现在位置:范文先生网>教案大全>数学教案>五年级数学教案>五年级数学下册教案

五年级数学下册教案

时间:2024-06-19 12:30:07 五年级数学教案 我要投稿

(合集)五年级数学下册教案

  作为一名默默奉献的教育工作者,时常需要编写教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?下面是小编帮大家整理的五年级数学下册教案,仅供参考,希望能够帮助到大家。

(合集)五年级数学下册教案

五年级数学下册教案1

  一、教学内容 :

  课本 P88~90 例 1、例 2。

  二、教学目标

  1.知识与技能:解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。

  2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。

  3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。

  三、重点难点:

  求两个数最小公倍数的方法。

  四、教学设计

(一)、小组长汇报“前置小研究”完成情况

  怎样求3和2的最小公倍数?

  第一步:3的倍数有:()

  2的倍数有:()

  第二步:3和2的公倍数有:( )

  第三步:3和2的最小公倍数是:()

  (二)、小组交流、探讨“前置小研究”

  1、 要求小组内互相解决出现的错误,并能说说自己的方法;

  2、要求学生说说:

  (1)什么是公倍数和最小公倍数?

  (2)两个数的公倍数的个数是怎样的?

  (三)引课:今天我们就来探究最小公倍数(板书课题)

  1、出示书P88例1题

  一种墙砖长 3 dm,宽 2 dm。如果用这种墙砖铺一个正方形 (用的墙砖都是整块),正方形的边长可以是多少分米? 最小是多少分米?

  (1)、学生进行讨论:

  (2)、出示分别用6个、24个、54个长方形摆成的边长是6分米、12分米、18分米的正方形的动画

  (3)、学生反馈:这个正方形的边长必须既是 3 的倍数,又是 2 的倍数。

  (4)、还可以怎样表示求3和2的最小公倍数?

  ①求3和2的最小公倍数,还可以用用集合圈的方法表示 ②全班交流并板书。

  可以铺出边长是 6 dm,12 dm,18 dm,··· 的正方形,最小的正方形边长是 6 dm。

  3的倍数 2的倍数

  6, 6 是最小的公倍数,叫做它们的最小公倍数。

  2、考考你:用新学的知识解决问题:完成P89做一做

  3、教学例2:怎样求 6 和 8 的最小公倍数?

  (1)学生独立完成,全班交流。

  (2)学生交流方法有(交流时课件演示)

  ①列举法:先找倍数,再找公倍数,最后找出最小公倍数。 例如:6 的倍数:6,12,18,24,30,36,42,48,?

  8 的倍数:8,16,24,32,40,48,?

  6 和 8 公倍数:24,48,?

  6 和 8 的最小公倍数:24

  ②用图表示也很清楚。

  ③6 的倍数中有哪些是 8 的倍数呢?

  你还有其他方法吗?和同学讨论一下。

  教师介绍:①大数翻倍法:8,16,24,?6 和 8 的最小公倍数:24 ②分解质因数法:

  数的乘积。

  4、通过观察,想一想:①两个数的公倍数的个数是怎样的?②两个数的公倍数和它们的最小公倍数之间有什么关系?

  5、考考你会求两个数的`最小公倍数吗?

  完成书P90做一做:求下面每组数的最小公倍数,看看有什么发现? 3 和 6 2 和 8 5和 6 4 和 9

  6、交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

  7、我能很快说出每组数的最小公倍数。

  8和9() 24和8 () 30和5( ) 4和12() 36和4()48和6 () 17和13() 14和15() 23和24( )

  (四)巩固练习 :书P91第1题。

  (五)全课总结:通过这节课的学习,你有什么收获?

  板书设计 最小公倍数

  公倍数:两个数公有的倍数

  最小公倍数:两个数公有的倍数中最小的那个数 找“最小公倍数”的方法:

  个数的公倍数中找出两个数的最小公倍数

  2、特殊情况:

  ①当两数成倍数关系时,这两个数的最小公倍数就是较大的数; ②当两个数是互质数时,这两个数的最小公倍数就是这两个数的积。

五年级数学下册教案2

  【讲学内容】

  教材第36页例1、试一试、练一练以及练习六相关习题。

  【讲学目标】

  1、 使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进

  一步理解分数的意义。

  2、在初步认识分数的基础上,经历动手操作、自主探索、合作交流的过程,进一步理解分数的意义;弄清分子、分母、分数单位的含义;掌握分数的读写方法。

  3、 使学生在学习分数的意义的过程中进一步培养分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。

  【讲学重点】

  理解分数的意义,认识分数单位。

  【讲学难点】

  理解、抽象出单位“1”。

  【讲学过程】

  在三年级,我们曾经分两次认识分数。今天这节课,我们要在以前学习的基础上,进一步认识分数。

 一、预习·导学

  复习回顾:

  1.你能举例说说什么是分数吗?

