现在位置:范文先生网>教案大全>数学教案>八年级数学教案

八年级数学教案

时间:2024-06-22 16:43:48 数学教案 我要投稿

(合集)八年级数学教案15篇

  作为一位兢兢业业的人民教师,往往需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。如何把教案做到重点突出呢?下面是小编收集整理的八年级数学教案,欢迎阅读与收藏。

(合集)八年级数学教案15篇

八年级数学教案1

  一、学情分析

  本学期本人继续担任八年级(2)班的数学教学工作,八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。从上期期末考试的成绩来看1班、2班的成绩差异很大,2班有少数学生不上进,思维不紧跟老师,有部分同学基础较差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

  二、教材分析

  本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:

  第十七章分式

  本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

  第十八章函数及其图像

  函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的.重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。

  第十九章全等三角形

  本章主要内容是探索三角形全等的判定方法,领略推理证明的奥秘,由于三角形全等的判定方法与全等三角形的性质具有“互逆”的特点,所以本章因势利导,介绍了命题与定理、逆命题与逆命题的有关知识。此外,本章教材最后还介绍了几种常用的基本作图和简单的尺规作图的方法。

  第二十章平行四边形的判定

  本章的内容包括平行四边形的判定;矩形、菱形、正方形等几种特殊平行四边形的判定;等腰梯形的判定等几个部分。本章首先通过回顾平行四边形的性质,由性质引出判定方法,在此基础上,学习矩形、菱形、正方形等特殊平行四边形的判定,最后介绍了等腰梯形的判定与应用。本章知识是在学习了平行线、三角形、平行四边形的性质等知识的基础上的进一步深化和提高,是今后学习其他几何知识的基础。

  第二十一章数据的整理与初步处理

  本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

  三、提高学科教育质量的主要措施:

  1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

  2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

  3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

  4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

  5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

  6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

  7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

  8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

  9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

  10、培养学生学习数学的良好习惯。这些习惯包括:

  ①认真做作业的习?包括作业前清理好桌面,作业后认真检查;

  ②预习的习惯;

  ③认真看批改后的作业并及时更正的习惯;

  ④认真做好课前准备的习惯;

  ⑤在书上作精要笔记的习惯;

  ⑥妥善保管书籍资料和学习用品的习惯;

  ⑦认真阅读数学教材的习惯。

八年级数学教案2

  一、学习目标及重、难点:

  1、了解方差的定义和计算公式。

  2、理解方差概念产生和形成过程。

  3、会用方差计算公式比较两组数据波动大小。

  重点:掌握方差产生的必要性和应用方差公式解决实际问题。

  难点:理解方差公式。

  二、自主学习:

  (一)知识详解:

  方差:设有n个数据,各数据与它们的平均数的差的平方分别为

  用它们的平均数表示这组数据的方差,即

  给力小贴士:方差越小说明这组数据越稳定,波动性越低。

  (二)自主检测小练习:

  1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。

  2、甲、乙两组数据如下:

  甲组:10 9 11 8 12 13 10 7;

  乙组:7 8 9 10 11 12 11 12。

  分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。

  三、新课讲解:

  引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):

  甲:9.10.10.13.7.13.10.8.11.8;

  乙:8.13.12.11.10.12.7.7.10.10;

  问:(1)哪种农作物的苗长较高(可以计算它们的`平均数: = )?

  (2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)

  归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为

  用它们的平均数表示这组数据的方差,即用来表示。

  (一)例题讲解:

  例1、段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,哪个人的成绩比较稳定?为什么?

  测试次数第1次第2次第3次第4次第5次段巍1314131213金志强101291311

  金志强 10 13 16 14 12

  提示:先求平均数,然后使用公式计算方差。

  (二)小试身手

  1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:

  甲:7.8.6.8.6.5.9.10.7.4

  乙:9.5.7.8.7.6.8.6.7.7

  经过计算,两人射击环数的平均数是,但 S = ,S = ,则 S S ,所以确定去参加比赛。

  1、求下列数据的众数:

  (1)3.2.5.3.1.2.3 (2)5.2.1.5.3.5.2.2

  2.8年级一班有46个学生,其中13岁的有5人,14岁的有20人,15岁的有15人,16岁的有6人。8年级一班学生年龄的平均数、中位数、众数分别是多少?

