四年级下册数学运算教案(大全15篇)
作为一名人民教师,往往需要进行教案编写工作,借助教案可以让教学工作更科学化。我们应该怎么写教案呢?以下是小编整理的四年级下册数学运算教案,仅供参考,希望能够帮助到大家。
四年级下册数学运算教案1
教学目标:
知识与能力:
1.能理解商不变的运算性质。
2.能运用商不变运算性质,使计算简便。
过程与方法:
1.让学生经历自主探索的过程,培养学生理性的思考
2.发展学生思维的灵活性,培养学生观察、推理、概括的能力。
3.经历比较标准的方法,猜想、验证的过程,培养合理的思维。
情感态度 价值观:
1.引导学生积极参与探 索的过程。
2.培养学生实事求是、独立思考的.习惯。
教学重点:
1.能理解商不变的运算性质。
2.能运用商不变运算性质,使计算简便。
教学难点:
1.能理解商不变的运算性质。
2.能运用商不变运算性质,使计算简便。
教学过程:
一、引入新知
1. 请你写几个商是2的算式。
根据乘法口诀写商是2的算式:
2÷1=2 4÷2=2
6÷3=2 8÷4=2
10÷5=2
根据学生回答,有序板书。
学生口答
同桌讨论有什么发现。
用口诀写
2. 用推算的方法写商是2的算式
2÷1=2
20÷10=2
200÷100=2
20xx÷1000=2
全班交流。
观察板书
用推算的方法写
从上往下看,观察算式什么数变化了?什么数没有变化?
从下往上看呢?观察算式什么数变化了?什么数没有变化?
独立思考:什么数变化了,什么数没有变化?
二、探究新知
小组讨论,填写表格
1、小组讨论,并做好记录表格
观察的算式被除数的变化除数的变化商的变化2÷1=2
4÷2=2×2×2不变4÷2=2
20÷10=2×5×5不变20÷10=2
2÷1=2
四人小组 讨论,完成表格
全班交流。
三、运用商不变性质填空
1. 引导学生通 过自己的举例来说明自己的观点
2.谁能用一句话来概括被除数、除数以及商之间的关系。
1.练一练
100÷20=5
(100×5)÷(20×□)=5
(100○□)÷(20÷□)= 5
(100×□)÷(20○7)=5
(100○□)÷(20○□)=5
2. 讨论:0可以填吗?
3. 这个规律怎样填才完整?
1.被除数和除数同时乘以或除以一个相同的数,它们的商不变。
2.字母表示:
a÷b=(a÷c) ÷×(b÷c)(c≠0)
被除数和除数同时乘以或除以一个相同的数,(零除外)它们的商不变。
四、判断正误
1.板书课题:商不变的性质。
2.试一试
6÷2=□÷4=36÷□=60÷□
□ ÷170=119÷17=11900÷□=238÷□
1.540÷60=(540÷10)÷(60÷10 )
2.80÷20=(80+10)÷(20+10 )
3.72÷9=(72×100)÷(9×10 )
4.75÷25=(75÷5)÷(25×5 )
6.因为a÷b= 5,所以a÷c=(a×c) ÷(b×c)=5
独立思考 交流想法
板书设计
商不变性质
2÷1=2
4÷2=2
6÷3=2
8÷4=2
10÷5=2 a÷b=(a÷c) ÷(b÷c)(c≠0)
× ×
被除数和除数同时乘以或除以一个相同的数(0除外),它们的商不变。
反思与重建
对于“商不变性质”的归纳与总结,要建立在学生充分的观察感知上,所以在观察算式时,教师要指导孩子进行有序的观察“从上往下,任选两个算式对比,你有什么发现?”让学生自由选择并发现知识规律,这样学生就学得主动、有效了。
作业布置
基础练习(A套、B套)
A套:练习册P2
B套:每日精练P8
每日一题
20÷4=(20×2)÷(4○□)=□÷2= 60÷□ = □÷□
四年级下册数学运算教案2
第一课时:
教学内容:p4例1、例2(只含有同一级运算的混合运算)
教学目标:
1.使学生进一步掌握含有同一级运算的运算顺序。
2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。
3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、引入观察主题图,根据条件提出问题。
(1)说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?
组织学生提问并对简单地问题直接解答。
(2)根据图中提出的信息,你能提出哪些问题,怎样解决?
通过补充条件,继续提问。
1.滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?
2.“冰雪天地”3天接待987人。照这样计算,6天预计接待多少人?
等等。
先小组交流,再全班交流。
提示学生可以自己进行条件的补充。
二、新授课
1.小组4人对黑板上的题目进行分配解答。
引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。
2.小组内互相说说你是怎样解答的?
