也可以利用图上距离与比例尺,先算出实际距离,再计算实际面积。不过,这种方法没有应用发现的规律,要尽量引导学生采用前一种方法,体验发现规律的乐趣和应用规律的意义。

小学六年级数学比教案6

  教学内容:

  教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

  教学目标:

  1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

  2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

  重点难点:

  掌握圆柱体积公式的推导过程。

  教学资源:

  PPT课件 圆柱等分模型

  教学过程:

  一、联系旧知,设疑激趣,导入新课。

  1.呈现例4中长方体、正方体和圆柱的直观图。

  2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

  启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?

  3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

  二、动手操作,探索新知,教学例4

  1.观察比较

  引导学生观察例4的三个立体,提问

  ⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

  ⑵长方体和正方体的体积一定相等吗?为什么?

  ⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

  2.实验操作

  ⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

  提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

  ⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。

  ⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

  操作教具,让学生观察。

  引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

  演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。

  3.推出公式

  ⑴提问:拼成的长方体与原来的圆柱有什么关系?

  指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的`高等于圆柱的高。

  ⑵想一想:怎样求圆柱的体积?为什么?

  根据学生的回答小结并板书圆柱的体积公式

  圆柱的体积=底面积高

  ⑶引导用字母公式表示圆柱的体积公式:V=sh

  长方体的体积 = 底面积 高

  圆柱的体积 = 底面积 高

  用字母表示计算公式V= sh

  三、分层练习,发散思维,教学试一试

  ⑴让学生列式解答后交流算法。

  ⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

  (s和h,r和h,d和h,c和h)

  四、巩固拓展练习

  1.做练一练第1题。

  ⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

  ⑵各自练习,并指名板演。

  ⑶对照板演,说说计算过程。

  2.做练一练第2题。

  已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。

  五、小结

  这节课我们学习了什么?有哪些收获?还有什么疑问?

  六、作业

  练习三第1~3题。

小学六年级数学比教案7

  教学目标:圆柱表面积的,掌握圆柱表面积的计算方法,并能正确地计算圆柱的表面积。会解决简单的实际问题。

  教学重点:掌握表面积的计算方法

  教学难点:运用所学的知识解决简单的实际问题

  教具准备:圆柱的展开图

  教学过程:

  一、复习

  1、指名学生说出圆柱的特征。

  2、圆柱的侧面积=底面周长高

  3、计算下面各圆柱的侧面积。

  (1)底面2.5周长米,高0.6米。

  (2)底面直径4厘米,高10厘米。

  (3)底面半径1.5分米,高8分米。

  4、提问:圆柱的侧面积加两个底面的面积就圆柱的什么?(表面积)

  二、教学表面积。

  那么,圆柱的表面积是什么?明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  板书:圆柱的表面积=圆柱侧面积+两个底面的'面积

  1、教学例2。

  出示例2的题目:一个圆柱的高是4.5分米,底面半径是2分米,它的表面积是多少?

  (1)这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?

  (2)我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数

  据标在图上。现在我们把这个圆柱展开。出示展开图,如下:

  2、小结:计算表面积时,一定要分步计算。先求什么,后求什么,再求什么。(提问)

  3、出示试一试:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

  (1)这道题已知什么?求什么?这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?

  (2)要计算做这个水桶需要多少铁皮,应该分哪几步?

  教师行间巡视,注意察看最后的得数是否计算正确。

  (3)指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

  三、课堂小结。

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  四、巩固练习。

  练一练第1~4题。

  五、《作业本》第2页。

小学六年级数学比教案8

  教学目标:

  1、正确解答两三步计算的分数四则混合式题。

  2、运用学过的知识,解答两步计算的较简单的分数应用题。

  3、培养和训练学生的思考和分析解答问题的能力。

  教学重点:

  1、两三步式题的正确计算。

  2、培养和训练学生运用所学知识解决问题的能力。

  教学过程:

  一:复习铺垫

  1、填空:

  除以一个不等于0的数,等于()。

  2、口算:

  3/533/722/5-1/51/42/3

  1/2333/51/3+1/261/3

  3、标明下面各题的运算顺序:

  7202+[50(25+47)][1178-12(84+5)]5

  4、小红用8米长的彩带做一些花,如果每朵花用2/3米彩带,小红能做多少朵花?

  二、引入新课:

  在上面第三个问题的后面增加她把其中的4朵送给了同学,还剩多少朵花?(增加问题后就成为例4)

  1、学生读题,理解题意。

  2、说一说,怎样求还剩多少朵花?

  3、学生列式:

  4、师:请同学们观察,这道题目中有哪几种运算?

  生:除法和减法。

  师:在整数四则混合运算中,运算顺序是怎样的?

  生:略。

  师:从以上分析请你推想:整数四则混合运算的运算顺序,适用于分数吗?

  生:通过分析例4的'题意我们可以看出--整数四则混合运算的运算方法,同样适用于分数和计算。

  5、学生独立计算,师巡视指导并作订正。

  82/3-4=83/2-4=12-4=8(朵)

  答:小红还剩8朵花。

  6、思考:在计算中,应该注意什么?