  四、课堂小结

  方差公式:

  提示:方差越小,说明这组数据越集中。波动性越小。

  每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。

  五、课堂检测:

  1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)

  小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根据这些成绩选拔一人参加比赛,你会选谁呢?

  六、课后作业:

  必做题:教材141页练习1.2;选做题:练习册对应部分习题。

  七、学习小札记:

  写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

八年级数学教案3

  教学目标

  1、理解并掌握等腰三角形的判定定理及推论

  2、能利用其性质与判定证明线段或角的相等关系。

  教学重点:

  等腰三角形的判定定理及推论的运用

  教学难点:

正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系。

  教学过程:

一、复习等腰三角形的性质

  二、新授:

  I提出问题,创设情境

  出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的`长度就可知河流宽度。

  学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。

  II引入新课

  1、由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?

  作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

  2、引导学生根据图形,写出已知、求证。

  3、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称)。

  强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。

  4、引导学生说出引例中地质专家的测量方法的根据。

  III例题与练习

  1、如图2

  其中△ABC是等腰三角形的是[ ]

  2、①如图3,已知△ABC中,AB=AC。∠A=36°,则∠C______(根据什么?)。

  ②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?)。

  ③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______。

  ④若已知AD=4cm,则BC______cm。

  3、以问题形式引出推论l______。

  4、以问题形式引出推论2______。

  例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形。

  分析:引导学生根据题意作出图形,写出已知、求证,并分析证明。

  练习:

  5、(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E。问图中哪些三角形是等腰三角形?

  (2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

  练习:P53练习1、2、3。

  IV课堂小结

  1、判定一个三角形是等腰三角形有几种方法?

  2、判定一个三角形是等边三角形有几种方法?

  3、等腰三角形的性质定理与判定定理有何关系?

  4、现在证明线段相等问题,一般应从几方面考虑?

  V布置作业:P56页习题12.3第5、6题

八年级数学教案4

  教材分析

  1、本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的`重点之一。

  2、本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

  学情分析

  1、学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

  2、在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

  教学目标

  知识技能:1、理解掌握等腰三角形的性质。

  2、运用等腰三角形的性质进行证明和计算。

  数学思考:1、观察等腰三角形的对称性,发展形象思维。

  2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

  情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

  教学重点和难点

  重点:等腰三角形的性质及应用。

  难点:等腰三角形的性质证明。

八年级数学教案5

  创设情境

  1.什么叫平行四边形?平行四边形有什么性质?

  2.将以上的性质定理,分别用命题形式叙述出来。

  根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

  探究归纳

  平行四边形的判定方法:

  证明:两组对边分别相等的.四边形是平行四边形

  已知:

  求证:

  做一做:将四根细木条(其中两条长相等,另外两条长也相等)用小钉子钉在一起,做成一个四边形,使等长的木条成为对边。它是平行四边形吗?

  学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。

  观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形

  练习:如图,在ABCD中,E,F,G和H分别是各边中点.求证:四边形EFGH为平行四边形

八年级数学教案6

  教学目标

  理解平行四边形的定义,能根据定义探究平行四边形的性质.

  教学思考

  1.通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力.

  2.能够根据平行四边形的性质进行简单的推理和计算.

  解决问题

  通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,能运用平行四边形的性质进行有关的推理和计算,发展应用意识.

  情感态度

  在应用平行四边形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.

  重点

  平行四边形的性质的探究和平行四边形的性质的应用.

  难点

  平行四边形的性质的应用.

  教学流程安排

  活动流程图

  活动内容和目的

  活动1欣赏图片,了解生活中的特殊四边形

  活动2剪三角形纸片,拼凸四边形

  活动3理解平行四边形的概念

  活动4探究平行四边形边、角的性质

  活动5平行四边形性质的应用

  活动6评价反思、布置作业

  熟悉生活中特殊的四边形,导出课题.

  通过用三角形拼四边形的过程,渗透转化思想,激发探索精神.

  掌握平行四边形的`定义及表示方法.

  探究平行四边形的性质.

  运用平行四边形的性质.

  学生交流,内化知识,课后巩固知识.

