现在位置:范文先生网>教案大全>数学教案>六年级数学教案>六年级数学上册教案

六年级数学上册教案

时间:2024-06-22 15:50:18 六年级数学教案 我要投稿

六年级数学上册教案【优】

  在教学工作者开展教学活动前,通常会被要求编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么应当如何写教案呢?以下是小编收集整理的六年级数学上册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

六年级数学上册教案【优】

六年级数学上册教案1

  【图解教材】

  利用光盘帮助学生理解求圆环的面积是利用外圆的面积减去内圆面积。

  【课时目标】

  1、学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。

  2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。

  3、培养学生的逻辑思维能力。

  【教学重点】求圆环的面积的'方法。

  【教学难点】运用所学知识解决实际问题。

  【教学过程】

  一、复习

  1、口算:

  32 42 52 82 92 202

  2π 3π 6π 10π 7π 5π

  2、思考:

  (1)圆的周长和面积分别怎样计算?二者有何区别?

  (2)求圆的面积需要知道什么条件?

  (3)知道圆的周长能够求它的面积吗?

  二、新课

  1、教学练习十六第3题

  小刚量得一棵树干的周长是125.6cm,这棵树干的横截面积是多少?

  已知:c=125.6厘米 s=πr2

  r:125.6÷(2×3.14) 3.14×202

  =125.6÷6.28 =3.14×400

  =20(厘米) =1256(平方厘米)

  答: 这棵树干的横截面积1256平方厘米。

  3、教学环形面积。

  (1)例2 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

  已知:R=6厘米 r=2厘米 求: s=?

  3.14×62 3.14×22

  =3.14×36 =3.14×4

  =113.04(平方厘米) =12.56(平方厘米)

  113.04-12.56=100.48 (平方厘米)

  第二种解法:3.14×(62-22)=100.48(平方厘米)

  (2)小结:环形的面积计算公式:

  S=πR2-πr2 或 S=π×(R2-r2)

  (3)完成做一做: 一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

  三、课堂小结;

  四、板书设计:

  【评价方案】

  一、达标测评

  ●学校有个圆形花坛,周长是18.84米,花坛的面积是多少?

  选择正确算式

  A、(18.84÷3.14÷2)2×3.14

  B、(18.84÷3.14)2×3.14

  C、18.842×3.14

  ●环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

  ●课堂小结。

  (1)这节课的学习内容是什么?

  (2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

  已知半径求面积 S=πr2

  已知直径求面积 S=π()2

  已知周长求面积 S=π()2

  (3)环形面积: S=π(R2-r2)

  二、效度评价

  参评人数( )

  题号

  1

  2

  3

  答对人数

  正确率

  三、教学反思

  学生参与程度

  教学目标达成度

  经验积累

  问题分析

  改进措施

六年级数学上册教案2

  【教学目标】

  知识技能:让学生理解圆面积的含义,经历猜想、操作、验证、讨论和归纳等过程,探索并掌握圆的面积计算公式的推导过程及其公式的应用。

  数学思考:经历自主探索圆的面积计算公式的推导过程,体会和掌握“转化”和“极限”的数学思想方法,发展空间观念。

  问题解决:培养学生发现和提出问题,分析和解决问题的能力。

  情感态度:培养学习数学的兴趣,增强合作交流的意识,在提升自我的同时,尊重他人,在表现自我的同时,心中有他人。

  【教学重点】

  掌握圆的面积计算公式,能够正确地计算圆的面积。

  【教学难点】

  理解圆的面积计算公式的推导过程。

  【教学准备】

  (1)软硬件设备:多媒体教学课件、平板互动系统、教师和学生平板终端,

  (2)教具:圆纸片、不同等分的圆卡片

  (3)学具:剪刀、圆纸片、不同等分的圆卡片。

  【教学过程】

  学生课前完成课前导学案(后附课前导学案的内容)

  一、课前互动:

  师:同学们,前段时间我看到了一个很有意思绘本故事,想看吗?大家请看,其中一张图片是这样的,猜一猜最后的这一棵盆栽会长出怎样的图形呢?为什么?

  生:越来越接近圆形。

  生:圆形,因为从三角形开始,然后到正方形、正五边形……图形越来越接近圆形。

  师:说的太好,看来我们班的同学们都是观察能力强,思维敏捷的同学。随着正多边形边数越来越多,越来越多,这个图形就会越来越接近一个圆了

  师:哪一个图形最特别。

  生:圆形,因为它是曲线围成的图形,其它是由线段围成的图形。

  师:真棒,其实这一张图片蕴藏着一个非常重要的数学思想,这个思想帮助我们解决了一个历史难题,想知道是什么思想吗?

  生:想。

  师:那么希望通过这节课的学习,大家会有所感悟。下面我们就开始上课了。上课。

  二、创设情境,引发问题

  师:同学们,我们已经认识了圆,知道了怎样求圆的周长,今天这节课我们要研究的内容是圆的面积。(板书课题)

  师:看到课题你最想研究什么问题?

  (预设)生:什么是圆的面积?

  (预设)生:如何求圆的面积?

  师:问的好,能提出问题的一定是会思考的同学,很多伟大的发明往往从提问开始,我们来整理一下提出的问题,主要是:圆的面积是什么?如何求圆的面积?(教师板书:是什么?如何求?)

  【设计意图】数学课程标准提出四基和四能,其中一项是培养学生提出问题的能力,这也是很多教师所忽视的环节,通常让学生提问题的环节让本课的研究更能激发学生的兴趣,针对性更强。

  师:现在我们逐个问题来解决。请看,这里有一个圆(出示一个圆的方框)谁来说一说什么是这个圆的面积?

  (预设)生:圆的大小就是它的面积,

  师:说的对,是这一部分的大小吗?(课件把圆填充颜色)

  师:(拿出手表)那么,什么是这个圆形手表镜面的面积?(手表镜面占平面的大小),所以圆占平面的大小就是它的面积,看来,“什么是圆的面积”这个问题大家很容易就解决了。

  (课件出示)

  师:接着我们来研究如何求圆的面积。请看,第一个正方形是由四个小正方形组成的,每个小正方形的边长是r,那么每个小正方形的面积大家会求吗?(会,是r×r,也就是r2),这个大正方形的面积就是4

  r2,等于4个小正方形的面积之和,大家猜一猜第二个正方形的面积大约等于几个这样的小正方形的面积呢?

  (预设)生:2个小正方形的面积

  (预设)生:3个小正方形的面积

  师:这样猜还是有一点困难,根据我们以前的经验,可以把第二个正方形重叠到第一个图像上来比比。

  (预设)生:等于两个正方形的面积之和,也就是2r2,。

  师:那么这个圆的面积呢?还要重叠过来吗?

  师:原来这个圆的半径和小正方形的边长是相等的。谁来说说这个圆的面积是多少?

  (预设)生:大约是3r2

  师:能确定?为什么不估2r2和4r2

  (预设)生:因为里面这个绿色的正方形的面积是2r2,圆的面积比它大,而蓝色大正方形的面积是4r2,圆的面积比它小。所以我估算是3r2.

  师:分析得有道理,太棒了,通过这比较的办法,我们知道了圆的面积的范围,就是大于2个以圆的半径为边长的正方形面积之和,小于4个小正方形面积之和。这也是数学上经常说的“内外逼近”的方法。

  (课件出示)两个正方形的面积<圆的面积<4个正方形的面积

  2r2<S圆<4r2

  师:那么圆的面积与r2(也就是与以圆的半径为边长的这个小正方形的面积),是否存在一个固定的倍数关系呢?如果有,又是几倍的关系呢?根据课前我对多个学校六年级学生的调查,发现主要有以下的几种想法。

  (平板电脑出示题目和选项:那么圆的面积与它的'r2是否存在一个固定的倍数关系呢?如果存在,它是几倍的关系呢?