  三、

  要求:让学生说一说,上面的题目的运算顺序各是什么,然后进行计算。

  本练习的教学安排:学生先独立计算前两列的四个小题,然后交流各自的算法,对比分步计算的先把除法转化为乘法再一次性约分这两种不同的解法,哪一种更简便些?

  鼓励学生以后在计算中可以根据题目的特点灵活选用恰当的方法进行计算;然后再让学生计算第三列的两个小题

  此两小题由学生找出运算顺序之后独立计算,教师指导有困难的学生。最后让学生说一说,你在计算中是如何来提高计算的正确率的?

  学生读题,理解题意。

  提问:1、老爷爷每天跑几圈?

  2、半圈用哪个数来表示?

  3、照这个速度,怎样理解?

  4、要求老爷爷每天跑步要用多少时间,要先求出什么?

  5、现在你能解答了吗,能解答的自己写出解答过程,不能解答的请教老师。

  6、指名口答解答过程,师生共同订正。

  四、全课总结:

  1、说一说,今天学习了什么新知识?

  2、这节课,你有什么收获吗?有什么发现吗?有什么想要告诉老师和同学的吗?请大家发表自己的见解。

  五、课后作业:练习九第1---4题。

  第1题:读题后思考,你打算怎样来计算这几道题?(多找几个学生来说自己心里的想法,寻找出最好的解题策略后再让学生进行计算。)

  第2题:提问6楼到地面的高度是多少层楼的高度?

  (6楼楼板到地面的高度实际只有5层楼的高度)

  第3、4题由学生独立完成。

小学六年级数学比教案9

  设计说明

  1.在情境中建立数学与生活的联系。

  《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。

  2.在操作中渗透转化思想。

  转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。

  3.在应用中培养学生解决问题的能力。

  “培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的过程中完成对圆柱表面积的不同情况的'探究,提高分析、概括和知识运用的能力。

  课前准备

  教师准备 多媒体课件

  学生准备 纸质圆柱形物体 剪刀 长方形纸板

  教学过程

  ⊙提出问题、设疑导入

  1.说一说。

  师:生活中,哪些物体的形状是圆柱?谁能和大家说一说?圆柱在生活中的应用非常广泛,和我们的生活是密切相关的。

  2.想一想。

  课件出示情境图:做一个圆柱形纸盒,至少要用多大面积的纸板?(接口处不计)

  师:要制作这个圆柱,你首先想到了哪些数学问题?“至少用多大面积的纸板”是一个关于什么数学知识的问题?

  3.汇报。

  小组合作,观察、讨论:求至少要用多大面积的纸板就是求圆柱的上、下底面的面积和圆柱的侧面积之和。

  4.交代学习目标,导入新课。

  师:圆柱的上、下底面的面积和圆柱的侧面积之和也叫圆柱的表面积,这节课我们就来探究有关圆柱表面积的问题。(板书课题)

  设计意图:创设情境,培养问题意识,引导学生思考,使学生在观察、讨论中初步感知圆柱表面积的意义,学生的思考和探究活动就有了明确的方向,为学习新知做好铺垫。

小学六年级数学比教案10

  教学目标:

  知识与技能

  学会用正、反比例的方法解决问题,并掌握用比例解决问题的思路和一般步骤。

  过程与方法

  1.通过知识迁移,在复习用正比例解决问题的基础上,探究用反比例解决问题的方法。

  2.借助对比练习,总结用正、反比例解决问题的方法步骤,培养学生分析解决问题的能力。

  3.通过策略多样化的训练,培养学生的发散性思维。

  情感态度和价值观

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重难点:

  教学重点:用比例知识解答比较容易的归一、归总应用题。

  教学难点:掌握用比例知识解决问题的思路和一般步骤,准确判断题中数量之间存在的比例关系,根据正、反比例的意义正确列式。

  教学准备:

  多媒体课件;小组学习记录卡。

  教学方法:

  尝试教学法、引导发现法等。

  教学过程:

  一、铺垫孕伏,建立表象。(课件出示)

  1.判断下面每题中的两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行路程和时间。

  (2)书的总本数一定,每包的本数和包装的包数。

  (3)圆柱的体积一定,圆柱的底面积和高。

  (4)单价一定,总价和数量。单价一定,总价和数量.

  2.下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

  (2)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

  [设计意图]本节课的教学内容是正、反比例的应用,因此通过本环节的教学,使学生加深对正、反比例的意义理解,能正确判断成正、反比例的量。

  二、创设情境,探索新知

  (一)回顾旧知,激发兴趣

  1.出示例5情景图,说一说图意,了解数学事例。

  2.让学生自己解答,然后交流解答方法。

  [设计意图]用以往学过的方法解决问题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。

  引导过渡:这个问题除了用算术方法解答外,还可以用比例的知识来解答,下面我们继续探究怎样用比例解决问题。

  (二)探究新法,感知策略

  1.梳理两种相关联的量。

  师:用比例解决问题,必须知道题中有哪两种相关联的量,你们能说一说题中有哪两种相关联的量吗?(板书:相关联的两种量:水费、用水吨数)

  2.因为( )一定,所以( )和( )成( )比例。也就是说,( )和( )的比值相等。

  5.根据这样的关系,你能列出比例吗?