  教学过程设计

  问题与情景

  师生行为

  设计意图

[活动1]

  下面的图片中,有你熟悉的哪些图形?

  (出示图片)

  演示图片,学生欣赏.

  教师介绍四边形与我们生活密切联系,学生可再补充列举.

  从实例图片中,抽象出的特殊四边形,培养学生的抽象思维.通过举例,让学生感受到数学与我们的生活紧密联系.

  问题与情景

  师生行为

  设计意图

  [活动2]

  拼一拼

  将一张纸对折,剪下两张叠放的三角形纸片.将这两个三角形相等的一组边重合,你会得到怎样的图形.

  (1)你拼出了怎样的凸四边形?与同伴交流.

  (2)一位同学拼出了如下图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由.

  学生经过实验操作,开展独立思考与合作学习.

  教师深入学生之中,观察学生频出的方法与过程,接受学生质疑并指导个别学生探究.

  教师待学生充分探究后,请学生展示拼图的方法和不同的图形.并引导学生分析(2)中的四边形的边的位置特征,从而引出本节课研究的内容

八年级数学教案7

  教学目标:

  1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

  2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

  重点难点:

  重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

  难点:勾股定理的发现

  教学过程

  一、创设问题的情境,激发学生的学习热情,导入课题

  出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

  出示投影2(书中的P2图1—2)并回答:

  1、观察图

  1—2,正方形A中有_______个小方格,即A的面积为______个单位。

  正方形B中有_______个小方格,即A的面积为______个单位。

  正方形C中有_______个小方格,即A的面积为______个单位。

  2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

  3、图

  1—2中,A,B,C之间的面积之间有什么关系?

  学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A。B,C的关系呢?

  二、做一做

  出示投影3(书中P3图1—4)提问:

  1、图

  1—3中,A,B,C之间有什么关系?

  2、图

  1—4中,A,B,C之间有什么关系?

  3、从图

  1—1,1—2,1—3,1|—4中你发现什么?

  学生讨论、交流形成共识后,教师总结:

  以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

  三、议一议

  1、图

  1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

  2、你能发现直角三角形三边长度之间的关系吗?

  在同学的交流基础上,老师板书:

  直角三角形边的.两直角边的平方和等于斜边的平方。这就是的“勾股定理”

  也就是说:如果直角三角形的两直角边为a,b,斜边为c

  那么

  我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

  3、分别以

  5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

  四、想一想

  这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

  五、巩固练习

  1、错例辨析:

  △ABC的两边为3和4,求第三边

  解:由于三角形的两边为3、4

  所以它的第三边的c应满足=25

  即:c=5

  辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

  △ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

  (2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边

  综上所述这个题目条件不足,第三边无法求得。

  2、练习P

  7 §1.1 1

  六、作业

  课本P7 §1.1 2、3、4

八年级数学教案8

  一、教学目标

  知识目标

  1.了解并掌握分式乘除法运算法则。

  2.会运用分式乘除法法则进行分式乘除法运算。

  能力目标

  1.会通过类比的方法来理解和掌握分式的乘除法法则。

  2.熟练运用分式乘除法法则,将分式乘除法全部化归为分式乘法进行计算。

  情感目标

  1.继续熟悉“数、式通性”的数学思想方法。

  2.会通过类比的方法来理解和掌握分式的乘除法法则。

  二、重点难点和关键

  重点

  会用分式乘除法法则进行分式乘除法的运算。

  难点

  会将多项式因式分解。

  关键

  将除法转化为乘法进行计算。

  三、教学方法和辅助手段

  教学方法

  讲练结合、以练为主

  辅助手段

  幻灯投影演示

  四、教学过程

  复习

  1.计算:

  2.分数的乘除法法则是什么?