教师巡视并对学生的叙述进行指导。
3.全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。
(1)71-44+85
=27+85
=113(人)
71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。
(2)987÷3×6 6÷3×987
=329×6 =2×987
=1974(人)=1974(人)
第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,再乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)
第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。
引导学生进一步理解“照这样计算”的意思。
强调:可用线段图帮助理解。
教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。
4.巩固练习
(1)根据老师提供的情景编题。a加减混合。乘车时的上下车问题,图书馆的借书还书问题,b速度、单价、工作效率
先个人编题,再两人交换。
小组合作,减少重复练习。
(2)p5/做一做1、2
三、小结:学生就本节课的学习内容进行汇报。这节课我们解决了很多问题,你们都有什么收获?教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)运算顺序为已有知识基础,让学生进行回忆概括。
四、作业:p8/1—4
第二课时:
教学内容:p6例3 p10/例4(含有两级运算或有括号的混合运算)
教学目标:
1.使学生进一步掌握含有两级运算的运算顺序。
2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,学会用两步计算的方法解决一些实际问题。
3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、主题图引入----观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
二、新授课
就学生提出的问题,出示例3星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买门票需要花多少钱?
学生在练习本上解答此问题。
同桌两人说说自己是怎样解答的。
汇报:教师根据学生的汇报进行板书。
(1)24+24+24÷2
=24+24+12
=48+12
=60(元)
24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
(2)24×2+24÷2
=48+12
=60(元)
24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的`价钱加在一起就是总门票的价钱。
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?
这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。
这样的综合算式的运算顺序是什么?
学生总结运算顺序。
买3张成人票,付100元,应找回多少钱?
等等。
出示例4上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?
小组讨论,独立完成。
小组内互相说说你是怎样解答的?
汇报。
(1)270÷30-180÷30
=9-6
=3(名)
270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。
(2)(270-180)÷30
=90÷30
=3(名)
270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。
引导学生观察两个算是的不同点,以及运算顺序的不同。
学生进行小结。教师根据学生的小结进行板书。
三、巩固练习:1、p7/做一做1、2 2、p11/做一做(完成书上的后,可以变化条件,如“买2副手套”等等。)
教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业:p8—9/5—9
第三课时:
教学内容:p11例5(强化小括号的作用)、归纳运算顺序
教学目标;
1.使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。
2.在学生的头脑中强化小括号的作用。
3.在练习中总结归纳出四则混合运算的顺序。
教学过程:
一、复习引入
回忆前两节课的学习内容,回顾学习过的四则运算顺序。
前面我们学习了几种不同的四则运算,你们还记得吗?谁能说说你在前面都学会了哪些四则运算顺序?
根据学生的回答进行板书。
二、新授课
出示例5(1)42+6×(12-4)(2)42+6×12-4
学生在练习本上独立解答。(画出顺序线)
两名学生板演。
全班学生进行检验。
上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?这几天我们一直都在说“四则运算”,到底什么是四则运算呢?
学生针对问题发表自己的意见。
概括:加法、减法、乘法和除法统称四则运算。(板书)
谁能把我们学习的四则运算的运算顺序帮我们大家来总结一下?
学生自由回答。
三、巩固练习p12/做一做1、2 p14/4
教师巡视纠正。
四、作业:p14—15/2、3、5—7
第四课时:关于0的运算
教学内容:p13例6(0的运算)
教学目标:使学生掌握关于0的运算应该注意的问题。
教学重、难点:0不能做除数及原因。
教学过程:
一、口算引入快速口算
出示:(1)100+0=(2)0+568=(3)0×78=(4)154-0=(5)0÷23=
(6)128-128=(7)0÷76=(8)235+0=(9)99-0=(10)49-49=
(11)0+319=(12)0×29=
二、新授课
将上面的口算进行分类
请你们根据分类的结果说一说关于0的运算都有哪些。
学生分类后进行概括总结关于0的运算。
教师根据学生的回答进行板书。
关于0的运算你还有什么想问的或想说的吗?
学生提出0是否可以做除数。
小组讨论:0能否做除数?
全班辩论。各自讲明自己的理由。
教师小结:0不能做除数。如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
三、小结:学生小结关于0的运算应该注意的问题。
教师引导学生小结。
四、作业:p15—16/8—13
第五课时:四则混合运算的练习课
教学内容:课本练习二的第4—11题
教学目标:
通过练习,让学生掌握四则混合运算的运算顺序,并能熟练地进行计算。
教学过程
1、完成课本练习二的第4题。
学生独立完成,然后教师讲评。
提问:四则运算的运算顺序怎样?
小括号有什么作用?
2、完成课本练习二的第5题
学生独立分析,然后列式解答,最后教师讲评
3、完成课本练习二的第6题
学生独立分析然后列式解答,最后教师讲评
提问:如果180÷72这样列式行吗?