  6.请解比例。

  小组合作探究用比例解题的方法。

  找出题中两种相关联的量,以及对应的数据,完成探究活动。

  设计意图]教师提出小组合作学习的要求,明确学习的目标和任务、组织学生如何开展学习,是小组合作学习必不可少的部分。探究的问题既突出了学习的重点,又把用比例解决问题的探究过程清晰地呈现出来,有利于学生建构用比例解决问题的策略。

  (三)形成策略,展示成果

  我们知道(每吨水的价钱)一定,所以(水费)和(用水量)成正比例。也就是说,两家的(水费)和(用水量)的(比值)相等。设李奶奶家上个月的水费是x元。列出比例是:(或28:8=x:10),比例的解是x=35。(板书解法)

  [设计意图]注重学生在教学活动中的主体性,留给学生充分的时间和空间。先让学生自己解答,再组织、引导学生合作、交流自己发现方法。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力,探究能力。使学生增强学习的自信。

  (四)检验反思,提炼策略

  师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?

  启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。

  师:反思刚才的学习过程,我们一起来归纳用比例解决问题的“五步曲”:

  一找(梳理相关联的两种量)、二判(判断相关联的两种量成什么比例)、三列(设未知x,根据判断列出比例)、四解(解比例)、五检(用自己熟练的方法来检验)。

  [设计意图]“检验反思”有利于培养学生良好的学习习惯,同时提高解决问题的正确率。归纳解题的策略,有助于提高学生解决问题的能力。

  (五)即时练习,巩固提高

  同学们不仅用我们过去的方法解决了李奶奶的问题,还发现用比例的方法也能解决李奶奶的问题,同学们真能干!接下来请你们解决一下王大爷的问题吧!

  出示“王大爷家上个月的水费是42元,他们家上个月用了多少吨水?”让学生进行变式联系。

  (学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的'正比例关系没变,只是未知量变了)

  三.应用策略,拓展新知

  1.例6:一个办公楼原来平均每天照明用电100千瓦时。改用节能灯以后,平均每天只用电25千瓦时。原来5天的用电量现在可以用多少天?这个问题同学们一定会解决!

  (1)自主解决问题。

  (2)交流汇报解决过程。

  (3)师:通过这个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。

  [设计意图]让学生通过自己的努力获得用反比例的知识解决问题的能力。

  2.学生独立解决做一做的问题。

  师:说一说题中的数量关系以及解决问题的思路。

  [设计意图]再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。

  四、归纳总结,揭示主题

  应用比例知识解答应用题,你是怎样想怎样做的?

  强调:用比例解答应用题的关键是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

  [设计意图]通过例题的讲解,学生总结用比例解答应用题关键和解题步骤。

  五、巩固练习,考考自己(课件出示)

  1.独立去思考,列式不计算。

  (1)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?

  (2)同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

  2.仔细去分析,巧妙来选择。

  (1)李师傅5小时做80个零件,照这样计算,16小时可以做多少个零件?这题( ) A.用正比例解B.用反比例解C.不能用比例解

  (2)装订一批书,计划每天装订1800本,40天完成,实际每天装订20xx本,实际几天可以完成?解答时设实际X天可以完成。正确的列式是( )

  A.1800X=20xx×40 B.20xxX=1800×40 3.争做小法官,认真来判断。

  (1)某食堂12天烧煤15吨,照这样计算,100吨煤可以烧多少天?

  解答时设100吨可以烧X天。列式为12:15=100:X ( )

  (2)一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达。如果要4小时到达,每小时需要行驶多少千米?这是一道正比例应用题。( )

  4.用边长为15cm的方砖给教室铺地,需要20xx块。如果改用边长为25cm的方砖铺地,需要多少块?(用比例解答)

  [设计意图]通过不同层次的练习,循序渐进,围绕所学基础知识设计变式题,符合学生的知识水平和思维水平,使学生不仅会做,而且会想。练习形式多样,从而激发学生的练习兴趣,使他们从不同的途径和角度去加深理解和巩固知识。

  六、盘点收获

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?解题的步骤是什么?(学生自己用语言叙述)

  七、作业布置:教科书P63、64练习十一第3、8题。

  【板书设计】

  用比例解决问题

  用比例解决问题的“五个步骤”:例5解:设李奶奶家上个月的水费是χ元。

  一找(梳理相关联的两种量) 28:8=χ:10

  二判(判断相关联的两种量成什么比例) 8χ=28×10

  三列(设未知x,根据判断列出比例) χ=280÷8

  四解(解比例) χ=35

  五检(用自己熟练的方法来检验)答:李奶奶家上个月的水费是35元。

小学六年级数学比教案11

  [教材简析]

  这部分内容是在学生掌握了比的相关知识,特别是学习了如何求比值之后安排的一个实践活动测量树、旗杆、楼房的高度。这些物体都比较高,它们的高度很难用尺子直接度量,要通过在同一地点,同时测得的竿长和影长的比值相等的规律,间接获得。因此发现和应用这个规律是本次实践活动的重点。

  量量比比 发现规律

  通过在太阳光下,把几根同样长的竹竿直立在地面上,使学生懂得什么叫影长、如何测量影长并体会和发现在同一时间、同样长的竹竿的影长相等。在此基础上再把几根长度不同的竹竿直立在地面上,按照表格的要求,分别测出每根竹竿的长度及影长,算出竿长与影长的比值,发现竹竿有长、有短,影长有长、有短,但各根竹竿的竿长和影长的比值是相等的。