  A:圆的面积是它的r2的3倍

  B:圆的面积是它的r2的3.5倍

  C:圆的面积是它的r2的π倍

  D:圆的面积是它的r2存在其他的倍数关系

  D:圆的面积与它的r2不存在固定的倍数关系)

  师:你认同哪一种呢?请大家根据刚才的分析和昨天课前的思考,在平板电脑上独立作出选择。(学生选完后系统对数据进行统计,并出示条形统计图)

  师:有30%的同学认为圆的面积是它的r2的3倍

  ,有50%的同学认为圆的面积是它的r2的π倍,还有少部分同学有其他的想法。太棒了,这些都是我们自己珍贵的猜想,很多伟大的发明都是来源于猜想,至于这些猜想是否正确呢?就要进行验证,最后得出结论(板书:猜想、验证、结论)现在我们一起进入验证的环节,请大家先思考一下,你打算怎样验证自己的猜想,可以独立思考或小组合作,也可以结合昨天的课前小研究、还可以利用桌面的圆纸片。比一比谁最快有思路。开始吧!

  【设计意图】通过比较圆与小正方形的面积关系,不仅让学生巩固了圆面积的概念,初步了解圆的面积在2

  r2与4

  r2之间,还体会了“内外逼近”的数学思想。另外,在学生提出猜想的环节加入平板互动系统的统计,更加清晰和全面地反映了学生的思维困惑,更加直面学生的认知基础,既关注了全体学生的培养,又重视了学生的个性化发展,给学生提供了一个更大的学习空间,充分地体现先学后教的教学理念。

  三、启发探究,尝试验证

  (一)数格子验证

  师:谁来说说你的想法?

  (预设)生:可以利用数格子的方法。

  (学生的课前研究单上有一个半径是3厘米的圆)

  (预设)生:我数了半径是3厘米的圆,不满一个的算半格,每个格子是1平方厘米,圆的面积大约26格。所以面积大约是26平方厘米。

  师:数格子(板书:数格子),很好的思路,数出圆的面积再除以半径的平方就可以知道它们之间的倍数关系了。26除以半径的平方大约等于3,大家觉得这个思路怎样?这样数出来的得数有误差吗?

  (预设)生:有,这些不满格的要估算。

  师:有道理,你看,这些不满格的还有这么大面积需要估算(指着图),那么,有什么办法提高数格子的精准度?如果把格子变小一点,像这样(课件出示下图)估算的误差会不会小一点。

  (预设)生:会,因为这样需要估算的面积就会越少,所以更准确。

  (课件展示)

  师:如果继续把格子变小,无限地变小,想象一下,这样数出来的结果就会(就会很准确了)。

  师:讲得太棒了,像这样把格子无限地平均分,其实相当于把圆平均分成无数个格子,这种思想就是我们数学常说的极限思想。(板书:数格子

  极限思想)

  师:但是,如果格子分得太细的话,我们能数得过来吗?(不能),看来,通过数格子的办法也很难准确地求出圆的面积,还有没有别的思路?

  【设计意图】数格子是学生计算新图形面积的常用办法,通过汇报“课前研究单”中数圆的面积,并比较格子的大小对估算圆面积大小的影响,让学生初步感受数格子中的极限思想,同时引出了数格子的不足,为下一步把圆平均分成无数个近似三角形埋下伏笔。

  (二)“对折”验证

  (预设)生:我用对折的办法,把圆对折、再对折、再对折,折到这么小,就很像一个三角形,这样就可以求出三角形的面积,再乘以三角形的数量就是圆的面积了。

  师:真棒,思路非常独特,你觉得同学们都听懂了吗?你觉得哪个地方同学们不是很理解,还要重点再讲讲?

  (预设)生:要尽量折得小一点,这样圆的这条曲边就会越来越直(边操作,边说),这样就会越来越近似于三角形。

  师:大家同意吗?太厉害了,我觉得这里应该有掌声。这个同学用对折的办法,相当于把圆平均分成若干份,(拿着学生的圆)平均分成4份的时候,这个近似三角形的底边还是比较弯曲的,对折几次后这个近似三角形的底边就会越来直了,如果让这条边变得更直的话,我们要怎样做?

  (预设)生:再对折。

  师:折一折,看一看,这条边是不是更直了,再对折看看

  (预设)生:太小了,折不了,

  师:没关系,纸片折不了,我们可以利用平板电脑帮忙,请大家打开平板,继续把圆平均分,看看有什么发现(学生利用平板电脑点击把圆平均分成32、64、128份)

  师:(学生展示平均分成128份)这是大家平板上的画面,你来说说。

  (预设)生:随着平均分的分数越多,这条边就会越直,128等分的时候,这条边已经很直了。

  师:请大家闭上眼睛想象一下,如果继续无限地平均分,这条底边就会(简直就变成直线了)

  师:太棒了,刚才同学们想到了,把圆平均分(板书:平均分)成无限个近似的三角形,这样每个近似三角形的这条曲边就会无限的接近于直线,这就是极限思想的魅力,它能画曲为直(板书:化曲为直),然后只要求出一个近似三角形的面积,再乘三角形的数量就等于圆的面积了。

  【设计意图】这一环节很多教师的做法是让学生折纸以后再用课件展示,这种做法中学生的体验是不足的,因此在这里引入平板电脑的手段,让学生不但可以通过折一折,还能利用平板电脑把圆平均分成更多等分,再结合分享和展示,增加学生在操作中的体会和经历,更加直观地理解化曲为直和极限数学思想。

  (三)等积转化验证

  师:还有其他的思路吗?

  (预设)生:把圆平均分后再拼成我们学过的图形,就像把平行四边形剪拼成长方形。

  师:说得好,你的思维很敏锐,厉害,转化,把未知转化成已知,像求平行四边形面积的时候,把它剪拼转化成长方形,然后再推导出计算公式,这样就不用数近似三角形的数量了,直接就能求出圆的面积就,不如我们一起来试试看。(板书:转化

  、推导)

  师:在每人的平板电脑上里都有4等分、8等分、16等分的圆,也可以利用等分圆的学具,还可以利用圆纸片进行任意的剪拼,请以小组为单位展开探索

  活动要求:1.拼一拼。将等分后的圆拼成一个我们学过的图形。

  2.比一比,拼成的图形中哪一个更接近于我们学过的图形。

  (学生在小组内操作的画面在讲台的一体机中流动显示)

  师:谁来说说你的发现,你是几号平板(马上在一体机中调出学生的画面)

  (预设)生:16等分的圆拼成的图形更接近于我们学过的平行四边形。因为16等分拼成的图形的底边是最直的。

  师:为什么会最直呢?

  (预设)生:像刚才一样,平均分成的分数越多,每一份就越近似于一个三角形,底边就越直,拼成的图形就越近似于平行四边形。

  师:如果像这样继续平均分,会变成怎样呢?请打开平板系统,继续试一试(每人的平板出示32、64、128等分的圆)

  师:谁来讲讲发现。

  (预设)生:你看,等分圆的份数越多,拼成的图形的底边会越来越直,而且(指着图形的两条宽)左右两条边跟底边就越接近于垂直,所拼成的图形越接近于长方形。

  师:请大家闭上眼睛想象一下,如果像这样继续无限地平均分,平均分成256分等等……,然后再拼起来,拼成的图形就会无限的接近一个长方形了,这个极限思想太了不起了,不仅能画曲为直,还能化圆为方。(板书:化圆为方)

  我建议我们要把这个过程留在板书上,我们通过把圆平均分成若干个近似的小三角形,然后拼成近似的长方形,随着无限地平均分,这样拼成的图形就会无限地接近一个真正的长方形。(板书:16等分的圆拼成的图形和一个长方形)

  【设计意图】这一环节融合信息技术手段能有效打破传统学具的限制,传统的学具最多把圆平均分成32份,这样拼起来的图形与长方形还是有很大的区别,理解化圆为方的思想有些困难。当信息技术与传统学具融合后,学生不仅能更直观、更方便地探究,而且又避免了信息化手段容易固化学生研究思维的缺点,让学生还能利用常规学具进行随意剪拼,这样学生研究的素材更多元化。另外,通过平板系统,学生在探究和分享、师生互动、学生间互相学习的过程中都能随时调用画面到屏幕上进行互动。让教学更加直观形象,让交流分享更加充分和完善,让学生的互相学习更加有效。

  师:研究到这里,到了最关键的一步了,就是推导计算公式,这个过程是老师教你,还是大家自己来。

  (预设)生:自己来。

  师:真的,我就站在旁边,有困难就举手。

  四、寻找联系、推导公式

  要求:

  想一想:近似长方形的长和宽与圆的什么有关呢?