  新课讲解

  1.分式的乘除法法则

  提问:由分数的乘除法法则猜想分式的乘除法法则是什么?(讨论、交流、集中评讲)

  分式乘除法法则:(略)

  式子表示:

  2.例题讲解

  例2计算:(解略)

  注意:

  1.计算过程要对照分式乘除法法则,将乘除法全部化为乘法进行。

  2.第三题中的(-8xyz)应看成分母是“1”的式子。

  3.计算结果要化为最简分式或整式。

  4.运算过程中要注意符号的变化。

  练习:P67 T1(板演)

  例3计算:(解略)

  注意:分式乘除法运算时,分子分母中的'多项式要先因式分解,再约分。

  练习:P67 T2(1)—(4)(板演)

  例4计算:

  解:=

  注意:

  1.分子分母中的多项式一般要先按某一字母降幂或升幂排列。

  2.同级运算中,如没有附加条件(如括号),则应按从左到右的顺序进行计算。

  练习:P67 T(5)(板演)

  小结

  这节课学习了运用“分式乘除法法则”进行分式乘除法的方法,主要借助分式约分、因式分解等知识来进行,计算的结果应是最简分式或整式。

  作业

  P73 A组T4 T5 T6

  五、板书设计(略)

  六、教学后记

八年级数学教案9

  八年级下数学教案-变量与函数(2)

  一、教学目的

  1.使学生理解自变量的取值范围和函数值的意义。

  2.使学生理解求自变量的取值范围的两个依据。

  3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。

  4.通过求函数中自变量的取值范围使学生进一步理解函数概念。

  二、教学重点、难点

  重点:函数自变量取值的求法。

  难点:函灵敏处变量取值的确定。

  三、教学过程

  复习提问

  1.函数的定义是什么?函数概念包含哪三个方面的内容?

  2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?

  (答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

  3.什么叫二次根式?使二次根式成立的条件是什么?

  (答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)

  4.举出一个函数的实例,并指出式中的'变量与常量、自变量与函数。

  新课

  1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。

  2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:

  (1)自变量取值范围是使函数解析式(即是函数表达式)有意义。

  (2)自变量取值范围要使实际问题有意义。

  3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。

  推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。

  4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:

  (1)例3中的4个小题归纳起来仍是三类题型。

  (2)求函数值的问题实际是求代数式值的问题。

  补充例题

  求下列函数当x=3时的函数值:

  (1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

  (答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

  小结

  1.解析法的意义:用数学式子表示函数的方法叫解析法。

  2.求函数自变量取值范围的两个方法(依据):

  (1)要使函数的解析式有意义。

  ①函数的解析式是整式时,自变量可取全体实数;

  ②函数的解析式是分式时,自变量的取值应使分母≠0;

  ③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。

  (2)对于反映实际问题的函数关系,应使实际问题有意义。

  3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。

  练习:P94中1,2,3。

  作业:P95~P96中A组3,4,5,6,7。B组1,2。

  四、教学注意问题

  1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。

  2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。

  3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。

八年级数学教案10

  教学目标:

  1、知道负整数指数幂=(a≠0,n是正整数)、

  2、掌握整数指数幂的运算性质、

  3、会用科学计数法表示小于1的数、

  教学重点:

  掌握整数指数幂的运算性质。

  难点:

  会用科学计数法表示小于1的数。

  情感态度与价值观:

  通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题、

  教学过程:

  一、课堂引入

  1、回忆正整数指数幂的运算性质:

  (1)同底数的幂的乘法:am?an = am+n(m,n是正整数);

  (2)幂的乘方:(am)n = amn (m,n是正整数);

  (3)积的乘方:(ab)n = anbn (n是正整数);

  (4)同底数的幂的除法:am÷an = am?n(a≠0,m,n是正整数,m>n);

  (5)商的乘方:()n = (n是正整数);

  2、回忆0指数幂的规定,即当a≠0时,a0 = 1、

  3、你还记得1纳米=10?9米,即1纳米=米吗?

  4、计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的'm>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

  二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n(m,n是整数)这条性质也是成立的、

  三、科学记数法:

  我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0。000012 = 1。2×10?即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此发现其中的规律,从而有0。0000000012 = 1。2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1。

八年级数学教案11

  平方差公式

  学习目标:

  1、能推导平方差公式,并会用几何图形解释公式;

  2、能用平方差公式进行熟练地计算;

  3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.

  学习重难点:

  重点:能用平方差公式进行熟练地计算;

  难点:探索平方差公式,并用几何图形解释公式.

  学习过程:

  一、自主探索

  1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

  (3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

  2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.

  3、你能用自己的语言叙述你的发现吗?