4、完成课本练习二的第7题
学生独立分析然后列式解答,最后教师讲评
教师讲评时要求学生说出算式每一步所表示的意思。
5、完成课本练习二的第8题
分析:“5秒航行60千米”大家通过这一句话可以求出什么?
6、完成课本练习二的第9题
分析:扑克牌上4个不同的点数就代表4个不同的数,分别是6、2、4、3,通过添上四则运算符号和小括号,使运算的结果为24。
7、完成课本练习二的第10题。
本题让学生以四人为一小组,讨论出购票的方案
四年级下册数学运算教案3
教学内容:苏教版义务教育教科书四年级下册第56~57页。
教学目标:
1、在先学的基础上,经历探索加法运算律的过程,理解并掌握加法交换律和加法结合律,初步感知加法运算律的价值,发展应用意识。
2、在探索加法运算律的过程中,初步发展符号感,初步培养分析、比较、抽象和概括能力。
3、体会“变”与“不变”的辩证思想和初步的代数思想。
教学重点:
经历加法运算律的发现过程,理解算式间的相等关系,发现和概括规律。
教学难点:
正确辨析加法交换律和加法结合律的异同,初步感悟应用加法运算律可以使一些计算简便。
教学过程:
一、创设矛盾,引入新课
1、口算
32+0 1+18 29+60 15+25 41+23 64+26 39+17 28+15
29+16+17+8+12+3+14
为什么不能一下子口算出结果?遇到类似的情况你有什么想法?
2、板书课题
二、探究加法交换律,建构策略
1、微课设疑,提出猜想
(1)播放微课中关于“加法交换律”的内容。
(2)通过微课的学习,你有哪些收获?
板书:2+3=3+2,两个加数交换位置,和不变。
出示:2和3交换位置,和不变。
比较两个结论,有什么想说的'?
小结:仅凭一个例子不能得出结论,但我们不妨把这一结论当作一个猜想。
板书:猜想,?
2、深入验证,概括结论
举例验证(包括用数、文字、图形、字母等多种情况所举的例子)
板书:验证
提示:没有经过计算,直接写上等号的,不是真正的验证方法。
小结:通过验证,“两个加数交换位置,和不变”的猜想确实是加法运算中的一条规律。
板书:结论
3、即时练习,巩固规律
26+37=37+()204+()=59+()a+()=()+()
三、学法迁移,探究加法结合律
1、迁移
刚才,我们探究的是两个加数之间的规律,那么三个加数之间有没有什么规律呢?我们可以怎样探究?(可以采用“猜想—验证—结论”的探究方法。)
播放微课中关于“加法结合律”的内容。
板书:(a+b)+c=a+(b+c),猜想,?
2、验证
砸金蛋:10个金蛋,每个金蛋里都藏着两道式子,边砸蛋边讨论:(1)可否划等号;(2)是否与等式具有相同的特点。
3、分组交流
(1)试一试:每人至少再举两道符合这样规律的等式,同桌互相检查是否符合。
(2)想一想:你能举出一个反例,说明这个规律不成立吗?
(3)说一说:你能得出怎样的结论?
4、深化规律
比一比,加法结合律和加法交换律有什么相同点和不同点?
四、巩固练习,拓展提升
(1)根据加法运算律填空。
(45+36)+64=45+(+)
560+(140+)=(560+)+a
(2)(64+)+27=64+(+ 27)
提问:横线上可以填什么数?要使等号后面的计算简便,横线上可以填什么数?
(3)29+16+17+8+12+3+14,可以怎么简便计算,分别运用了什么计算律?
五、全课总结,延升思考
今天这节课有哪些收获?在加法中有加法交换律和加法结合律,有没有想过,在减法、乘法、除法中是否也有类似的规律呢?同学们可以按照今天的探究方法,课后自己继续研究。
四年级下册数学运算教案4
教学内容:
P5:例3 “做一做”
教学目标:
知识与技能:知道关于0的运算应该注意的问题。
过程与方法:体会0在四则运算中的地位和作用。
情感态度价值观:培养学生整理知识的能力。
教学重难点:
0不能做除数及原因。
教具学具:
多媒体课件
教学过程
一、导入新课
口算引入( 快速口算)出示:
100+0= 0+568= 0×78= 0÷23= 128-128=
0÷76= 235+0= 99-0= 49-49= 0+319= 0×29=
二、探究新知
1、将上面的.口算分类.根据分类的结果说一说关于0的运算都有哪些。
2、一个数与0相加;一个数减0;一个数与0相乘的结果分别是多少。
3、0除以一个数的结果是多少?
