现在位置:范文先生网>教案大全>数学教案>初中数学教案

初中数学教案

时间:2024-06-27 07:14:24 数学教案 我要投稿

初中数学教案(经典4篇)

  作为一名优秀的教育工作者,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么你有了解过教案吗?以下是小编为大家收集的初中数学教案,欢迎阅读,希望大家能够喜欢。

初中数学教案(经典4篇)

初中数学教案1

  一、教学目的:

  1、理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

  2、在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力、

  二、重点、难点

  1、教学重点:菱形的两个判定方法、

  2、教学难点:判定方法的证明方法及运用、

  三、例题的意图分析

  本节课安排了两个例题,其中例1是教材P109的例3、例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算、这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成、程度好一些的班级,可以选讲例3、

  四、课堂引入

  1、复习

  (1)菱形的定义:一组邻边相等的平行四边形;

  (2)菱形的性质1:菱形的四条边都相等;

  性质2:菱形的对角线互相平分,并且每条对角线平分一组对角;

  (3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

  2、【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

  3、【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形、转动木条,这个四边形什么时候变成菱形?

  通过演示,容易得到:

  菱形判定方法1对角线互相垂直的平行四边形是菱形、

  注意此方法包括两个条件:

  (1)是一个平行四边形;

  (2)两条对角线互相垂直、

  通过教材P109下面菱形的'作图,可以得到从一般四边形直接判定菱形的方法:

  菱形判定方法2四边都相等的四边形是菱形、

  五、例习题分析

  例1(教材P109的例3)略

  例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F、

  求证:四边形AFCE是菱形、

  证明:∵四边形ABCD是平行四边形,∴AE∥FC、

  ∴∠1=∠2、

  又∠AOE=∠COF,AO=CO,∴△AOE≌△COF、

  ∴EO=FO、

  ∴四边形AFCE是平行四边形、

  又EF⊥AC,∴AFCE是菱形(对角线互相垂直的平行四边形是菱形)、

  ※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F、

  求证:四边形CEHF为菱形、

  略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF、

  所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形、

  六、随堂练习

  1、填空:

  (1)对角线互相平分的四边形是;

  (2)对角线互相垂直平分的四边形是________;

  (3)对角线相等且互相平分的四边形是________;

  (4)两组对边分别平行,且对角线的四边形是菱形、

  2、画一个菱形,使它的两条对角线长分别为6cm、8cm、

  3、如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

  七、课后练习

  1、下列条件中,能判定四边形是菱形的是

  (A)两条对角线相等

  (B)两条对角线互相垂直

  (C)两条对角线相等且互相垂直

  (D)两条对角线互相垂直平分

  2、已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC、求证:四边形MEND是菱形、

  3、做一做:

  设计一个由菱形组成的花边图案、花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点、画出花边图形、

初中数学教案2

  一、教学目标:

  1、知道一次函数与正比例函数的定义。

  2、理解掌握一次函数的图象的特征和相关的性质。

  3、弄清一次函数与正比例函数的区别与联系。

  4、掌握直线的平移法则简单应用。

  5、能应用本章的基础知识熟练地解决数学问题。

  二、教学重、难点:

  重点:初步构建比较系统的函数知识体系。

  难点:对直线的平移法则的理解,体会数形结合思想。

  三、教学过程:

  1、一次函数与正比例函数的定义:

  一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

  正比例函数:对于y=kx+b,当b=0、k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

  2、一次函数与正比例函数的区别与联系:

  (1)从解析式看:y=kx+b(k≠0、b是常数)是一次函数;而y=kx(k≠0、b=0)是正比例函数,显然正比例函数是一次函数的`特例,一次函数是正比例函数的推广。

  (2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0、0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0、b)且与y=kx

  平行的一条直线。

  基础训练:

  1、写出一个图象经过点(1、—3)的函数解析式为:

  2、直线y=—2X—2不经过第象限,y随x的增大而。

  3、如果P(2、k)在直线y=2x+2上,那么点P到x轴的距离是:

  4、已知正比例函数y=(3k—1)x,若y随x的增大而增大,则k是:

  5、过点(0、2)且与直线y=3x平行的直线是:

  6、若正比例函数y=(1—2m)x的图像过点A(x1、y1)和点B(x2、y2)当x1y2、则m的取值范围是:

  7、若y—2与x—2成正比例,当x=—2时,y=4、则x=时,y=—4、

  8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。

  9、已知圆O的半径为1、过点A(2、0)的直线切圆O于点B,交y轴于点C。

  (1)求线段AB的长。

  (2)求直线AC的解析式。

初中数学教案3

  一、说教材

  1、地位和作用

  本节教材是人教版,初中数学八年级下册第19章第1节的内容,是初中数学的重要内容之一。平行四边形是一种重要的数学思想,在实际生活中有着广泛的应用,是初中教学的重点和难点,在教材中有举足轻重的地位。本节课所学内容,是在学习了平行四边形的性质的基础上,对平行四边形的判定进一步拓展;另一方面又为其他四边形的教学打下基础,做好铺垫,在教学中起着承前启后的作用。