  议议做做 应用规律

  这一部分,教材没有把怎样应用规律测量树高、楼房高的方法直接告诉学生,而是引导学生体会方法。通过交流,整理出思路:测出1根竹竿的长度和影长,求出竿长与影长的比值;再测出树的影长,求它的高。并用此方法,实际测量校园里的一棵大树的高和楼房、旗杆的高。当然,如果没有同时测量竹竿的影长和大树的影长,用上面的方法计算树的高,是不会得到准确结果。因此必须突出同一时间测量影长。

  [教学目标]

  1、通过测量各种目标物影子长度的实践活动,使学生主动探索掌握影子长度与目标物实际高度之间的比例关系。

  2、通过分组合作,培养学生动手动脑、解决实际问题的'能力和团结协作精神。

  3、通过活动,使学生感受到数学与现实生活的密切联系,进一步激发学习数学的兴趣,并在活动中培养创新精神。

  [教学过程]

  一、创设情境,激起兴趣

  1.播放动画片《聪明的阿凡提卖树荫》片段

  (故事简介:一个炎热的下午,长工们正和阿凡提在巴依大老爷家门外的一棵大树下乘凉。这时,巴依大老爷出现了,非常蛮横地要大家出100个钱买下树荫。聪明的阿凡提一下就看穿了巴依贪婪的用心,决定将计就计,教训他一下。于是大伙凑够了100个钱给了巴依,巴依心满意足地走了。到了晚上,圆圆的月亮升上了天空,皎洁的月光照在大树上,大树长长的影子正好落在巴依大老爷的院子里和屋顶上。长工们在阿凡提的带领下,涌进巴依的家里,有的还爬上了房顶。巴依吓坏了,急忙赶大伙出去。这时,阿凡提说:树荫是我们花钱买下来的。树荫移到哪里,我们就跟到哪里。你要想让我们出去,就得给钱。巴依大老爷只好认输求饶,不仅退还了100个钱,还答应再也不阻挠大伙在树荫下乘凉了。)

  师:故事看完了,你们觉得阿凡提怎么样?

  生:聪明机智,敢于同巴依大老爷作斗争,为穷人谋幸福

  师:可是,故事并没有结束。巴依大老爷不甘心就此认输,一直在寻找着报复的机会。过了几天,阿凡提有急事出了门,巴依便带着几个打手来到了树下,把乘凉的长工们撵到一边,然后命令打手们把大树砍倒。附近只有这么一棵大树,枝叶茂密,正是长工们避暑的唯一去处。长工们纷纷恳求巴依大老爷不要砍树,这下正中了他的诡计。只见巴依眼珠一转,奸笑了两声说:不砍树也行。只要你们哪个人能说出这棵大树有多高,条件是不准爬上树去量。不然的话,你们还是凑足100个钱再来这儿乘凉吧!长工们一下愣住了,你看看我,我看看你,心里很着急,大家多么希望此时阿凡提能出现在这儿呀!

  [评:用《聪明的阿凡提卖树荫》故事引出课题,大大激发了学生学习的兴趣,调动了学生学习的积极性和主动性,增强了数学实践活动课的趣味性。笔者认为只有调动起学生的学习兴趣,才能变苦学为乐学,变难学为易学,变死学为活学。]

  二、找寻规律,巧解难题

  师:聪明的同学们,你们愿不愿意开动脑筋,给大伙出个点子,帮助长工们粉碎巴依大老爷的诡计呢?

  1、积极思考,各抒己见。

  ①学生分组讨论,指名发言。

  生:可以趁巴依大老爷不注意时偷偷爬上树,放下一根和大树一样高的绳子,量量绳子有多长,大树就有多高;

  生:可以把几根竹竿绑成一根长竹竿,竖在大树旁,如果和大树一般高,只要量一量竹竿长度就行了;

  生:利用影子。在太阳照射时,当我们的影子与我们的身高相同,说明大树的影子也与大树的高度相同,马上测量大树的影子。

  生:赶快派人去找阿凡提

  生:利用媒介物。先拍一张大树和一样东西的照片,看看大树的高度相当于这样东西的几倍,然后量出这样东西的高度,大树的高度就是它的几倍。

  生:在氢气球下扎一根很长的塑料绳,把氢气球放上天,当它与大树同样高度时,量出塑料绳的长度。

  [评:这一环节中虽然有的同学出的点子并不符合巴依老爷的要求,有的点子操作起来比较麻烦,结果也不甚精确,但却进一步激发了学生积极大胆地动脑、动口、动手的欲望,不但维持了学生对这个活动的兴趣,更是较好地渗透和培养了学生的创新意识。]

  2、仔细观察,找寻规律。

  ①刚才老师听到有一个同学提到了利用影子。是啊,整个事件其实就是因树荫(也就是树的影子)而起,我们看看,能不能想个办法,还从它的影子入手,算出大树的高度呢?

  ②(课件出示)一幅画面:父子俩迎着夕阳,走在人行道上,身后投下一长一短两条影子。

  师:观察一下,你发现什么?