三、0为什么不能做除数(讨论)
0不能作除数。例如,5÷ 0不可能得到商,因为找不到一个数同0相乘得到5。0÷ 0不可能得到一个确定的商,因为任何数同0相乘都得0。
小结:归纳所有0的运算
一个数加上0,还得原数。被减数等于减数,差是0。
0除以一个非0的数,还得0。一个数和0相乘,仍得0。
四、课堂测评
1.计算
(1)36+0= (2)0+68= (3)0×68= (4)54-0=
(5)0÷28= (6)128-0= (7)0÷36= (8)25+0=
(9)99-0= (10)49-49= (11)0+39= (12)0×9=
五、归纳反思
这节课我们有什么收获。还有什么疑问。关于0的运算应该注意的
板书设计:
0的运算
一个数加0或减0得原数;
一个数乘0得0,
0除以一个非0的数还得0。
四年级下册数学运算教案5
教学目标:
1.让学生通过计算、观察、交流、等数学活动,发现并理解乘法分配率。
2.在探索规律的过程中,发展学生比较、分析、抽象和概括能力,增强用符号表达数学规律的意识。
3.进一步体会数学与生活的联系,获得发现数学规律的愉悦感和成功感,增强学习数学的兴趣和自信。
教学难点:
发现并理解乘法分配律。
教学难点:
借助乘法意义理解乘法分配律,并能从形式上进行正确的表达。
教学准备:
多媒体课件、练习纸。
教学过程:
1.回忆旧知,乘法交换律与乘法结合律。找学生说出定义及字母表达式。
2.导入。
师:同学们,春天来了商店里进来很多漂亮的新衣服。多媒体展示图片三件上衣两条裤子。
师:三件上衣两条裤子,如果我们将一件上衣一条裤子作为一件套装,那么有多少种搭配方式呢?
生:六种。
3.讲授新知
师:如果商店将每种搭配方式都售出了五十套,那么每种搭配方式能售出多少钱呢?同学们自己选择一种喜欢的搭配方式计算。注意列综合算式。(巡视)
师:哪位同学能说一说你是怎样列式的呢?
生:(90+120)×50板书(告诉学生读法50乘以90与120的和)
师:那你能说一说你为什么这样列式吗?
生:我先算出一套的价钱,然后再乘以50套等于售出的总价钱。
师:那么针对这位同学的搭配方案,谁还有其他的列式方法吗?
生:90×50+120×50板书
师:其他搭配方案呢?
生:(90+130)×50板书
师:那针对这种方案有其他列式方法吗?
生:90×50+130×50板书
师:其他搭配方案呢?
生:(80+120)×50板书
师:那针对这种方案有其他列式方法吗?
生:80×50+120×50板书
师:其他方案呢?
生:(80+130)×50板书
师:那针对这种方案有其他列式方法吗?
生:80×50+130×50板书
师:还有其他方案吗?
生:(100+120)×50板书
师:那针对这种方案有其他列式方法吗?
生:100×50+120×50板书
师:那么还有最后一种方案了,谁能一下子找出来呢?
生:(100+130)×50板书
师:那么这种方式有什么其他列式方法呢?
生:100×50+130×50板书
师:同学们观察黑板上的这六组,你们发现规律了吗?那你们能试着写出和上面一样规律的式子吗?(找学生黑板写)
师:同学们我们举例子是写不完的,那你们能不能用一个式子表示出你发现的规律呢?
生:(a+b)×c=a×c+b×c(板书)
师:同学们你们已经会用字母表示发现的'规律是什么样的,那你们能不能试着自己说一说你发现的规律是怎样的呢?现在小组讨论三分钟,会说的同学教小组内不会说的,开始。(巡视指导)
师:那哪位学生能给老师说一说你发现的规律呢?
生:两个数的和乘以第三个数等于这两个数分别乘以第三个数再相加。(板书)
师:那我们今天学习的这个规律就是乘法分配律(板书)
师:同学们,这个规律我们用举例子的方法和问题情境的方式证明了这个规律,那么哪个同学能给老师想到其他的方法来证明呢?现在小组讨论三分钟想一想还有什么办法?
师:谁能告诉老师你想到的方法是怎样的呢?
生:我发现90×50+120×50=(90+120)×50,等号左边是90个50加上120个50一共是210个50,等号右边就是210个50,左边210个50右边210个50,所以是相等的。
师:正确,那么我们用了三种方法来证明。那同学们观察75×17+25×17=(25+75)×17有必要转化吗?
生:有
师:为什么?