  2、教学重点和难点

  本节课的重点是:平行四边形的判定定理及应用

  难点是:平行四边形的判定的推导过程(这点要求比较难)

  我将通过问题情境的设计,课堂实验研讨,来引导学生发现、分析和解决问题。

  根据去年国家教育部颁布的,新数学课堂标准的理念,学生学习的目标应将知识与技能、方法与过程、情感态度价值观这三方面融为一体,为了落实这几点,我们本节课的教学目标如下

  3、教学目标

  1)掌握

  2)探索,由此发现充满着探索性和挑战性。(方法与过程)

  3)经过自主探索和合作交流,敢于发表自己的观点,能从交流中获益。(情感态度价值观)这样制定教学目标,让学生亲身经历将实际问题抽象成数学问题,并进行理解与应用的过程,增加他们对问题的感性认识。通过推理论证,提高学生的理性认识,培养学生良好的个性品质(这包括大胆猜想、勇于探索、创新精神、顽强的学习毅力等)。

  总之,我这节课更注重学生学习方式的转变,变接受式学习为自主式学习、合作式学习、探究式学习。针对这节课我采用以下教学方法

  二、说教法

  情境教学法、课堂研讨法

  让学生处于具体的教学情境之中,把抽象的数学知识,适当的形象化,这就相当于为学生提供一个场所,从多种感观获取信息,体验我们的数学活动。可以从以下三方面得到体验:

  1)培养学生的自学能力

  2)落实学生的主体地位,促进学生的主动发展

  3)为培养学生的创新意识与创新能力奠定基础

  从整体课堂来看,我们这节课很关注学生的发展,古人说:“学贵有方”

  三、说学法

  老师传授给学生的不应只是知识内容,更重要的`是,指导学生一些数学的学习方法。我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,进行学法的指导。指导学生如何将实际问题转化为数学问题,明白数学与人类的密切关系,指导学生通过类比、猜想、推理等思维进行教学。

  在我的课堂教学中,我会以学生的发展为本,以学生的活动为主线,让学生充分参与到课堂活动中来,为了落实这几点,我按以下5个阶段来,完成本课教学过程

  四、说教学过程

  1阶段:创设情境、引入新课

  我将灵活运用温故而知新,承接前后章,展示情境,结合实际生活,引入新课。

  2阶段:新课教学(通过合作性学习进行教学。心理学研究表明,在合作性学习中,学生不再是学习上的竞争对手,而是共同提高的合作者,这不仅对他们的学业会有帮助,在人格的培养上也很有可取之处。)

  3阶段:课堂实践

  我将通过:首先和学生们一起议一议(平行四边形性质的简单利用)

  最后再和学生们共同完成练一练(随堂练习,基础训练、创新训练)

  4阶段:课堂小结(让学生谈谈本节学到什么、收获什么,教师点评,以达到加深知识的理解)

  5阶段:布置作业(达到复习巩固新知识的目的)

  五、教学反思

  本节课我遵循“教师为主导、学生为主体、质疑为主线”的教学思路,培养学生的主动学习能力、动手操作能力、逻辑推理能力等。通过课堂学习,及时发现学生,在学习探究过程中遇到的问题,给予指导帮助,从而维持学生学习的积极性。以上是我对本节课的理解,不足之处,请各位评委老师指正。我的说课完毕,谢谢大家!

初中数学教案4

  一、一元一次不等式组:

  关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:

  (1)组成不等式组的不等式必须是一元一次不等式;

  (2)从数量上看,不等式的个数必须是两个或两个以上;

  (3)每个不等式在不等式组中的位置并不固定,它们是并列的

  二、一元一次不等式组的解集及解不等式组:

  在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的`过程就叫解不等式组。解一元一次不等式组的步骤:

  (1)先分别求出不等式组中各个不等式的解集;

  (2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集、

  三、不等式(组)的解集的数轴表示:

  一元一次不等式组知识点

  1、用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;

  2、不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;

  3、、我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。

  说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。

  四、求一些特解:

  求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。

  【一元一次不等式组考点分析】

  (1)考查不等式组的概念;

  (2)考查一元一次不等式组的解集,以及在数轴上的表示;

  (3)考查不等式组的特解问题;

  (4)确定字母的取值。

  【一元一次不等式组知识点误区】

  (1)思维误区,不等式与等式混淆;

  (2)不能正确地确定出不等式组解集的公共部分;

  (3)在数轴上表示不等式组解集时,混淆界点的表示方法;

  (4)考虑不周,漏掉隐含条件;

  (5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;

  (6)对含字母的不等式,没有对字母取值进行分类讨论。

【初中数学教案】相关文章:

初中数学教案08-12

初中数学教案11-15

初中数学教案----实数08-16

【热】初中数学教案01-12

初中数学教案【热门】01-12

【热门】初中数学教案01-12

【荐】初中数学教案01-12

初中数学教案精品01-13

初中数学教案模板09-29

初中数学教案【精】01-26