  2.你已经知道了那些有关分数的'知识?

  刚才同学们已经回答出许多有关分数的知识,今天这节课我们继续来学习分数:分数的意义。(板书课题)

  3.整数、小数都有计数单位,例如:整数9的计数单位是( ),9里面有( )个( ),0.9的计数单位是( ),0.9里面有( )个( )。

  二、互动·研讨

  1、出示例1组图

  (1)提问:你能用分数表示各图中的涂色部分?

  (学生独立完成在书上,后回报所填写的分数)

  (2)你认为这些图中分别是把什么平均分的?平均分成了几份?用分数表示的是其中的几份?

  在学生回答的同时,教师指出:一个饼可以成为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看作一个整体。

  (3)出示 。

  猜一猜: 是把( )平均分成3份,表示这样( )份的数。

  学生讨论交流,班内汇报。

  说明:一个物体、一个图形、一个计量单位或许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。提问:(1)在这几个图形中,分别是把什么看作单位“1”的?

  (2)分别把单位“1”平均分成了几份?用分数表示这样的几份?

  (3)从这些例子看,怎样的数叫做分数?

  在学生回答的基础上,教师小结:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。教师相应地板书。

  (4)做练习六的第2题。

  先让学生在每个图里涂色表示 ,后展示学生的作业,让学生说说是怎样想的?

  提问:同样是 ,为什么涂色桃子的个数不同?

  2.认识分数单位。

  谈话:整数、小数都有计数单位,分数也有分数单位。例如:5/8里有5个1/8,5/8的分数单位是1/8,3/7、1/5、1/2呢?

  提问:你能说说什么是分数单位吗?

  学生讨论交流,教师引导揭示。

  (1)试一试:

  学生先自己试说,交流时,同桌两人合作回答,一人说分数,另一人说它的分数单位,各有几个这样的分数单位。

  (2)完成“练一练”。

  提问:各图中的涂色部分怎样用分数表示?请大家在书上填空。

  学生汇报所填分数,选择地让学生说一说是怎样想的?

  提问:每个分数的分数单位是多少?各有几个这样的分数单位?

  三、练习·巩固

  1、自我检测。

  指名读题,并说出每个分数的分数单位。

  提问:每个分数的分母与分数单位有什么关系?

  (2)5/9是把单位“1”平均分成( )份,表示这样的( )的数。

  (3)把6只熊猫玩具看作一个整体,平均分成3份,2只熊猫是这个整体的——,4只熊猫是这个整体的——。

  2、快速抢答。(用分数表示下面各图中的涂色部分)

  ( ) ( )

  ( ) ( )

  3、仔细推敲。(用下面的分数表示图中的涂色部分,对不对?)

  2/4 4/5 3/9

  1/3 1/4

  4、数形结合

  5、点击生活。(说出每个分数所表示的意义。)

  1、 今天你学会了什么?

  2、 计算小数乘小数要注意什么?

  3、 小数乘小数与小数乘整数的计算方法有什么相同的地方?

五年级数学下册教案3

  教学理念:

  数学来源于生活,又回归于生活 。课堂创设动手活动,积累学生的感性认知 。

  教学目标:

  1、使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。

  2、掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。

  3、感受升和毫升的实际意义,能应用所学知识解决生活中的简单问题。

  教学重点:

  理解容积意义;掌握容积和体积的联系与区别。

  教学难点:

  理解容积意义;感受升和毫升的实际意义

  教学准备:

  教师:1L量杯,一次性纸杯24个(每组3个),1cm3的自制的小正方体容器,8个1升量杯, 10ml钙铁锌口服液,5ml注射器8支

  学生:2瓶自己带瓶装水,贴有商标的各种饮料瓶,药水瓶,家用油壶,牛奶袋,果汁盒等。

  教学过程:

 一、导课

  师:老师想送朋友一个生日礼物?(出示长方体礼盒)大家想知道是什么礼物吗?

  生:想

  师:是一个生日蛋糕

  师:如果老师告诉你这个礼盒长3分米,宽3分米,高1分米,这个礼盒的体积是多少?

  生:9立方米

  师:猜猜,这个长方体礼盒所容纳蛋糕的体积是多少?

  生:9立方米,8立方米,7.5立方米等(学生很快否定9立方米)

  师:(打开纸盒,露出蛋糕)是你所预料到的吗?如果你过生日收到这样的生日礼物会有何感想?