  生:父亲个子高,影子就长;儿子个子矮,影子就短

  ③课前老师也让同学们测量了长木棒、短木棒和自己身高的影子长度,并将测量的结果填在了这张表格(P78表格)上。请你讲一下自己是在什么时间什么地点测量的,测量的结果是多少。(各组汇报本组的测量数据,可能各不相同。)

  师:为什么同样长的木棒大家量得的影长却不同呢?

  说明:因为各组测量的时间(比如说有的同学是上午量的,有的则是下午或中午量的)、地点可能不同,所以同样高度的直立木棒的影长也在发生变化。

  ④观察。请大家仔细观察你测得的三组数据,哪个同学能说一说影子长度与实际高度之间到底有什么关系呢?

  ⑤学生分组观察,讨论,得到:在同一时间,物体实际高度越高,它的影子就越长。并通过尝试计算,发现竹竿有长、有短,影长有长、有短,但各根竹竿的竿长和影长的比值是相等的

  [评:在学生己有学习和生活经验中体验数学、理解数学和学习数学,真正体现了现代素质教育的思想。]

  3.利用规律,巧解难题。

  ①师:同学们已经发现了影长与物体高度之间的关系,怎样利用这个关系帮助长工们解决难题呢?

  ②学生讨论,根据学生回答,教师逐步演示下面过程:

  在大树旁垂直竖一根1米长的竹竿,同时量得竹竿的影长为0。5米,大树的影长为2。8米。根据以上数据,请学生分组算出大树的高度是多少米。看看哪组同学用的方法最多?

  ③各组同学汇报本组的解题方法与思路。

  方法一:因为竹竿长度是其影长的2倍,所以大树高度也是其影长的2倍。

  列式为:2。8(10。5)

  方法二:因为竹竿影长是其高度的1/2,所以大树影长也是其高度的1/2。

  列式为:2。8(0。5l)

  方法三:因为大树影长是竹竿影长的5。6倍,所以大树高度也是竹竿高度的5。6倍。

  列式为:1(2。80。5)

  方法四:因为竹竿影长是大树影长的5/28,所以竹竿高度也是大树高度的5/28。

  列式为:l(0。52。8)

  方法五:

  [评:本节课充分体现了学生为主体,教师是教学活动的组织者、指导者和参与者。在整个教学过程中,教师给学生提供了自主探索的机会,让学生在观察、合作、讨论、交流、归纳、分析的过程中学习。这样的教学活动,可以逐步培养学生的创新意识和实践能力。]

  三、继续探索,深入实践

  1.师:同学们真的动了脑筋,连阿凡提都表扬我们了,看:

  (课件出示)阿凡提冲着大家一竖大拇指说:六(*)班的同学,亚克西!。

  师:看到巴依耷拉着脑袋,灰溜溜地走了,同学们高兴们?

  是啊,我们用智慧帮助长工们再一次粉碎了巴依的阴谋,的确值得的高兴。

  2.下面,我们就用今天掌握的方法,到操场上任选一个目标物,如旗杆、篮球架等,测量出它的影长,算出它的实际高度来。

  准备工作:

  ①小组为单位,开始分工

  ②在实际测算过程中思考:有没有更巧妙的测量方法?

  3.实地测量、记录、计算

  4.情况反馈活动总结

  各小组汇报测量及计算结果允许有小小的误差,若出入较大,帮助查找错误原因并现场纠正。

  [评:新课标指出,要结合学生的年龄特征和所学的知识,使学生感受到数学与现实生活的密切联系。培养学生的实践活动能力,拓展学生的知识视野。本节课在此思想的指导下进行了有益的尝试。 将激发学生的学习兴趣,丰富学生的生活,培养学生的合作精神,提高学生的整体素质融为一体。]

  四、激励评价,问题延伸

  通过这节课的活动和学习,你都知道了什么?你是怎样知识的?你学得开心吗?

  回家后,选择你喜欢的、个头巨大的物体,测量并计算出它的高度。

  [评:课堂总结不但关注了学生知识与技能的掌握,而且关注了学生的学习过程,关注了学生的情感,还把课堂中学到的知识延伸到生活中,体现了生活中处处有数学的理念。什么是有价值的数学?只要是学生感兴趣的、对学生的一生发展有奠基意义的数学才是有价值的。]

小学六年级数学比教案12

  教学内容:

  人教版小学数学教材六年级上册第50~51页内容及相关练习。

  教学目标:

  1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。

  2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

  3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

  教学重点:

  理解比的基本性质

  教学难点:

  正确应用比的基本性质化简比

  教学准备:

  课件,答题纸,实物投影。

  教学过程:

  一、 复习引入

  1.师:同学们先来回忆一下,关于比已经学习了什么知识?

  预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

  2.你能直接说出700÷25的商吗?

  (1)你是怎么想的?

  (2)依据是什么?

  3.你还记得分数的基本性质吗?举例说明。

  【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。

  二、新知探究

  (一)猜想比的基本性质

  1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?

  预设:比的基本性质。

  2.学生纷纷猜想比的基本性质。

  预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。

  (二)验证比的基本性质

  师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

  1.教师说明合作要求。

  (1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

  (2)小组讨论学习。

  ①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。

  ②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

  ③选派一个同学代表小组进行发言。

  2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。

  预设:根据比与除法、分数的关系进行验证;根据比值验证。

  3.全班验证。

  16:20=(16○□):(20○□)。

  4.完善归纳,概括出比的基本性质。

  上题中○内可以怎样填?□内可以填任意数吗?为什么?