  4、平方差公式的特征:

  (1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。

  (2)、公式中的a与b可以是数,也可以换成一个代数式。

  二 、试一试

  例1、利用平方差公式计算

  (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

  例2、利用平方差公式计算

  (1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

  三、合作交流

  如图,边长为a的大正方形中有一个边长为b的小正方形.

  (1)请表示图中阴影部分的'面积.

  (2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b

  (3)比较(1)(2)的结果,你能验证平方差公式吗?

  四、巩固练习

  1、利用平方差公式计算

  (1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

  (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

  2、利用平方差公式计算

  (1)803797 (2)398402

  3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

  A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以

  4.下列多项式的乘法中,可以用平方差公式计算的是( )

  A.(a+b)(b+a) B.(-a+b)(a-b)

  C.( a+b)(b- a) D.(a2-b)(b2+a)

  5.下列计算中,错误的有( )

  ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

  ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

  A.1个 B.2个 C.3个 D.4个[来源:中.考.资.源.网WWW.ZK5U.COM]

  6.若x2-y2=30,且x-y=-5,则x+y的值是( )

  A.5 B.6 C.-6 D.-5

  7.(-2x+y)(-2x-y)=______.

  8.(-3x2+2y2)(______)=9x4-4y4.

  9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

  10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.

  11.利用平方差公式计算:20 19 .

  12.计算:(a+2)(a2+4)(a4+16)(a-2).

  五、学习反思

  我的收获:

  我的疑惑:

  六、当堂测试

  1、下列多项式乘法中能用平方差公式计算的是( ).

  (A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

  2、填空:(1)(x2-2)(x2+2)=

  (2)(5x-3y)( )=25x2-9y2

  3、计算:

  (1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

  4.利用平方差公式计算

  ①1003997 ②14 15

  七、课外拓展

  下列各式哪些能用平方差公式计算?怎样用?

  1) (a-b+c)(a-b-c)

  2) (a+2b-3)(a-2b+3)

  3) (2x+y-z+5)(2x-y+z+5)

  4) (a-b+c-d)(-a-b-c-d)

  2.2完全平方公式(1)

八年级数学教案12

  一、教学目标

  1.使学生理解并掌握分式的概念,了解有理式的概念;

  2.使学生能够求出分式有意义的条件;

  3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;

  4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.

  二、重点、难点、疑点及解决办法

  1.教学重点和难点 明确分式的分母不为零.

  2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解.

  三、教学过程

  【新课引入】

  前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)

  【新课】

  1.分式的定义

  (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

  用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的`分子,叫做分式的分母.

  (2)由学生举几个分式的例子.

  (3)学生小结分式的概念中应注意的问题.

  ①分母中含有字母.

  ②如同分数一样,分式的分母不能为零.

  (4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]

  2.有理式的分类

  请学生类比有理数的分类为有理式分类:

  例1 当取何值时,下列分式有意义?

  (1);

  解:由分母得.

  ∴当时,原分式有意义.

  (2);

  解:由分母得.

  ∴当时,原分式有意义.

  (3);

  解:∵恒成立,

  ∴取一切实数时,原分式都有意义.

  (4).

  解:由分母得.

  ∴当且时,原分式有意义.

  思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?

  例2 当取何值时,下列分式的值为零?

  (1);

  解:由分子得.

  而当时,分母.

  ∴当时,原分式值为零.

  小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而当时,分母,分式无意义.

  当时,分母.

  ∴当时,原分式值为零.

  (3);

  解:由分子得.

  而当时,分母.

  当时,分母.

  ∴当或时,原分式值都为零.

  (4).

  解:由分子得.

  而当时,,分式无意义.

  ∴没有使原分式的值为零的的值,即原分式值不可能为零.

  (四)总结、扩展

  1.分式与分数的区别.

  2.分式何时有意义?

  3.分式何时值为零?

  (五)随堂练习

  1.填空题:

  (1)当时,分式的值为零

  (2)当时,分式的值为零

  (3)当时,分式的值为零

  2.教材P55中1、2、3.

  八、布置作业

  教材P56中A组3、4;B组(1)、(2)、(3).