  试一试:把推导的过程写下来。

  师:我把这个画面(圆形转化成长方形的过程的画面)发到大家的平板上,大家可以结合我们刚刚的发现来推导。

  学生分享:

  (预设)生:因为拼成的长方形的面积等于圆的面积,拼成的长方形的长近似于圆周长的一半,宽近似于圆的半径,而且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。

  因为C=2πr,所以S圆=πr×r,S圆=πr2。

  师:我真没想到我们班同学能把这个问题讲的这么清楚,你觉得大家在哪一部分的理解还是有点欠缺呢?要不要再讲讲?

  (预设)生:我觉得长方形的长近似于圆周长的一半这点是比较难发现的,要这样来看,在圆平均分成若干份后,把这些近似的小三角形分成了上下两部分,例如下面这部分,这些小三角形的底边就是原来圆的边,它们的总长就是原来圆的周长的一半。

  【设计意图】通过平板系统的引入,在推导公式的过程中,每个小组不仅可以把推导的过程发送到互动平台让其他小组互相学习,而且在分享中也能随时调出其他小组的作品加以质疑和评价,从而提高了学习的深度学习。

  师:太棒了,见过厉害的,但是没见过这么厉害的,掌声鼓励一下。

  师:经过大家的研究我们似乎把公式推导出来了,我们一起来整理一下,

  师:拼成的近似长方形的面积等于圆的面积,长方形的长近似于圆周长的一半,宽近似于圆的半径,长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。

  因为C=2πr,所以S圆=πr×r,S圆=πr2。

  (板书)

  S长方形=长×宽

  S圆=周长的一半×半径=C÷2×r=2πr÷2×r=πr2

  师:太好了,终于把公式推导出来了,原来圆的面积就等于它半径的平方再乘π,圆的面积与它半径的平方之间是π倍的关系,哪些同学猜对了(学生举手),掌声表扬,你们有数学家的眼光。没猜对的同学也不要紧,因为你们已经把公式推导出来了,也掌声鼓励。你知道吗,在古代,曾经有很多的数学家对圆的面积做了详细的研究,其中比较著名的就是魏晋数学家刘徽的千古绝技

  “割圆术”请看。

  五、感受数学文化的魅力

  (展示魏晋数学家刘徽割圆术视频)

  师:刘徽在当时这么简单的条件下计算了正3072边形面积。他提出的计算圆周率的科学方法,奠定了此后一千多年来,中国圆周率计算在世界上的领先地位。此时此刻我再一次为我国古代的数学文化感到震撼和自豪。而且,这也是我们课前小游戏的奥秘,无限分割和极限思想。所以我也为大家在这节课上的发现和总结感到骄傲。

  【设计意图:通过介绍魏晋数学家刘徽的割圆术,让学生进一步感受优秀传统中国数学文化,不仅增加了民族自豪感,还培养了数学素养】

  六、巩固知识,实际应用

  师:既然已经我们推导出圆的面积公式,接着来尝试运用公式来解决实际的问题(板书:运用),你会吗?(会)

  1.一个圆形沙井盖的半径是30厘米,这是沙井盖表面的面积是多少?

  2.一个圆形花坛的周长是12.56米,这个花坛的面积是多少?

  七、全课总结,课堂延伸

  师:大家请看(指着板书),我们班的同学太棒了,一节课下来有了那么多的总结,如果要圈出本课的重点,你觉得要圈什么?(圈出本课的核心)

  (预设)生:S圆=πr2

  、转化、化曲为直、极限……

  师:刚才我们遇到问题的时候,采取了什么策略,(猜想、验证、结论、运用),在验证的过程中运用了什么方法(转化、化曲为直、极限思想)

  师:对于圆的面积你有什么新的思考。

  (预设)生:圆的面积还有其他的推导方法吗?

  师:问的好,生活中还有很多的有趣的推导圆面积的方法,例如可以把它拼成一个三角形甚至是拼成梯形,大家可以带着这个问题回去继续探索,只要大家用数学的眼光和数学解决问题的方法去研究,你会有更多的发现。这节课就上到这里,下课。

  八、布置作业

  书本第68页做一做的第一题。

  (题目:一个圆形茶几的直径是1M,它的面积是多少平方米?)

  2、书本71页第4题。

  (题目:小刚量得一颗树干的周长是125.6cm,这棵树干的横截面近似于圆,它的面积大约是多少?)

  3、尝试用不同的方法推导出圆的面积计算公式,下一节课与同学们分享。

  九、板书设计

  附录:《课前导学案》

  《圆的面积》课前小研究工作纸

  班别:

  学号:

  姓名:

  同学们!大家好,上一节课我们已经学习了圆的周长,接着要学习什么呢?当然是圆的面积啦!还等什么呢,赶快出发吧,马上进入数学的神奇世界……

  同学们,看到《圆的面积》这个课题,你想到什么问题?请把它写下来。(写2-3个问题)

  2、请大家先观察下面图,你知道圆的面积和这个小正方形的面积有什么关系?

  圆的面积小于于()个小正方形的面积

  我们可以这样分析:

  圆的面积大于()个小正方形的面积

  ()<圆的面积<()

  3、我们还可以通过数格子的办法数出圆的面积,试试看吧!

  图中每个格子的面积是1平方厘米,圆的半径是3厘米,请你数一数,这个圆形的面积大约占了()个格子,所以圆的面积大约是()平方厘米。

  (为了方便数数,你可以在格子中写数字或作记号)

  4、圆可以转化成我们学过的图形吗?

  (1)圆可以转化成()形,请画图说明。转化后的图形与圆有什么关系?你能尝试推导圆的面积计算公式吗?

  (2)除了书本的推导办法,还有其它的办法推导出圆的面积吗?可以和家长一起探索,也可以上网搜索查询。

六年级数学上册教案3

  教学目标

  1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;

  2.培养学生动手操作的能力,启发思维,开阔思路;

  3.渗透初步的辩证唯物主义思想。

  教学重点和难点

  圆面积公式的推导方法。

  教学过程设计

  (一)复习准备

  我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?

  已知半径,圆周长的一半怎么求?

  (出示一个整圆)哪部分是圆的面积?(指名用手指一指。)

  这节课我们一起来学习圆的面积怎么计算。

  (板书课题:圆的面积)

  (二)学习新课

  1.我们以前学过的.三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。

  决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。

  展示曲变直的变化图。

  2.动手操作学具,推导圆面积公式。

  为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其

  用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。

  思考:

  (1)你摆的是什么图形?

  (2)所摆的图形面积与圆面积有什么关系?

  (3)图形的各部分相当于圆的什么?

  (4)你如何推导出圆的面积?

  (学生开始动手摆,小组讨论。)

  指名发言。(在幻灯前边说边摆。)

  ①拼出长方形,学生叙述,老师板书:

  ②还能不能拼出其它图形?

  学生可以拼出:

  等等

  刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。

  例1 一个圆的半径是4厘米,它的面积是多少平方厘米?

  S=r2=3.1442=3.1416=50.24(平方厘米)

  答:它的面积是50.24平方厘米。

  想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?

  (三)巩固反馈

  1.求下面各圆的面积。

  r=2(单位:分米) d=6(单位:分米)

  2.选择题。

  用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?