  (1)学生发表自己的见解并说明理由,教师完善板书。

  (2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)

  5.质疑辨析,深化认识。

  【设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。

  三、比的基本性质的应用

  师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?

  今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。

  (一)理解最简整数比的含义。

  1.引导学生自学最简整数比的相关知识。

  预设:前项、后项互质的整数比称为最简整数比。

  2.从下列各比中找出最简整数比,并简述理由。

  3:4; 18:12; 19:10; ; 0.75:2。

  (二)初步应用。

  1.化简前项、后项都是整数的比。(课件出示教材第50页例1)

  学生独立尝试,化简后交流。

  (1)15:10=(15÷5):(10÷5)=3:2;

  (2)180:120=(180÷□):(120÷□)=( ):( )。

  预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。

  2.化简前项、后项出现分数、小数的比。(课件出示)

  师:对于前项、后项是整数的`比,我们只要除以它们的公因数就可以了,但是像 : 和0.75:2,

  这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。

  学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。

  预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

  3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

  4.方法补充,区分化简比和求比值。

  还可以用什么方法化简比?(求比值)

  化简比和求比值有什么不同?

  预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

  5.尝试练习。

  把下面各比化成最简单的整数比(出示教材第51页“做一做”)。

  32:16; 48:40; 0.15:0.3;

  【设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。

  四、巩固练习

  (一)基础练习

  1.教材第53页第4题。

  把下列各比化成后项是100的比。

  (1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。

  (2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。

  (3)某企业去年实际产值与计划产值的比是275万:250万。

  2.教材第53页第6题。

  (二)拓展练习(PPT课件出示)

  学生口答完成。

  1.2:3这个比中,前项增加12,要使比值不变,后项应该增加( )。

  2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )

  【设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。

  五、课堂小结

  这节课你有什么收获?还有什么疑问?

小学六年级数学比教案13

  教学目标:

  1.知识与技能

  (1)结合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程。

  (2)感受观察范围随观察点,观察角度的变化而改变,并能利用所学的知识解释生活中的一些现象。

  (3)通过观察、操作、想象等活动,发展空间观念。

  2.过程与方法

  从熟悉的、有趣的生活背景中让学生感受观察范围的变化,发展学生的空间观念。

  3.情感、态度与价值观

  体会数学与现实生活的联系,增强学习数学的兴趣以及能利用所学的知识解释生活中的一些现象。

  教学重点:

  经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察的范围随观察点、观察角度的变化而改变。

  教学难点:

  感受观察范围随观察点的变化而改变,运用这些知识解释生活中的一些现象。

  教具准备:

  多媒体课件

  教学过程:

  一、学科整合,引出新课

  1.利用多媒体课件出示学校教学楼不同楼层拍摄到的广场图片,引出古诗《登鹳鹊楼》,让学生有情感的朗诵。

  2.师提出问题:古诗中的一句“欲穷千里目,更上一层楼”千古以来一直被传诵,你是怎样理解这句话?

  3.如果从数学的角度来探索,你知道其中的情理吗?从而引出新课:观察的范围

  (板书课题:观察的范围)

  设计意图:由学校教学楼不同楼层拍摄到的广场图片,回忆古诗导入,引人入胜,激发学生的学习兴趣,进而引入新课,激发学生探究新知的。同时培养学生用数学的眼光观察生活的意识。

  二、猜想验证,领悟方法

  1.利用多媒体出示情境,说:“同学们真聪明,所以有只小猴想请大家帮帮忙。秋天到了,果园里的桃子都成熟了,看!落的满地都是呢,有只小猴闻到香味赶来了,但前面有一堵墙挡住了它的视线,小猴也很聪明,于是爬到旁边的大树上去看。小猴现在能看到哪些桃子,请大家大胆猜想。

  师指墙角下一点:这个位置小猴子在A点能看见吗?为什么?

  生:不能看见,因为它的视线受到了墙的遮挡。

  2.师:它到底能够看到多大的范围,你能用什么办法来证实自己的猜想呢?

  3.在学生的回答过程中引出本节课的两个要害点“观察点”与“障碍点”,(板书:观察点、障碍点)

  引导学生总结方法:在观察点A与障碍点两点之间连线并延长,就可以确定观察的范围。

  4.进一步提出问题:小猴还想看到更多的桃子,你认为他该怎么办?爬到B处或者更高的C处,小猴子能看到哪些桃子?观察到的范围会有怎么的变化?先请学生勇敢的猜想,再通过画图来验证猜想。

  然后通过比较发现规律:小猴爬得越高,看到的桃子就越多。说明小猴看到的区域就越大,也就是说,观察的范围随着观察点高低的变化而变化(板书)