  生:(试说)太小了

  师:我买了这么大个礼物还小?

  学生:盒子里面太小了

  师: 盒子里面太小了,说的真到位。盒子里所容纳的蛋糕的体积叫盒子的容积。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)

  (设计意图):学生通过求长方体的体积,并估算出长方体里所能容纳面包的体积,当老师打开礼品后,学生会发现与自己所估算的差别太大,突出容积的表象认知)

  二、理解容积的意义

  1、举例,感知容积意义

  出示墨水瓶:指出墨水瓶所能容纳墨水的体积叫做墨水瓶的容积。

  出示茶叶筒:茶叶筒所能容纳茶叶的体积叫做茶叶筒的容积

  2、理解容积的意义

  利用你准备的学具来说说,什么是它们的容积

  【出示课件(第2张幻灯片)】:集装箱、油漆桶(指名说出他们的容积)

  3、归纳概括容积意义

  像粉笔盒、墨水瓶所能容纳物体的体积叫做它们的容积。(学生齐读,老师板书)

  (设计意图:学生在充分的感性实例中积累容积的本质内涵,丰富的积累为学生归纳总结容积意义打下扎实基础)

  4、容积和体积的区别与联系。

  ①区别两者数据给出的不同

  师:同学们,我们继续来看这个长方体礼盒。礼盒放在空间,自身有什么?

  生:体积

  师:打开礼盒,礼盒里面又有什么?

  生:容积

  师:已知礼盒的长、宽、高,能求出礼盒的容积吗?

  生:不能

  师:想求出礼盒的容积,必须要知道(老师边比划边问学生)什么?

  生:礼盒里面空间的长、宽、高

  师:如果老师告诉你礼盒里面的空间是一个棱长为1分米的正方体,你能求出蛋糕的体积吗?

  生:能,1立方分米

  师:蛋糕的体积就是礼盒的容积

  (设计意图:通过学生对直观长方体礼盒的体积与容积的计算,突破求容积需要已知容器里面的数据这一难点)

  ②区别两者本质的不同

  师:【出示课件(第3张幻灯片)】:一个较小的实心长方体;一个较大的空心长方体)问题:谁的体积大;谁有容积?

  学生:指名回答

  ③小组讨论,交流汇报两者异同点(课件出示第4、5张幻灯片)

  师:同学们,体积与容积一字之差,他们有什么区别与联系呢?(小组讨论,交流汇报)

  联系:求的都是物体的体积。

  区别:体积求的是物体占空间的大小。(外部)

  容积求的是物体所能容纳空间的大小。(内部)

  (设计意图:多角度的区分容积与体积的不同,从而使学生较为全面的理解容积的意义,突破容积意义这一教学难点)

  三、教学容积单位

  1、计量容积一般用体积单位。

  常用的体积单位有:立方厘米、立方分米、立方米(学生边说,老师边板书)

  2、认识升和毫升。

  ①观察学具,看看你所带的饮料瓶上所标示的净含量,你发现了什么?(小组交流汇报:发现它们的单位都是L 、 ml而且这些饮料瓶里装的是液体。)

  ②在计量液体的体积时,常用容积单位升(L)和毫升(ml)。当遇到液体体积很大时,例如:计量蓄水池、游泳池里的水的体积,就用立方米。(板书)

  3、感知1L

  ①介绍量杯,观察1L的刻度线,②组长负责,将桌面上的瓶装水倒入1L的量杯中水,其他人仔细观察

  ③生活中,我们常用杯子喝水,组长负责将1L倒入纸杯大小,观察1升水大约几纸杯

  ④ 谈谈,对1L水你有什么感受?

  ⑤生活中那些物品用升做容积单位?(生:油桶、水桶、大瓶饮料瓶的容积)

  4、感知1ml

  (整队纪律,老师将在每组中找一名最快坐好的同学,负责下一个活动。给每组发一个5ml注射器)

  ① 桌面上有一杯有颜色的水,组长负责,用针管吸入1ml水,让大家看看

  ② 再将这1ml水注入一个空纸杯,再让大家看看

  ③ 谈谈,你对1ml水有什么感受?