  (1)3.1422=12.56(米)

  (2)3.1422=12.56(平方米)

  (3)3.1432=28.26(平方米)

  3.思考题:

  已知正方形的面积是18平方米,求圆的面积。(如图)

  课堂教学设计说明

  1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。

  2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。

  3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

六年级数学上册教案4

  教学目标 :

  1、理解长方体、正方体每个面的长、宽与长方体长、宽、高的关系,从而建立表面积的概念。

  2、探索长方体和正方体表面积的计算方法。根据实际情况计算出长方体、正方体的表面积。

  3、发展学生空间概念,培养解决问题的能力。

  教学重点:表面积的意义。

  教学难点:长方体正方体表面积的计算方法

  一、 引入课题 学习新知

  1.说出长方形面积的计算公式。

  2、看图回答。

  (1)指出这个长方体的长、宽、高各是多少?

  (2)哪些面的面积相等?

  3、老师现在做了一个"长6㎝,宽5㎝,高4㎝"的长方体架,要在它的六个面上贴上薄塑料片,你说应该准备多少平方厘米的塑料片呢?

  4、请同学们在展开图上标出"上、下、前、后、左、右"六个面,谁也来帮老师在黑板上标明。 生:上台演示、

  5、大胆猜想,动手测量,探索求法。

  师:你怎样理解表面积?那怎样求长方体或正方体的表面积呢?

  生:测量、记录、计算。 (做完后,生汇报)

  6、找几名代表说一说所在小组的意见。

  解法(一):(是分别算出上、下,前、后,左、右面的面积之和,然后算总和。)

  6×5×2+6×4×2+5×4×2 =60+48+40 =148(平方厘米)

  解法(二):(是先算出上、前、左这三个面的面积之和,再乘以2) (6×5+6×4+5×4)×2 =74×2

  =148(平方厘米)

  (4)比较上面两种解法有什么不同?它们之间有什么联系?

  二、 结合实际,灵活应用

  1、个别学习-------表面积的概念

  (1)老师和同学们都拿出准备好的长方体和正方体并在上面分别用"上"、"下"、"左"、"右"、"前"、"后"标在6个面上。

  (2)沿着长方体和正方体的`棱剪开并展平。

  (3)你知道长方体或者正方体6个面的总面积叫做它的什么吗? 学生试着说一说。

  2、小组合作学习-------计算塑料片的面积

  (1)想:这个问题,实际上就是要我们求什么? 使学生明确:就是计算这个长方体的表面积。 (2)学生分组研究计算的方法。

  三、 深化提高,综合应用

  1、 把一个长10m,宽3m,高2m的长方体木块分成3个小长方体,它的表面积增加了多少平方米?(课件演示)

  2、 分组讨论人,交流汇报。

  生:沿高的方向坚分(与左右面平行,课件演示),增加了像左右面一样大的四个面。增加的面积是3×2×4=24(m2)。

  生:也可以沿长的方向横分(与上下面平行,课件演示),增加了像上下面一样大的四个面。增加的面积是10×3×4=12(m2)。

  生:还可以沿宽的方向竖分(与前后面平行,课件演示),增加了像前后面一样大的四个面。增加的面积是10×2×4=80(m2)。

  四、 归纳知识,总结学法

  1、同学们,时间过得真快,在这节课学习过程中,你有什么收获或深刻感受和老师、同学说说。

  2、 结论及板书:

  =长×宽×2+长×高×2+宽×高×2 长方体的表面积

  =(长×宽+长×高+宽×高)×2

六年级数学上册教案5

  教学内容:

  课本第107页“回顾与整理”,“练习与应用”第1-8题。

  教学目标:

  1、使学生认识百分数应用题的数量关系式,理解百分数应用题的解题思路和解题方法。在理解题意、分析数量关系的基础上正确解答百分数应用题。

  2、通过类比和归纳等数学活动,体验数学问题的探索性,感受数学思考过程的条理性。

  教学重难点:

  理解百分数应用题的解题思路,结构特征和解题方法。

  课前准备:

  课件

  教学过程:

  一、回顾与整理

  1、让学生回忆本单元学习了什么?

  小组讨论:是怎样理解利率、税率和折扣的?

  举例说说这些知识在实际生活中的.应用。

  2、揭示课题:今天我们就一起来复习百分数应用题。

  我们已学习了哪几种类型百分数应用题?

  (1)求一个数是另一个数百分之几?

  (2)求一个数的百分之几是多少?

  (3)已知一个数的百分之几是多少,求这个数?

  二、复习(百)分数应用题的思考方法

  1、先判断单位“1”的量,再说出数量关系。

  平山绿茶的单价是太湖碧螺春单价的60%

  种一批茶树,已种了80%

  太湖碧螺春的面积比平山绿茶的面积少20%

  茶苗的成活率是95%

  今年的茶价比去年提高了20%

  某商品打八折出售

  数学期中考试的优秀率为52%

  实际节约了15%

  今年比去年增产25%

  归纳总结:单位“1”的量×(百)分率 = (百)分率对应的量

  2、分类归纳,集中比较。

  (1)饲养场有鸡500只,鸭600只,鸭是鸡的百分之几?

  (2)饲养场有鸡500只,鸭600只,鸡比鸭少百分之几?

  (3)饲养场有鸡500只,鸭600只,鸭比鸡多百分之几?

  (4)饲养场有鸡500只,鸭是鸡的120%,鸭有多少只?

  (5)某公司20xx年平均每月的销售额是12万元,如果按销售额的15%缴纳消费税, 该公司全年应缴纳多少消费税?

  (6)我校今天学生的缺勤率是2%,有420人到校上课。全校有学生多少人?

  (7)一种商品,按原价的八折出售是160元。原价是多少元?

  (8)王大妈买了1500元的国家建设债券,定期3年,如果年利率是2.89%。到期时她可以获得本金和利息一共多少元?

  3、先列式,然后思考:

  (1)这些应用题分别是哪一种类型的百分数应用题?

  (2)每种类型的百分数应用题,在计算方法上有什么特点?

  对以上各题,可引导学生比较、分析,归纳出三种类型。

  通过对比,使学生加深理解,巩固百分数各类型应用题的解题步骤和方法。

  三、指导完成练习与应用第1-6题

  1、完成第1、2题。

  (1)先独立完成。

  (2)交流点评。

  (3)总结有关百分数实际问题的特点及思考方法。

  2、完成第3题。

  (1)让学生独立完成。

  (2)交流总结:当单位“1”已知时,可以直接用乘法求出相关的未知量;当单位“1”未知时,通常用方程解答。

  3、完成第4题。

  (1)理解出油率的意思。

  (2)明确出油的原料、油、出油率的关系。

  (3)填表计算。

  4、完成第5、6题

  (1)先画图

  (2)解答

  (3)强调:单位“1”的量已知和未知时的不同处理方法。

  四、课堂总结

  这节学过后你进一步明白了什么?

  五、布置作业

  练习与应用第7、8题。

  教学反思:

六年级数学上册教案6

  教学目标:

  1.引导学生综合应用所学知识解决生活中的实际问题,感受数学与实际生活的密切联系,培养学生的应用能力和实践能力。

  2.发展学生的解题思路和策略。

  3.经历分析、计算、比较、概括等过程,体会数学在生活中的价值,激发学生学好数学的信心。

  教学重点:

  通过分析、计算、比较得出最佳购物方案。

  教学难点:

  用多种方法去解决问题。

  一、导入新课

  师:近几年,我们密云的经济发展非常快,大大小小的商场、超市极大的方便了人们的购物需求。在购物当中,包含着许多数学知识,今天我们就一起来研究购物中的数学。板书课题:购物中的数学

  二、探索新知

  (一)自主探究

  1.理解促销方式。

  师:我们密云三家比较有名的商场开展了一系列的促销活动,(课件出示三家超市和促销方式)你是怎么理解的?老师把三个商场的促销方式板书上,老师这样表示可以吗?XGW 生1:买一瓶大的,送一瓶小的`。师:如果买3瓶大的呢?(送3瓶小的。)

  生2:降价10%,就是按原价的90%出售。师:你能举例说说吗?比如原价100元,实际花100×(1-10%)=90元。按原价的90%出售是打几折呢?