  5.体验:让每个学生把书本竖放在桌上,然后再把下巴靠着桌沿,抬头,起立。再次感受观察的范围与观察点、障碍点的关系。

  6.刚才我们是怎么学习的?抽象——画图——比较——发现——应用

  那观察的范围是不是只跟观察点的高低有关,还跟什么有关,请大家继续根据大屏幕的提示,用我们刚才的学习方法选择一个进行探究。

  设计意图:引导学生将眼睛抽象成数学中的“点”,将视线抽象成为数学中的“线”,需要学生有一定的抽象概括能力。让学生在想象的'过程中,实际动手画一画。在此过程中,学生也会体会到随着观察点的变化,观察范围也在发生变化,小猴子爬得越高,看到的桃子就越多,这正是运用所学的数学知识解释生活中的一些现象。

  三、着手操作,探究提高

  1.出示:汽车由远及近时,观察范围的变化。(科技大楼)

  夜晚路灯下笑笑的影子的变化。(生活馆)

  2.学生独立用刚才的学习方法自主探究。

  3.同桌相互交流。

  4.指名汇报,发现规律

  ①司机离障碍物越近,观察到的范围越小;观察的范围随着观察点远近的变化而变化。

  ②观察的范围随着障碍点的变化而变化。

  5.汇总小结

  观察的范围随着观察点、障碍点的变化而变化。

  设计意图:引导学生将生活经验和数学知识紧密联系,发展学生抽象概括能力和解决问题的能力,并让学生感受到数学的应用价值。

  四、巧设练习,回归生活

  1.小猫观察的范围的变化(生物馆)

  先让学生独立思考,画一画,再汇报,展现出小老鼠的活动区域。进一步提出:如果小猫不想让小老鼠有这么大的活动区域,它将怎么办?请学生从新设计示用意,让学生感想观察的范围随观察角度的变化而变化。

  2.日食、月食现象

  老师还想带大家去天文馆看一下,先请大家看一个短视频,然后画一画日食、月食现象示意图。(激发学生的好奇心)

  3. 课外作业

  (1)日食可分为日全食、日偏食、日环食、全环食;月食可分为月全食、月偏食及半影月食三种。想一想、查一查月食为什么没有月环食?

  (2)在黑夜里把一个球向电灯移动时,球影子的大小、形状是怎样变化的?

  设计意图:让学生带着思考走出课堂,以鼓励学生将知识进行拓展延伸。

  五、课堂总结

  让学生说说这节课有什么收获?

  六、课堂作业

  《课堂作业本》

小学六年级数学比教案14

  教学目标:

  1.知识目标:掌握圆各部分名称以及圆的特征;会用圆规画圆。

  2.能力目标:借助动手操作活动,培养学生运用所学知识解决实际问题的能力。

  3.情感目标:渗透知识来源于实践、学习的目的在于应用的思想。

  教学方法:

  导练法、迁移法、例证法

  教学准备:

  多媒体课件、圆规、直尺等

  教学过程:

  一、结合实际、谈话引入新课。

  谈话引入:今天非常高兴能和同学们一起来学习、

  研究一个数学问题。我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?

  师:看来大家平时非留心观察。课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?

  师:把它们举起来,大家互相看一看。回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)

  师:同学们观察得真仔细。圆的边是弯曲的,跟以

  前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。(板书课题)

  生举例

  师强调——指物品的表面

  圆是没有棱角的,边是弯的;圆的边是一条曲线。

  二、引导探究新知。

  1.导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。最后看看谁的收获多。(1分钟)

  2.师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。

  3.展示探究结果。结合多媒体课件辅助,完整认识圆的特征(8分钟)

  谁来告诉老师,你有哪些新发现?

  那是什么原因呢?

  你怎样发现的?

  结合学生交流、汇报探究结果,及时引导梳理。主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。

  4.学习画圆(5分钟)。

  你是如何画圆的?

  课件展示如何画圆。然后学生动手练习,并强调画圆时应该注意些什么。——揭示圆大小

  位置的确定

  学校要修建一个直径是20米的花坛,你能帮学校画出这个圆吗?生演示操作

  三、应用拓展。

  1.基本练习(4分钟)。

  〈1〉投影出示

  找出下列圆的半径、直径。

  〈2〉半径、直径的相关计算。

  〈3〉概念的判断和识别。

  2.应用练习。(10分钟)

  〈1〉车轮为什么做成圆形的,车轴应安装在哪?

  如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示

  〈2〉你能用今天学习的圆的知识去解释一些生活现象吗

  (举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?

  平静的湖面扔一小石子,会有什么变化?为什么?

  月饼为一般都做成圆形的,为什么?)

  看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

  〈3〉同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个谜语。有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面)

  师:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的范围有多大好吗?

  用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的范围是一个圆,拴羊的绳子与这个圆有什么关系吗?

  (是这个圆的半径)钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),这说明圆的`半径与圆心与圆有什么关系呢?

  圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。

  四、总结全课(3分钟)

  1.质疑

  (篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)

  2.这节课你都学会了什么?