生:能凑整。
师:那我们学习乘法分配律就是为了方便我们简便计算。老师考验考验你们是否真的掌握了乘法分配律。(出示习题:判断是否运用了乘法分配律,运用乘法分配律的计算题)
4.小结
总结本节课学习的新知识,乘法分配律的定义及字母表达式。
四年级下册数学运算教案6
学习目标:
1、通过整理复习进一步理解运算定律,牢记所有定律。
2、通过复习,发现运用知识解决问题中的难点问题,及时纠正错误。
3、通过复习,进一步提高分析、判断与计算能力;建立知识之间的联系和区别,能根据具体情境选择正确的方法进行简算。
学习重难点:
重点:理解运算定律,能正确运用运算定律进行计算
难点:能根据算式的特点,灵活选择适合的运算定律进行计算。
实物准备:
多媒体课件、答题卡。
学习流程:
一、导入
同学们,我们已经学习了加法、乘法、减法、除法的运算定律,运用这些运算定律能使我们的计算更简便,今天我们就来整理复习第三单元《运算定律》
二、导学
活动一:回忆定律
活动任务:回忆、整理第三单元学过的运算定律,用含有字母的'算式表示出来。
活动流程:
1、明确任务:认真默读活动任务,理解活动要求。
2、自主学习:独立回忆整理第三单元学习的运算定律。(5分钟)
3、小组讨论:小组交流运算定律,推选出发言人准备交流。(2分钟)
4、展示分享:随机抽一个小组展示交流,其他小组补充,质疑。
5、梳理提升:教师引导梳理,对比加法、乘法交换律、结合律。再次记忆运算定律。
活动要求:
1、 自主学习可以参考课本复习整理
2、小组讨论轮流发言,补充式发言。
活动二:运用定律
活动任务:用运学过的算定律完成下列练习:
①23+56+77
②462-83-17
③3200÷25÷4
④8×30×125
⑤17×147-17×47
⑥36×47+47×64
⑦99×53+53
⑧101×97-9
活动流程:
1、明确任务:投影出示练习题,认真读题思考。
2、自主学习:独立学习卡二相关练习(分组完成4题即可)。
3、小组讨论:小组长组织订正学习卡二,统计易错练习,分析错误原因,改正错误。
4、展示分享:随机抽取一个同学学习卡展示解题过程其他小组评价、订正。
5、梳理提升:根据解题情况重点分析易错练习解题思路。
三、导练
活动三:强化训练
活动任务:请你完成下面的练习
①99×18
②101×45
③25×28
活动流程:
1、明确任务:认真读题,思考解题方法。
2、自主学习:独立完成简算练习。(只用写出解题思路即可,不用算出答案)
3、小组讨论:小组长组织交流,选出最佳解题方法。
4、展示分享:一个小组展示解题过程并说明解题思路。其他同学补充、质疑。
5、梳理提升:教师梳理运用运算定律的注意事项
四、导结:这节课你印象最深的是哪个知识点?
四年级下册数学运算教案7
一、教材分析
数学课标中提出:要培养学生的数感,能用多种方法表示数;能用数来交流表达信息,能为解决问题而选择适当的算法;能估计运算的结果。在数与计算中要进一步培养学生的数感,增进学生对运算意义的理解。
本课在复习整数乘法混合运算的运算顺序和运算律引入,先回顾整数乘法的运算定律,然后由整数乘法的运算律推广到分数乘法,进而应用知识。整数乘法的运算律,要求学生举例说明并用字母表示,理解各条运算律的内涵。使学生明白,运用这些运算定律目的是使计算更加简便。这样,学生选择运算定律时,就充分锻炼数学思维;在优化算法的基础上提高计算能力。
二、学生分析
学生在以前的学习中已经掌握了分数乘法计算、整数乘法运算定律。由于学生的个体差异,在计算过程中极易出现粗心大意、审题不仔细最终导致计算出错等情况。因此,在教学时,需要引导学生端正态度,多做多练,并且在实际生活中合理、灵活将整数乘法的运用运算定律推广到分数乘法。
三、教学设计
教学目标:
1、学生理解整数运算定律对分数乘法同样适用,并会灵活运用运算定律进行一些简便计算;
2、经历简便计算的过程,体验对比分析的学习方法;
3、发展学生的简便运算意识和分析能力,体验算法的优化过程。
教学重点:理解并掌握分数乘法算式题的简便算法
教学难点:合理、灵活选择算法进行简便计算
教学准备:多媒体课件、练习纸
教学过程:
一、复习引入
师:同学们,通过以前的学习,我们掌握了运用整数乘法解决相关的'数学问题。今天,智慧老人给大家带来了三个问题,请大家拿出纸和笔迎接它们吧!
复习整数乘法运算定律(ppt出示)
(1)25×7×4(2)63×4+37×4(3)(125+8)×8
师:现在请第一大组的同学做第一小题,请第二大组的同学做第二小题,第三、四大组的同学请做第3小题。(等待3分钟)谁愿意上来板书?