  生3:满30元打八折,就是够30元的按原价的80%出售,如果学生回答不全,师追问。也就是降价20%。师:原价30元应付多少元?(30×80%=24元。)原价29元呢?(不打折)。

  师:你们理解得很好。

  2.帮助A同学

  师:据了解,鲜橙多比较畅销,(课件出示)

  有三位低年级的小同学想买这种饮料。请看(师介绍)。

  顾客 购买方案 选择的商店 A同学 4大 5小 B同学 2大 2小 C同学 1大 7小

  他们不知道该去哪家商场买,我们来帮帮他们,好吗?

  下面我们先来帮帮A同学, 看看A同学去哪家商场比较合算?

  3.独立计算。

  师巡视请3名同学在黑板上来算,三人各算一个商场,然后合作,告诉A同学去哪家商场合算。其他同学独立计算。

  4.全班交流。

  (1)A同学:西单:10×4=40(元) 40+2=42(元)

  国泰:(10×4+2×5)×(1-10%)=45(元)

  物美:(10×4+2×5)×(1-20%)= 40(元)

  你们三位小老师给大家讲讲,你们这样做的理由,如果听不明白,可向他们提问。

  A同学应选物美。

  师:三位同学用的是比总价的方法,师板书:比总价。解决得真好!计算准确,叙述得清楚明白,很辛苦。

  还有谁也是用比总价的方法做的?也把三个商场的总价都算出来了?有没有什么想法?(生:超过30元,就不用计算国泰了,因为国泰是降10%,是打九折,而物美是满30元打八折。)

  师:你看他多会思考呀,他先估算,然后再计算。】

  师:还有其它的方法吗?说说你的理解。

  生:超过30元,物美是打八折。国泰降价10%,是打九折。所以不考虑国泰。

  师:你们看,他有更好的方法,比折扣,板书:比折扣

  师:那西单买一大送一小到底是打几折呢?你会算吗?

  生:10÷(2+10)= 83% =八三折。

  师:某某同学思维敏捷,方法巧妙。有时先分析、算计比直接计算更重要!

  5.好,快速帮帮B同学、C同学,一、二组帮B同学,三、四、五组帮B同学,看哪组算的又快有准。

  6:生汇报

  B同学:西单:10×2=20(元)

  国泰:(10+2)×2×(1-10%)=21.6(元)

  B同学应选西单。谁有想法?(物美可不算,因为,不够30元,物美不打折。)

  C同学:不够30元,物美不考虑。西单10+6×2=22(元)

  国泰:10+7×2×(1-10%)=21.6(元) 你有什么想说的吗?看总价去国泰,但是只差0.4元,总价很接近,还可考虑离家的远近。

  师:你太会思考问题了,要具体问题具体分析(板书),灵活选择。

  (二)小组合作

  师小结:你们真聪明,还有几名学生想请你们帮忙!看看他们应选哪个商场?

  1.看。

  (1)

  顾客 购买方案 选择的商场

  甲同学 3大 3小 物美

  乙同学 2大 4小 西单或国泰

  丙同学 1大 2小 西单或国泰

  丁同学 2大 7小 物美

  (2)通过以上我们交流,针对三个商场的促销方式,你获得哪些购物技巧?

  生:如果要购买30元以下的饮料,去西单或国泰;如果要买30元以上的饮料,去物美。这样购买比较合算。

  总结技巧:超过30元,直接选择去物美,不足30元的,直接排除物美。师:不足30元的排除物美,能直接选择西单或是国泰吗?(不能,还得计算)这就要具体问题具体分析。

  出示课件:温馨提示。

  师:看来现在购物,还真得分析分析。

  三、课外延伸。

  师:以上这些“买一大送一小”、“降低10%”、“满30元打八折”,这只是促销方式中的三种。你在平时的购物当中,还发现哪些促销方式?你是怎么理解的?

  1.老师也搜集了一些,你们来理解一下:(课件出示)

  2.让我们一起到服装区看看:给自己或家人买件衣服吧!

  物美商场一律八折出售, 国泰商场一律九折出售,且每满100元再送15元现金。

  (1)如果买一件100元的运动服,应选择哪个商场?

  (2)如果买一件150元的运动服,应选择哪个商场?

  (3)如果买一件480元的西服,应选择哪个商场?

  (4)物美:150×80%=120(元)

  国泰:150×90%=135(元)

  135-15=120 (元)

  都可以

  物美:480×80%=384(元)

  国泰:480×90%=432(元)

  432-15×4=372(元)

  选国泰商场

  四、提高练习

  从商场出来,我看到两个相邻的摊位,正在卖书,老师想买35本奥数书,送给咱班每位同学一本。

  原价每本10元。甲摊位的货主说:每包10本,买整包按八折优惠。乙摊位的货主说:大促销!每本按九折优惠。

  老师怎样买最省钱?要花多少钱?

  最佳方案:

  10×30×80%=240(元)

  10×5×90%=45(元)

  240+45 =285(元)

  小结:老师以后购物,得带上你这个购物小专家了!

  五、课堂小结

  同学们,通过今天这节数学活动课的练习,你在购物、消费过程中,你最想告诉大家的是什么呢?

  板书设计:

  购物中的数学

  X G W

  买一大送一小 降价10% 满30元打八折

  A:4大5小: 10×4=40(元) (10×4+2×5)×(1-10%)=45(元)

  40+2=42(元) (10×4+2×5)×(1-20%)= 40(元)

  B:2大2小:

  C:1大7小:

六年级数学上册教案7

  一、复习内容

  分数除法的复习与应用。(教材第46页整理和复习,第47页练习十)

  二、复习目标

  1.通过复习,很好地掌握分数除法的计算方法,能正确进行分数四则混合运算的计算,提高计算能力。

  2.使学生进一步熟悉分数除法应用题的数量关系,提高解决问题的能力。

  三、重点难点

  重点:正确进行分数除法的计算。

  难点:正确列出数量关系,掌握四类分数除法应用题的解题方法。

  教学过程

  一、回顾整理

  1.复习倒数。

  (1)师:倒数的意义是什么?(学生抢答,教师板书意义)

  (2)师:互为倒数的两个数有什么特征?(学生抢答)

  (3)师:如何求一个数的倒数?

  引导学生分整数、小数、分数回答。

  2.复习分数除法及其计算法则。

  (1)师:分数除法有哪些类型?

  引导学生回答:分数除以整数,一个数除以分数。(板书类型)

  (2)师:写一道除法算式,让同桌算一算。分数除法与分数乘法的计算有什么联系?

  引导学生回答:分数除法要转化为分数乘法计算。

  (3)师:整数除法和分数除法的`意义相同吗?算一算,说一说。(课件出示题目)

  3×7= 21÷3= 21÷7=

  5/3×1/2= 5/6÷5/3= 5/6÷1/2=

  学生通过计算得出:整数除法和分数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数,都是乘法的逆运算。

  师生共同总结:无论是整数除以分数,还是分数或小数除以分数,都可以转化为乘法计算,也就是说除以一个不为0的数,等于乘这个数的倒数。(板书计算法则)

  (4)点名学生说一说分数四则混合运算的运算顺序。

  3.复习分数除法应用题。

  师:本单元我们学习了哪几类应用题?它们的特点和解题思路是什么?

  组织学生小组内交流后汇报。(根据学生汇报板书四种应用题类型)

  二、知识应用

  1.教材第46页整理和复习第1题。

  学生独立完成计算,集体订正。同桌之间说一说混合运算的顺序。

  2.教材第46页整理和复习第2题。

  (1)学生读题,理解题意。

  (2)师:3个问题分别属于哪一类应用题?(点名学生回答)

  (3)让学生先写出数量关系,再计算。(教师巡视,指导答疑)

  3.教材第47页练习十第1~4题。

  第1题:教师读题,学生判断正误,点名学生说出错误的原因。

  第2题:点名3名学生板演,其余学生订正。

  第3、4题:先让学生读题说一说属于哪一类应用题,再独立计算。(教师订正)

  注意引导和鼓励学生用多种方法解答。

  4.教材第47页练习十第5题。

  (1)学生读题,理解题意。

  (2)引导学生画线段图理解题意。

  (3)同桌交流,分析数量关系并列式计算。

  (4)点名学生说一说解题思路,教师订正并总结。

  三、巩固反馈

  (课件出示题目)

  1.判断。

  (1)一个数除以真分数,商一定大于被除数。( )

  (2)甲数比乙数多1/4,乙数比甲数少1/4。( )

  2.粮店运来面粉140袋,是运来大米的袋数的7/9,大米运来多少袋?