  九、板书设计

  课题 例1

  1.定义例2

  2.有理式分类

八年级数学教案13

  学习目标

  1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。

  2、由坐标的变化探索新旧图形之间的变化。

  重点

  1、 作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。

  2、 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。

  难点

  体会极坐标和直角坐标思想,并能解决一些简单的问题

  学习过程(导入、探究新知、即时练习、小结、达标检测、作业)

  第一课时

  学习过程:

  一、旧知回顾:

  1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。

  2、坐标平面内点的坐标的表示方法____________。

  3、各象限点的坐标的特征:

  二、新知检索:

  1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),

  (3,0),(4,-2), (0,0)并用线段依次连接,观察形成了什么图形

  三、典例分析

  例1、

  (1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?

  (2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?

  例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?

  (2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?

  四、题组训练

  1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。

  (1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?

  (2)纵、横分别加3呢?

  (3)纵、横分别变成原来的2倍呢?

  归纳:图形坐标变化规律

  1、 平移规律:2、图形伸长与压缩:

  第二课时

  一、旧知回顾:

  1、轴对称图形定义:如果一个图形沿着 对折后两部分完全重合,这样的图形叫做轴对称图形。

  中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转 ,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形

  二、新知检索:

  1、如图,左边的鱼与右边的鱼关于y轴对称。

  1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?

  2、各个对应顶点的坐标有怎样的关系?

  3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?

  三、典例分析,如图所示,

  1、右图的鱼是通过什么样的变换得到 左图的鱼的。

  2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的.1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。

  3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系

  四、题组练习

  1、将坐标作如下变化时,图形将怎样变化?

  ① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

  ④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

  2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。

  3、 如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。

  4、 描出下图中枫叶图案关于x轴的轴对称图形的简图。

  学习笔记

八年级数学教案14

  一.教学目标:

  1.了解方差的定义和计算公式。

  2.理解方差概念的产生和形成的过程。

  3.会用方差计算公式来比较两组数据的波动大小。

  二.重点、难点和难点的突破方法:

  1.重点:方差产生的必要性和应用方差公式解决实际问题。

  2.难点:理解方差公式

  3.难点的突破方法:

  方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

  (1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

  (2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

  (3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的`是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

  三.例习题的意图分析:

  1.教材P125的讨论问题的意图:

  (1).创设问题情境,引起学生的学习兴趣和好奇心。

  (2).为引入方差概念和方差计算公式作铺垫。

  (3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

  (4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

  2.教材P154例1的设计意图:

  (1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

  (2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

  四.课堂引入:

  除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

  五.例题的分析:

  教材P154例1在分析过程中应抓住以下几点:

  1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

  2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

  3.方差怎样去体现波动大小?

  这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

  六.随堂练习:

  1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

  甲:9、10、11、12、7、13、10、8、12、8;

  乙:8、13、12、11、10、12、7、7、9、11;

  问:(1)哪种农作物的苗长的比较高?

  (2)哪种农作物的苗长得比较整齐?

  2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

  测试次数1 2 3 4 5

  段巍13 14 13 12 13

  金志强10 13 16 14 12

  参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

  2.段巍的成绩比金志强的成绩要稳定。

  七.课后练习:

  1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

  2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛。

  3.甲、乙两台机床生产同种零件,10天出的次品分别是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

  4.小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

  小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

  答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好

  4. =10.9、S =0.02;

  =10.9、S =0.008

  选择小兵参加比赛。

八年级数学教案15

  一、课堂导入

  回顾平行四边的性质定理及定义

  1.什么叫平行四边形?平行四边形有什么性质?

  2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)

  根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

  二、新课讲解

  平行四边形的判定:

  (定义法):两组对边分别平行的四边形的平边形。

  几何语言表达定义法:

  ∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形

  解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。

  活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

  (平行四边形判定定理):

  (一)两组对边分别相等的四边形是平行四边形。

  设问:这个命题的前提和结论是什么?

  已知:四边形ABCD中,AB=CD,BC=DA。

  求证:四边ABCD是平行四边形。

  分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。

  板书证明过程。

  小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

  平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形

  (二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?

  活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的'端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?

  设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级《函数》数学教案08-17

八年级数学教案12-09

人教版八年级数学教案11-04

八年级数学教案【精】12-04

八年级数学教案【推荐】12-04

八年级下册数学教案01-01

八年级的数学教案15篇12-14

八年级上册数学教案12-11

八年级数学教案[精品]05-29