师:同学们都很积极,老师很欣赏大家的这种学习状态。下面我将请三位同学到黑板上板书。
(三个学生上台各板书一道题)
师巡视,后全班订正:
分别请三个小老师来评判学生的板书情况,给予及时评价:大家同意小老师的观点么?
师:同学们,你们是怎么做到这么快速又准确地将它们的结果计算出来的呢?
生1:我们运用了交换律、分配律
师:你真会学以致用啊!
生2:看到25就想到4,看到125就想到8
师:你对数字真敏感
师:仔细回顾一下,我们学过的整数乘法的运算定律有哪些?
生1:乘法交换律
生2:乘法结合律
生3:乘法分配律
师:你们的记性真好啊!(生再回答时师边板书)
师:你们能用字母表示这些运算定律吗?(请生在黑板上板书)
生1:a×b=b×a
生2:a×b×c=a×(b×c)
生3:(a+b)×c=a×c+b×c
师:看来你们用字母表示数的能力比哈利波特还强!
师:我们通过刚才对整数乘法进行计算时,运用这些运算定律有什么好处?
生:可以使运算更加简便
二、新授
师:既然它们可以使得整数乘法分运算简便,那它们是否可以推广到分数乘法,使分数乘法的运算更加简便呢?
1、质疑猜测
师:我们可以先进行大胆地猜测。
生:能
生:不能
师:猜测之后需要大家小心地求证。
2、验证归纳
师:请同学们看大屏幕,请仔细观察每组的两个算式,看看它们有什么关系?请大家先和同桌说一说。
生汇报
生1:第一组算式中,左右两边的因数相同,只是两个因数交换了位置,运用了交换律;
生2:第二组算式中因数相同,左右两边都是3个数相乘。左边是先算前两个数的积,右边是先算后两个数的积,运用了乘法的结合律;
师:你的思考很有条理!
生3:第三组算式中,左边是先用两个加数的和乘,右边是两个加数分别与相乘,然后相加。
师:同学们观察地很仔细,表述很清楚。
师:不计算,你能知道这三组算式中内应填什么符号?
生:等于号
生:大于号
生:小于号
师:看来大家的意见不统一啊!现在请第1、3、5、7小组的同学计算左边的算式,请2、4、6、8小组的同学完成右边的算式,大家都动手验证一下你们的猜测吧!
师:通过刚才的验证,你有什么想说的?
生1:我们发现运用交换律可以很快得出结果。
生2:我们发现整数乘法的结合律在分数乘法中也可以用。
生3:我们发现整数乘法的分配律在分数乘法中可用。
生4:我们刚才的猜测是对的,这些运算定律在分数乘法中都是可以用的。
师:经过我们这么多小组的验证,我们得出了左边算式的结果等于右边算式的结果,那也就是说――整数乘法的整数乘法的交换律、结合律、分配律对于分数乘法也适用。
小结:(板书)
整数乘法的交换律、结合律、分配律对于分数乘法也适用
3、实践运用
(1)出示例6
5 =(+)× 4 =
师:请同学们仔细观察,这两个算式有什么特点?能运用乘法的运算定律吗?能运用哪些运算定律?
生1:3个数连乘,其中与5可以放在一起,先约分,可用交换律。
生2:有乘法还有加法,且可与4放在一起,先约分,可用分配律
师:你的表达能力真强!
(2)生独立计算
师:请同学们运用这些运算定律,用简便方法计算。
生独立做
请生板演
生汇报想法、思路,订正
师:运用这些运算定律,我们的计算更加地简便了,这就是我们这节课所学习的内容(板课题:整数乘法的运算定律推广到分数乘法)
生齐读课题
三、巩固拓展
1、基础练
师:请大家将课本打开,到第14页的“做一做”
先请生读题,抓住关键词、简便方法,确定方法,生再独立完成,请3生板演,师巡视。
四、小结
师:通过这节课的学习,你收获了什么?