  140÷7/9=180(袋)

  3.一根电线杆长12 m,埋入地下部分的长度是露出地面部分的3/7,这根电线杆露出地面的部分是多少米?

  12÷1+3/7=

  4.天猫商城举行促销活动,一款移动硬盘降价19后售价400元。这款移动硬盘原价多少元?

  400÷1-1/9=450(元)

  5.修一条路,甲单独修需16天,乙单独修需24天。如果乙先修了9天,然后甲、乙二人合修,还要几天?

  1-9/24÷1/16+1/24=6(天)

  四、课堂小结

  本单元结束了,你有什么收获?

  教学反思

  1.这节复习课我分成了三大模块。第一模块为建立知识网络,第二模块为检测效果,第三模块为质疑总结。

  第一模块先让学生回忆章节中的所有概念及其含义,重新感知概念,然后梳理概念,根据这些概念间的联系与区别,构建知识结构图。六年级学生已经有了一定的知识整合能力,他们能快速读懂提纲、表格等形式的知识框架结构。

  第二模块需要改进之处是,我应该针对学生平时学习过程中存在的学习问题进行总结和提示,把学生经常出现的问题进行汇总并告知学生,并在学习方法上进行指导,这样才能达到事半功倍的效果。

  第三模块只有几个学生进行质疑,说明学生的质疑能力还有待加强,这是以后需要更加努力的环节。

  2.我的补充:

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

六年级数学上册教案8

  教学内容:

  人教版六年级上册教材P28页中的例1,完成相关练习题。

  教学目标:

  1、知识与技能:

  (1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数的意义。

  (2)掌握求倒数的方法,并能正确熟练的求出倒数。

  2、过程与方法:

  引导学生通过体验、观察、比较、交流、归纳等活动,理解倒数的意义,让学生经历体验知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:

  (1)通过合作交流培养学生学会与人合作,愿与人交流的习惯。

  (2)通过亲身参与探究活动,获得积极成功的情感体验。

  教学重点:

  理解倒数的意义,掌握求倒数的方法。

  教学难点:

  掌握求倒数的方法。

  教法:

  创设情境、启发引导、自学与讲授相结合等。

  学法:

  联系生活实际、观察、比较、交流、归纳。

  教学准备:

  多媒体课件

  教学过程:

  一、情境导入

  1、教师举例同桌之间的关系,理解“互为”的含义。

  2、课件出示文字游戏,引导学生说一说,理解“倒”。

  吞---------(吴)杏---------(呆)

  板书:交换位置

  教师:指名口答。像这种颠倒文字游戏有很多,那么数学中的数也有这种规律吗?课件出示:倒数的认识

  板书:倒数的认识

  3、让学生说一说你想知道些什么?

  4、课件出示学习目标,引导学生进入今天的课堂。

  二、探究新知

  (一)引导质疑(教学例1)

  1、课件出示两组算式,分两组比赛,在卡片上完成计算。

  2、宣布比赛结果,观察找一找快的规律。

  引导说出倒数的意义,试着说一说倒数文字叙述。

  3、课件出示倒数的'意义:乘积是1的两个数互为倒数。

  讨论:互为倒数的条件是什么?板书:意义

  4、让学生说一说,并板书:(乘积是1、两个数、互为)

  5、课件出示判断,学生讨论,说明理由。

  (二)求一个倒数的方法

  1、课件出示3/5、7/2的倒数,让学生在卡纸上写。课件订正。

  2、1的倒数是什么?0有没有倒数?板书:1的倒数是1,0没有倒数。

  3、总结求倒数的方法。板书:分子与分母。课件出示方法,齐读。

  (三)延伸练习

  1、课件出示:6的倒数是()。0.2的倒数是()

  1.75的倒数是()。的倒数是()。

  2、学生讨论,教师巡视指导,指名回答,课件订正。强调书写格式,互为倒数,并不是相等,所以两数之间不能用等号。

  3、课件出示综合练习。

  4、小结:整数,小数,分数求倒数的方法。

  5、课件出示分类练习,找一找一个数(0除外)的倒数与1的关系。

  三、巩固提高

  1、课件出示:连一连。

  2、同桌互说倒数,指名挑战。

  3、课件出示:《马小虎日记》让学生读一读,找出错因。

  四、课后小结

  通过这节课的学习,你有什么样的收获?

  五、布置作业:完成数学书29页1、2、3、4题。

  六、板书设计

  倒数的认识

  意义:乘积是1方法:

  两个数分子与分母

  互为交换位置

  特殊:1的倒数是1,0没有倒数。

六年级数学上册教案9

  教学内容:

  课本第19页例3,完成“做一做”题和练习五的第6~10题。

  教学目的:

  1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法两步应用题。

  2.培养分析能力,发展学生思维。

  教学过程:

  一、复习。

  1.先说出下列各算式表示的意义,再口算出得数。

  2.指出下面每组中的两个量,应把谁看作单位“1”。

  (1)梨的筐数是苹果的 。

  (2)梨的筐数的 和苹果的筐数相等。

  (3)白羊只数的 等于黑羊的只数。

  (4)白羊的只数相当于黑羊的 。

  3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

  (1) 有40筐苹果,梨的筐数是苹果的 。( )?

  (2) 梨的'筐数是 和苹果的筐数相等,有40筐。( )?

  (3) 有40只白羊,白羊的只数的 等于黑羊的只数。( )?

  (4)白羊的只数相当于黑羊的 ,有40只黑羊。( )?

  二、新授。

  1.出示例3。

  小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的是小华的 。小新储蓄了多少元?

  (1)指名读题,说也已知条件和问题。

  (2)怎样用线段图表示已知条件和问题。

  先画一条线段,表示谁储蓄的钱数?为什么?

  学生回答后,教师画线段图。

  再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

  根据“小华储蓄的钱数是小亮的 ”,把小亮的钱数作为单位“1”,平均分成6份,再画出与这样的5份同样长的线段。

  然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

  根据“小新储蓄的钱数是小华的 ”,把小华的钱数作为单位“1”,平均分成3份,再画出与这样的2份同样长的线段。

  (2)分析数量关系。

  引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

  (3)确定每一步的算法,列式计算。

  ①求小华储蓄的钱数怎样想?

  引导学生回答:根据“小华储蓄的钱数是小亮的

  把小亮的钱数看作单位“1”,就是求18的 是多少,所以用乘法计算。列式:

  (元)

  ②求小新储蓄的钱数怎样想?

  引导学生回答:根据“小新储蓄的钱数是小华的 ”,把小华的钱数看作单位“1”,就是求15的 是多少,所以也用乘法计算。列式:

  (元)

  把上面的分上步算式列成综合算式,该怎样列?

  (元)

  (4)检验,写答语。答:小新储蓄了10元。

  2.做一做。

  让学生独立完成课本第19页下的“做一做”,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

  3.小结。

  从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

  学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位“1”,第二步把谁看作单位“1”。

  三.巩固练习。

  完成练习五的第6、7题。

  四、全课小结。

  这节课我们共同研究了什么?

  解答这类分数乘法两步应用题关键是什么?