  不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。(句号是圆形的)

  延伸

  1.用圆作画。

  2.谈谈我眼中的圆。

  板书设计:

  圆的认识——平面曲线图形

  圆心(o)圆中心一点,确定圆的位置

  半径(r)线段

  连接圆心到圆上任意一点,确定圆的大小,长度都相等〈在同一个圆里〉

  直径(d)线段,通过圆心,两端都在圆上,长度都相等。〈在同一个圆里〉

  半径和直径的关系d=2r

  教学反思:

  要让学生明白只有在同圆或等圆内,所有的半径才相等;所有的直径才相等;半径才是直径的一半,直径才是半径的2倍。

小学六年级数学比教案15

  设计说明

  本节课是在学生学习了比的意义以及比与除法、分数的关系等相关知识的基础上进行教学的,本节课的设计有以下几方面特点:

  1、充分利用教材提供的素材。在导入新课的过程中,利用教材提供的素材,让学生动手操作,亲手调制蜂蜜水,激发学生的学习兴趣,使学生在动手操作中体验到调制的过程,并说出自己调制的方法,为下面的学习打下基础。

  2、合作探究的学习方式贯穿整个教学。

  在整节课的教学中,充分遵循以学生为主体的原则,适当的引导,提出有重要价值的问题,让学生通过观察、合作、探究的方式找到问题的答案,让学生在学习的过程中体验到成功的快乐。

  课前准备

  教师准备PPT课件课堂活动卡

  学生准备蜂蜜水量筒水杯

  教学过程

  ⊙创设情境,提出问题

  1、把学生分成四个小组进行调制蜂蜜水的实验活动。(各小组拿出课前准备好的蜂蜜、水、量筒、水杯等实验物品,动手调制蜂蜜水)

  2、各小组选出代表在全班进行汇报。出示课堂活动卡。

  预设

  生1:我调制的这杯蜂蜜水用了40mL蜂蜜、360mL水。

  生2:我调制的这杯蜂蜜水用了2小杯蜂蜜、18小杯水。

  3、议一议,哪个小组调制出的蜂蜜水更甜?你用的是什么方法?(学生讨论并交流方法)

  4、除了这些方法,我们也可以用化简比的`方法来判断。(板书课题)

  设计意图:通过让学生动手操作,亲自调制蜂蜜水,激发学生学习的热情,让学生在动手操作中亲自体验调制的过程,并且用语言叙述自己的调制方法,在议一议中展开对新知的探究。

  ⊙探究新知,解决问题

  1、观察情境图,获取信息。(课件出示教材72页情境图)

  学生根据图中的内容,找出所需的信息。

  蜂蜜水

  男孩:3小杯12小杯

  女孩:4小杯16小杯

  2、体会化简比的必要性。

  (1)探究判断方法。

  联系我们学过的知识,你想到了用什么方法进行比较?

  学生小组内讨论,得出可以通过求出男孩和女孩各自杯中蜂蜜和水的比来比较。

  学生写出比。

  男孩:3∶12

  女孩:4∶16

  (2)哪杯水更甜?现在你能判断出来了吗?你又遇到了什么问题?

  引导学生发现,现在无法比较,如果能知道两杯蜂蜜水中平均1小杯蜂蜜用了几小杯水就可以比较了。

  (3)怎样才能知道平均1小杯蜂蜜用了几小杯水呢?请在小组内讨论一下。

  ①学生思考,小组内讨论。

  ②小组交流看法。

  ③指名汇报,说明理由。

  在交流的过程中教师要引导学生理解先把比转化成分数,利用分数的基本性质约分,再转化成比的方法。

  (4)得出结论。

  3∶12===1∶4

  4∶16===1∶4

  提问:你发现了什么?

  (两杯蜂蜜水中蜂蜜与水的比都是1∶4,所以两杯水一样甜)

  (5)揭示化简比的必要性。

  当比的前项和后项数值较大时,有时会给判断带来不便,这时就需要根据一定的规则,在不改变比值大小的情况下,将比的前项和后项同时缩小,这种现象称之为化简比。

  设计意图:让学生在解决“哪杯水更甜”的同时,加深对比的意义的理解,进一步感受比与除法、分数之间的关系。

  3、理解最简整数比。

  像1∶9,3∶7……这样的比我们称为最简整数比。

  (1)观察一下最简整数比的前项和后项,你发现它们之间是什么关系了吗?你能说说什么样的比是最简整数比吗?

  (2)学生汇报发现。

  根据学生的汇报教师小结:当比的前项和后项都是整数,并且比的前项和后项的最大公因数是1时,这样的比就是最简整数比。

  4、探究化简比的方法。

  下面的比是最简整数比吗?你有什么办法把它们化成最简整数比呢?

  24∶42 ∶ 0.7∶0.8

  (1)小组讨论。

  (2)学生尝试解答,教师巡视指导。引导学生采用不同的方法化简比。

  (3)全班交流化简比的方法。

  预设

  生1:我利用分数的基本性质进行化简。

  生2:我利用商不变的规律进行化简。

  生3:我利用除法进行化简。

  生4:我利用比的基本性质进行化简。比的前项和后项同时乘或除以同一个不为0的数,比值的大小不变。

  如果有学生用此法,教师因势利导进行教学,如果没有,教师从比和分数的关系入手,引导教学。

【小学六年级数学比教案】相关文章:

小学数学六年级教案05-23

小学数学六年级的教案08-25

小学数学六年级数学教案06-05

小学数学六年级上册教案11-18

小学数学六年级教案【实用】05-30

小学六年级数学比教案06-07

小学数学六年级教案(精品)05-25

小学数学六年级教案(集合)05-24

(优)小学数学六年级教案05-23

【优秀】小学数学六年级教案05-24