  ④ 你准备的学具中那些标有毫升,是多少毫升?(举例:眼药水5ml、钙口服液10ml等)

  (设计意图:学生通过吸入1ml带蓝色的水,在注入纸杯的过程中感受1ml的多少,突破学生对1ml由感性认知到理性认知的突破)

  5、1L与1ml的关系

  师:通过前面几个活动,大家了解了1L 、1ml。那么1L 与1ml有怎样的关系呢?仔细观察桌面上的量杯,你就能找到答案

  生:齐答1L =1000ml(板书)

  6、升与立方分米、毫升与立方厘米的关系

  师:计量容积,一般用体积单位,但计量液体的体积时,常用的'体积单位是升与毫升。这两者之间有没有关系呢?老师想请一位同学和老师一起做个实验。

  (拿出准备1立方分米的透明正方体,1升有颜色水)

  师:老师会做好你的助手,拿稳盒子,你放心大胆的到,开始!(此个环节老师要装作很神秘,学生在整个过程中很兴奋)

  生:(全场一片惊讶)得出:1升=1立方分米

  师:看来他们之间真有联系,谁能用黑板上的关系推算出1毫升等于多少?

  生:观察得出: 1毫升=1立方厘米

  (设计意图:学生通过这个活动,突破1升=1立方分米的教学难点)

  四、小结

  通过前面有趣的动手操作,闭上眼睛体会:升一般用于计量油桶、水桶、大瓶饮料瓶等的容积;毫升一般用于计量眼药水、药水、小瓶饮料瓶等的容积;而计量、集装箱容积;蓄水池、游泳池里的水的体积,就用立方米。

  五、练习巩固【课件出示(第6、7、8张幻灯片)练习题】

  1、填一填

  一瓶钢笔水的容积是60( ) 摩托车油箱的容积是8( )一瓶矿泉水的容积是600( )

  运货集装箱的容积约是40( )微波炉的容积是45( )

  (集体订正、纠错。)

  2、填出合适的数

  4L =( )ml4800 ml =( )L2.4 L =( )ml785 ml=( )L752cm3=( )dm37.5 L=( )ml36 dm3=( )cm38.04 dm3=( )cm32750ml =( )L

  (引导学生说出每道题是怎么换算的思路)

  3、联系实际【课件出示(第6、7、8张幻灯片)】

  出示生活中用到本节知识的图片(喝水、潜水艇、献血等图片)

  (设计意图:练习有层次,有代表性。由知识题型过度到生活实际,使学生理解数学来源于生活又应用于生活)

  六、结课

  今天我们所学的知识与生活联系非常紧密,大家下去后在生活中找找与我们这节课有关的内容,下节课我们将进一步学习容积的知识。

  板书设计:

  容 积 和 容 积 单 位

  像墨水瓶、粉笔盒、教室等所能容纳物体的体积,叫做它们的容积。

  一般用体积单位:立方厘米(cm3)、立方分米(dm3)、立方米(m3)

  计量液体:升(L)、毫升(ml)、立方米(m3)

  它们间的关系:1L= 1dm3

  1 ml=1 cm3

  1L=1000 ml

五年级数学下册教案4

  一、知识梳理

  1.关于圆,你了解了哪些知识?

  (学生同桌互相说说,再指名说说0

  2.画一个直径6厘米的圆,并标注圆各部分的名称。

  学生独立画圆,教师巡视。

  1. 你会求出自己刚才画得那个圆的周长和面积吗?

  学生独立练习,2人板演,讲评。

  (教师根据学会的回答,整理板书)

  二、巩固练习

  1.(1)书本117页20题中的1

  学生独立画圆,教师巡视检查。

  (2)书本117页20题中的2

  学生读题理解题意,动手操作,教师巡视。

  交流时说说数对是什么意义?

  (3)计算圆的周长和面积。

  2.书本117页第21题

  (1)学生独立填表,再和同桌说说你是怎么得到的?

  (2)全班交流,教师板书公式。

  3.书本117页22题

  (1)学生读题理解,说说要求钢丝的长,必须先求什么?

  (2)学生独立完成。

  (3)集体讲评

  4.书本117页23 题

  (1)学生读题后问:“什么是废料?”

  (2)那么要求剩下的`废料该如何计算呢?

  (3)交流时明确:用正方形的面积-圆的面积

  (4)图2中的圆面积该怎么求?图3呢?

  (5)学生独立计算,教师辅导。

  (6)集体讲评

  引导学生发现:由于正方形中圆的面积和是相等的,所以每张铁皮剩下的废料也是相等的。

  思考:你能像这样在正方形中剪下一些同样大小的圆,并能使剩下的面积相同吗?

  学生尝试练习。

  三、全课总结

  四、作业布置

【五年级数学下册教案】相关文章:

数学五年级下册教案01-19

数学五年级下册教案03-13

数学下册教案03-16

人教版数学五年级下册教案12-09

五年级下册数学的教案03-13

五年级数学下册教案07-22

(热门)数学五年级下册教案06-12

数学五年级下册教案(精品)06-12

五年级数学下册教案01-09

数学五年级下册教案优秀04-22