  五、布置作业。

  完成练习五的第8~10题。

六年级数学上册教案10

  教学目标:

  1、知识与能力:在具体情景中理解百分数的意义

  2、过程与方法:能解决有关百分数的实际问题

  3、情感态度价值观:体会百分数与现实生活的密切联系。

  教学重点:

  百分数的意义,作用。

  教学难点:

  百分数应用的正确计算。

  教学过程:

  一、我会填空。

  1、一套西服,上衣840元,裤子210元,裤子的价钱是上衣的.()%,上衣的价钱是这套西服的()%。

  2、五月份销售额比四月份增加15%,五月份销售额相当于四月份的()%;四月份销售额比五月份减少()%。

  3、“六一”期间游乐场门票八折优惠,现价是原价的()%。儿童文具店所有学习用品一律打九折出售,节省()%。

  4、大豆种子的发芽率是98%,发芽数占种子总数的()%,未发芽数占种子总数的()%。

  5、从学校到文化宫,甲要20分钟,乙要16分钟。乙的速度比甲快()%,乙的时间比甲少()%。

  6、用80粒大豆种子作发芽试验,结果有4粒没有发芽。种子的发芽率是()%,如果需要3800棵大豆苗,需要播种()粒大豆种子。

  二、判断。

  1、甲班男生占全班人数的53%,乙班男生也占全班人数的53%。甲、乙两班男生人数相等。()

  2、100克糖放入400克水中,糖占糖水的20%。()

  3、甲数比乙数多35%,乙数比甲数少35%。()

  三、选择正确答案的序号填在括号里。

  1、如果甲数的60%等于乙数的(甲数和乙数都不为零),那么()。

  A、甲数<乙数B、无法确定

  C、甲数>乙数D、甲数=乙数

  2、下面的三种说法中,正确的是()

  A、一段铁线长80%米

  B、全班的及格率是102%

  C、男生人数比女生多5%

  3、一商品先提价15%,再降价15%。现价()原价。

  A、低于B、等于C、高于

  4、六年级男生有132人,比女生多10%,六年级有女生多少人?设女生有x人,方程不正确的是()

  A、x+10%x=132   B、x—10%x=132   C、(1+10%)x=132

  四、解方程。

  25%x = 75 60%x-35%x = 125

  五、解决问题。

  1、一个电饭煲的原价220元,现价160元。电饭煲的价格降低了百分之几?(百分号前保留一位小数)

  2、修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米。这条公路全长多少千米?

  3、西乡今年荔枝大丰收,产量达到3。6万吨,比去年增产了二成,西乡去年荔枝的产量是多少万吨?

  4、用汽车运一批水果,第一天运的吨数与总重量的比是1:3。如果再运15吨,就可以运完这批水果的一半。这批水果共有多少吨?

六年级数学上册教案11

  教学目标:

  使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。

  教学重点:

  整数除以分数的计算方法的推导。

  教学难点:

  理解“÷”转化为“×”的转化过程。

  教学过程:

  一、复习

  1、说一说÷18的意义。

  2、一辆汔车2小时行驶90千米,1小时行驶多少千米?

  (1)口述算式和结果。

  (2)板书:数量关系:速度=路程×时间

  二、新授

  今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?

  板书课题:一个数除以分数

  (1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?

  教师板书:18÷ (出示线段图)

  (2)推导18÷的`计算方法。

  引导学生分两步进行计算

  第一部分:求小时行多少千米。

  提问

  1)、小时里面有几个小时?

  2)、2个小时行驶多少千米?

  3)、1个小时行驶多少千米?即小时行驶多少千米?

  明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。

  提问

  1)、1小时里面有几个小时?

  2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?

  明确

  1) 为1小时5个小时,所以,要算18××5,也就是18×。

  2) 18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。

  根据上面的推想,板书:18÷=18×,=45千米

  答汔车1小时行驶45千米。

  强调

  1)18÷不便于直接除,把它转化乘法。

  2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。

  3)是的倒数,即的倒数是。

  2、小结:引导学生归纳整数除以分数的计算方法。

  板书:整数除以分数可以转化为乘以这个数的倒数。

  三、巩固练习

  1、在( )里填上适当的分数,使等式成立。

  15÷=15×( )10÷ =10×( )

  8÷=8×( ) ÷9=×( )

  2、列式计算。

  (1)一堆煤,每次用去 ,多少次才能用完?

  (2)王晶小时做15朵花,1小时做多少朵花?

  3、教科书第29页的“做一做”

  四、作业 练习八第1——4题。

六年级数学上册教案12

  第一单元:分数乘法

  第一课时:分数乘以整数

  教学内容:第1~2页,例1及“做一做”,练习一1-7题。

  教学目的:

  (1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。

  教学重、难点:(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)引导学生总结分数乘整数的计算法则。

  教学过程:

  (一)铺垫孕伏

  1.出示复习题。(投影片)

  (1)整数乘法的意义是什么?

  (2)列式并说出算式中的被乘数、乘数各表示什么?

  5个12是多少?9个11是多少?8个6是多少?

  (3)计算:

  123333??????666101010

  计算333??时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加101010

  数都相同,计算时3个3连加的结果做分子,分母不变。

  2.引出课题。

  分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)

  (二)探究新知。

  1.教学分数乘整数的意义。

  出示例1,指名读题。

  (1)分析演示:师:每人吃2块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。9

  222问:一个人吃了块,三个人吃了几个块?使学生从图中看到三个人吃了3个块。让学生999

  用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)2222?2?262订正时教师板书:++===(块),(教师将3个双层扇形图片拼成一个一块999939

  2蛋糕的图片)3

  (2)观察引导:

  这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数

  22的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:?3。再启发学生说出?3表99

  2示求3个相加的和。9

  2(3)比较?3和12×5两种算式异同:9

  提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

  通过讨论使学生得出:

  相同点:两个算式表示的意义相同。2不同点:?3是分数乘整数,12×5是整数乘整数。9

  (4)概括总结:

  教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

  2.教学分数乘以整数的计算法则。

  (1)推导算理:

  由分数乘整数的意义导入。22222问:?3表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,99999

  教师板书:2?2?22?362??。提示:分子中3个2连加简便写法怎么写?学生答后板书:9993(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

  (2)引导观察:2?32的分子部分、分母与算式?3两个数有什么关系?(互相讨论)99

  观察结果:2?32的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。99

  (3)概括总结:

  2请根据观察结果总结?3的计算方法。(互相讨论)9

  22汇报结果:(多找几名学生汇报)使学生得出?3是用分数的分子2与整数3下乘的积99

  作分子,分母不变。

  2根据?3的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得9

  2的数要与原数上下对齐。然后让学生将?3按简便方法计算。9

  (启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)

  3.反馈练习:

  (1)看图写算式:做一做、练习一第1题。

  订正时让学生说出乘法中被乘数、乘数各表示什么?

  (2)口答列算式:

  3333???=()×()4444

  3个13是多少?5个是多少?1010

  订正时让学生说一说为什么这样列式。

  (3)计算:

  25?4?81512

  先让学生讲每个算式表示的意义,然后教师提示:乘的时候如果分子分母能约分的要先约分,若乘得的结果是假分数的要化成带分数。

  (三)全课小结。

  这节课我们学习了什么?引导学生回顾总结。

  (四)作业。

  练习一5、6题。

  第二课时:一个数乘以分数

  教学内容:课本第4-6页,例2,例3及“做一做”,练习二1-4题。

  教学目标:

  (1)使学生理解一个数乘分数的意义,掌握分数乘以分数的计算法则。

  (2)学会分数乘分数的简便计算。

  (3)通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重、难点:

  理解一个数乘分数的意义,掌握分数乘分数的计算方法;推导算理,总结法则。

  教学过程:

  一、复习。

  153?5?1?21087

  1.计算下列各题并说出计算方法。

  2.上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  二、新课。

  引入:这节课我们来学习一人数乘以分数的意义和计算方法。(板书课题:一个数乘以分数)1.理解一个数乘以分数的意义。3(1)第一幅图:一瓶桔汁重千克,3瓶重多少千克?怎样列式?5

  3指名列式,板书:?35

  333问:?3表示什么意思?指名回答,板书:或求的3倍。555

  3(2)出示第二幅图:一瓶桔汁重千克,半瓶重多少千克?怎样列式?怎样表示半瓶?5

  指名回答:半瓶用131表示;式子为:?。252

  3133131说明:?是求的'一半是多少,也就是求的是多少。板书:求的。5255252

  32(3)出示第三幅图:一瓶桔汁重千克,瓶重多少千克?怎样列式?53

  323232指名回答,板书:?,问:?表示什么意思?指名回答,板书:求的。535353

  2.引导学生小结。

  ①.指出三个算式都是分数乘法,比较三个算式的不同点:第一个算式与第二、三个算式中乘数有什么不同?