整数乘法的交换律、结合律、分配律对于分数乘法也适用。
附:板书
整数乘法分运算定律推广到分数乘法
交换律a×b=b×a
整数乘法的结合律a×b×c=a×(b×c)对于分数乘法也适用。
分配律(a+b)×c=a×c+b×c
四年级下册数学运算教案8
教学目标
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、使学生经历探索加法交换律和加法结合律的过程,进行比较和分析,发现并概括出运算律。
3、使学生在教学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
学情分析
本节课的知识在以前的数学计算中有相应的认知基础,但并没有由感性认识上升到一定的理性认识。本节课充分让学生利用主题图情境,逐步生成后续的问题,通过解决问题,举出例子,总结归纳的方法,理解和掌握加法运算定律,并学会用字母来表示加法运算定律。知识由感性上升到理性,遵循了学生的认知规律。原来学生只知道可以这样做,现在又知道了它们的依据,这种“再认识”加深了新知识的巩固和记忆。
教学重难点
重点:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
难点:使学生经历探索加法交换律和加法结合律的'过程,进行比较和分析,发现并概括出运算律。
教学准备
多媒体课件
教学过程
一、创设情境,提出问题。
1.谈话导入,揭示课题。
师:孩子们,你们骑过自行车吗?骑过多远呢?骑自行车有什么好处呢?(学生回答)
师:骑自行车既有益健康,又环保,有位李叔叔也爱骑自行车,到处去旅行,请看屏幕。
2.创设情境,提出问题。
(1)课件出示情境图,学生观察获得哪些信息。
(2)根据你了解到的信息你能提出什么问题?(学生提问)
(3)学生提出问题:李叔叔今天一共骑了多少千米?
二、合作探究,解决问题。
(一)探究加法交换律
1.列式计算
师:要解决这个问题我们应该怎么算?学生思考后回答。
(教师引导学生用两种方法解决这一问题,56+40=96 40+56=96)
观察上面两个算式你发现了什么?
生答:两个加数交换了位置,和不变。
你能举出几个这样的例子吗?
学生举例。
你发现了什么?
学生回答,教师板书:
两个数相加,交换加数位置,和不变,这叫做加法的交换律。(板书课题)
出示课件,学生齐读。
2.教学用字母表示加法交换律,师:如果我们用a、b表示任意两个加数,怎样表示加法交换律呢?
学生回答,教师板书: a+b=b+a。
3.思考,下面这个等式应用了加法交换律吗?
3+4+5=4+3+5
4.巩固练习,用加法交换律填上适当的数。
65+145= + 109+31= +
44+98= + 346+273= +
学生回答。
5.应用加法交换律在( )中填上适当的数
29+17=( )+29 128+( )=15+( )
( )+( )=323+186 54+a=(a)+( )
指名回答。
6.课堂练习,填一填(课件出示)
(1)两个加数交换( ),和不变,这叫做加法( )。
(2)我们可以用( )的方法验算加法。
(3)加法交换律字母表达式:a+b= +
(4)59+62=62+
(5)78+a=a+
(二)教学例2
1.课件出示情境图
(1).学生观察,说说了解到的信息。
(2).根据获取的信息提出问题:你知道李叔叔三天一共骑了多少千米吗?请自己先算一算。
(3).学生思考,指名列式。
88+104+96 88+(104+96)
=192+96 =88+200
=288(千米) =288(千米)
哪种算法简单,为什么?
我们可以用等号把这两个算式连接起来吗?(生答:可以)
88+104+96=88+(104+96)
2、课件出示下面算式,先计算,再说说他们的关系。
(1)(69+172)+28○69+(172+28)
(2)155+(145+207)○(155+145)+207
师问:同学们,你们发现了什么?
三个数相加,先把前两个数相加,或者想把后两个数相加,和不变。
学生回答后,教师总结加法结合律。
三个数相加,先把前两个数相加,或者先把后两个数相加,这叫做加法结合律。(板书)
3、教学用符号表示加法结合律。
师:加法结合律用字母表示为:(a+b)+c=a+(b+c),a、b、c分别表示任意三个加数。
三、巩固练习,检测反馈。
1.填一填:
(1)三个数相加,先把( ),或者先把( ),和不变,这叫做加法( )。
(2)加法结合律用字母表示:
(a+b)+c= 。
2.应用学过的定律在下面( )中填上适当的数。
(1)138+(62+365)=( + )+365
(2)( +358)+ ( )= 198+( +42)
四.课堂总结。
1.本节课你学会了什么?(学生回答)
2.师小结:同学们今天的表现非常出色,用自己善于发现的眼睛和聪明的头脑找到了加法算式中的规律,认识并理解了加法交换律和加法结合律,并能初步应用。
板书设计
加法运算定律
加法交换律 两个数相加,交换加数位置,和不变,这叫做加法的交换律。
字母表示: a+b =b+a
加法结合律 三个数相加,先把前两个数相加,或者先把后两个数相加,这叫做加法结合律。
字母表示: (a+b)+c=a+(b+c)
四年级下册数学运算教案9
一、学习内容p13/例6(0的运算)
二、学习目标
1.知道关于0的运算应该注意的问题。
2.培养学生整理知识的能力
三、重点难点:0不能做除数及原因。
四、预习学案
1.出示:快速口算
100+0= 0+568= 0×78= 154-0=
0÷23= 128-128= 0÷76= 235+0=
99-0= 49-49= 0+319= 0×29=
2.将上面的口算分类。根据分类的结果说一说关于0的运算都有哪些。
3.分类后进行概括总结关于0的运算。
4.一个数与0相加;一个数减0;一个数与0相乘的结果分别是多少?