  想一想:第一个算式与第二、三个算式中乘法的意义有没有不同。有什么不同?

  学生齐读课本的结语。

  练习:

  .课本的做一做1、2题。

  .说一说下列算式的意义。533?8?754

  3.理解分数乘以分数的计算方法。

  (1)出示例3(先出示第一个问题)。

  问:你根据什么列出式子?

  11得出:根据“工作效率×工作时间=工作总量”列出式子:?。25

  问:如果我们用一个长方形表示1公顷,那么

  学生回答后,教师出示例3的图(1)11问:公顷的是什么意思?251公顷怎样表示?2

  出示例3图(2)

  要求学生观察图(2),问:在图中

  111?11?引导得出:??252?51011的对于1公顷来说,是1公顷的几分之几?25

  观察这个式子有什么特点?

  出示例3的第二个问题。

  学生列式,教师再出示例3图(3)11131问:已经求公顷的是公顷,那么公顷的应有这样的几份?就是多少公顷?252?525

  131?33?板书:??公顷)252?510

  (2)引导学生小结分数乘以分数的计算方法。

  观察分数乘以分数的计算过程,谁能说一说计算方法?

  教师归纳,再看书上结语。

  再说明,为了计算的简便,也可以先约分,再乘。323?22?例:??535?35

六年级数学上册教案13

  一、指导思想与理论依据:

  《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

  根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。

  二、教材及学情分析:

  教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。

  三、教学目标、重点及难点:

  1、知识和技能:

  使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。

  2、过程与方法:

  (1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。

  (2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。

  3、情感与态度:

  (1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;

  (2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。

  (3)在解决问题过程中,增强应用意识。

  教学重点:

  让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

  教学难点:

  对圆周率的认识。

  教学准备:

  ⒈圆形物体实物,。

  ⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。

  四、教法:

  1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。

  2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。

  五、主要教学环节与设计:

  通过以下环节教学本课:

  一、创设情境,初步感知二、合作交流,探究新知三、实践应用,解决问题四、畅谈收获,课外延伸

  六、教学过程:

  第一个环节:创设情境,初步感知师:

  哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)

  生:求行驶多长的路程就是求圆形的周长。

  师:今天就来学习怎样计算圆的周长。

  此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。

  第二个环节:合作交流、探究新知

  (一) 直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。

  1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。

  2、分析比较长方形、正方形和圆的周长各有什么不同?

  3、指一指、描一描自己手中圆片的周长。

  设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。

  (二)探究圆周长的计算方法

  圆周长计算公式的推导这一内容,我安排了三个环节:

  1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  预设的几种情况:

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绳子缠绕实物圆一周并拉直;

  (3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

  小结:以上的几种方法都是要“化曲为直”。

  出示地球图片。

  如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。

  设计意图:这个过程中让学生明白 “缠绕”、“滚动” 的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。

  (1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。

  师:圆的周长与它的什么有关呢?

  生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。

  (2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。

  师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

  请同学们分组做个小实验,请利用手中的.学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程

  小组汇报:

  生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。

  师:通过计算你们发现了什么?

  生:每个圆的周长,都是它的直径长度的3倍多一些。

  追问:那么是不是所有的圆周长与它直径都有这种关系呢?

  最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。

  师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?

  生:圆周率。

  师:你对圆周率还有哪些了解?

  这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)

  设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。

  (3)得出结论师:你知道圆周长的计算方法了吗?

  生:知道。

  板书公式:C=πd,C=2πr

  设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。

  第三个环节:实践应用,解决问题

  这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。

  1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。

  2、设计了三道有梯度的练习:①d=5米, C=?②r=5厘米 C=?③C=6.28米d=?3、明辨是非,下面的说法对吗?

  ①π=3.14( )

  ②大圆的圆周率小于小圆的圆周率。( )

  ③圆的周长是它的半径的2π倍。( )

  意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。

  第四个环节:畅谈收获,课外延伸作业:

  赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?

  设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。

  你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)

  七、板书设计:

  圆的周长

  化曲为直 圆的周长÷直径=圆周率

  C÷d=π 3.14×20=62.8(英寸)

  C= πd 答:车轮向前滚动一周,行驶了62.8英寸。

  C=2πr

六年级数学上册教案14

  教学目标:

  1、使学生明确本学期的学习任务。

  2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。

  教学过程:

  一、 课堂教学常规的说明:

  1、上课的各项要求说明等。

  2、练习的各项要求说明等。

  3、其他说明。

  二、 复习旧知:

  (一) 填空:

  1、分数单位是1/8的最大真分数是( ),最小假分数是( ),最小的带分数是( )。

  2、1米的3/7是( )米,3米的1/7是( )米。

  3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了( )厘米,时针扫过了( )平方厘米。

  (二) 解决问题:

  1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?

  2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?

  3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?

  4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?

  5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?

  6、如果用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?

  7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?

  8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?

  9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的'环形小路,这条小路的面积是多少平方米?

  10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)

  (三) 拓展练习:

  1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?

  2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?

  (2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?

  3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?

  4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?

  5、公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?

  6、一个最简真分数的分子,分母是两个连续自然数,如果分母加上4,这个分数约分后是2/3,原来这个分数是多少?

六年级数学上册教案15

  第三单元分数除法

  第4课时分数除法实际问题

  教学内容:

  课本第49页例5,“试一试”和“练一练”,练习八第1-4题。

  教学目标:

  使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

  教学重点:

  体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

  教学难点:

  使学生在探索解决问题方法的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等学习习惯,获得一些成功的体验,增强学好数学的`信心。

  课前准备:

  多媒体课件

  教学过程:

  一、谈话导入

  1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?

  出示:小瓶的果汁是大瓶的2/3。

  这句话表示什么?你能说出等量关系式吗?

  板书:大瓶里的果汁×2/3=小瓶里的果汁

  如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。

  如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?

  2、揭示课题:简单的分数除法应用题

  1、出示例5,学生读题。

  提问:你想怎么解决这个问题?

  2、讨论交流:你是怎么想、怎么算的?

  (1)用除法计算。

  600÷2/3

  引导讨论:为什么可以用除法计算?依据是什么?

  (2)用方程解答。

  讨论:用方程解答是怎么想的,依据是什么?

  解:设大瓶里有果汁x升。

  2/3x=600

  让学生在教材中完成解方程的过程,并指名板演。

  3、引导检验:x=900是不是原方程的解呢,怎么检验?

  交流检验的方法。

  4、教学“试一试”

  (1)出示题目,让学生读题理解题目意思。

  (2)讨论:这里中的两个分数分别表示什么意思?

  这题中的数量关系式是什么?

  板书:一盒牛奶的升数×1/2=喝了的升数

  (3)这题可以怎么解答,自己独立完成,并指名板演。

  (4)交流:你是怎么解决这个问题的?

  4、小结。

  三、巩固练习

  1、做“练一练”。

  各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。

  2、做练习八第2题。

  (1)读题,画出题目中的关键句。

  (2)让学生说一说“一桶油用去3/5”和“黑兔是白兔的2/3”各表示什么意思?

  (3)引导学生说出并在书上写出数量关系式。

  (4)独立解答,并指名板演。

  (5)集体评议并校正。

  3、小结解题策略。

  四、布置作业

  练习八第1、3、4题。(学生自主完成后全班交流)

  五、课堂总结

  这节课学习了什么?你有什么收获?

  教学反思:

【六年级数学上册教案】相关文章:

数学六年级上册《利率》教案08-22

六年级上册数学的教案09-28

六年级上册数学比的教案01-08

苏教版数学六年级上册教案11-17

小学数学六年级上册教案11-18

数学上册教案01-15

六年级上册数学教案11-16

小学数学六年级上册圆教案10-15

六年级数学上册教案12-26

人教版小学数学六年级上册教案01-30