5. 0除以一个数的结果是多少?在这里为什么不说一个数除以0?
6.想一想:0为什么不能做除数?
五、导学案
1.分小组展示关于0的运算。
2.各小组推荐一名同学进行辩论“0能不能做除数”
3.归纳所有0的运算。
4.用字母表示0的运算
a+0=a a—0=a a×0=0 0÷a=0(a不等于0)
六、课堂小结:0不能做除数。如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
0除以一个非0的数,还得0。
七、课堂检测
1.我能算对。
(1)36+0=(2)0+68=(3)0×68=(4)54-0=
(5)0÷28=(6)128-0=(7)0÷36=(8)25+0=
(9)99-0=(10)49-49=(11)0+39=(12)0×9=
2.我会填。
45×0=45 132×0=0 360×0=360 0×465=465
( )÷ 45=0 ( )+56=56 0÷( )=0 89×( )= 0
3.“0”的自述
大家好!我是“0”,任何一个数和我想加都得;任何数与我相乘都得();任何数减去我都得();()等于()时差会是我。我可以做加数,也可以做(),还可以做()和(),就是不能做()。
八、作业:见作业库
九、板书设计
关于“0”的`运算
0+78=78 95+0=95一个数和“0”相加,还得原数。
728—0=728一个数减去“0”,还得原数。
89—89=0被减数等于减数,差是“0”。
16×0=0一个数和“0”相乘,仍得“0”。
0÷18=0 “0”除以一个非零的数,还得“0”。
反思:关于“0”的运算,学生在前几册数学学习中已经积累了关于“0”和一个数相加还得原数,被减数和减数相等时,得“0”。“0”和任何数相乘都得“0”这几方面的知识。只是对“0”在除法中的运算比较陌生,因此我重点对“0”不能做除数进行了引导,使学生明白“0”为什么不能做除数的道理,从而完成了学习任务。
四年级下册数学运算教案10
【教学内容】
教材第17页例1。
【教学目标】
知识与技能:使学生理解并掌握加法交换律,并能够用字母来表示加法交换律。
过程与方法:能运用加法交换律解答实际问题,培养学生的说理、推理能力。
情感态度与价值观:引导学生发现知识的内在规律性,激发学生的学习兴趣。
【重点难点】
理解和掌握加法交换律。
【教法与学法】
教法:创设情境,质疑引导。
学法:师生互动,生生互动,自主探索,分组交流讨论。
【教学准备】
多媒体课件学案
课型:新授课。课时:1课时
【情境导入】
1.游戏引入:换位子。
①师举左手,左右换位子;
②师举右手,前后换位子。
根据老师手势的变化交换位子。
2.在交换位子的过程中,什么发生了变化?什么没变?
发现:位置发生了变化,班级总人数没变。
3.明确本节课的学习内容。板书课题:加法运算定律(1)--加法交换律
【新课讲授】
1.教学例1
李叔叔今天一共骑了多少千米?(出示幻灯片)
①阳春三月,春暖花开,正是外出旅行的好时节,(利用出行渗透环保教育和健身思想)李叔叔准备骑车开始一个星期的旅行。李叔叔今天上午骑了40千米,下午骑了56千米。(出示课件)根据所给的条件,你能提出什么数学问题吗?
②提问:今天一共骑了多少千米?应该怎样列式解答?请同学们在自己的练习本上解答一下吧?(生在本子上解答)
谁起来说一下你是怎么解答的?(40+56)
还有其他方法吗?(56+40)
③教师:那这两个算式分别表示什么意义?(第一个是上午和下午的路程和是多少?第二个是下午和上午的路程和是多少?得数是一样的。)
我们可以把这两个算式用什么符号连接起来呢?(等号)观察每组算式等号两边有什么相同点和不同点?(数没变,符号没有变,只是加数位置发生了变化。)
2.归纳定律。
①教师:是不是任意两个数相加,交换位置和都不变呢?这只是我们的猜想,还需要我们来验证,先请同桌之间相互举例。哪些同学能写出像上面一样的算式来呢?
(例如:8+6=6+8等等)。这个式子也是等式吗?数不变位置发生变化不影响计算结果。
②质疑:观察这几个算式,把你观察到的可以用文字来描述一下吗?(两个数相加交换位置和不变。)
③小结:两个数相加,交换加数的位置,和不变,这叫做加法交换律。
3.谈论交流。
①请你与同桌交流一下,用自己喜欢方式表示加法交换律。鼓励学生用不同的方式表示。
如:(○+△=△+○ ☆+★=★+☆ ■+▼=▼+■甲数+乙数=乙数+甲数a+b=b+a)
②通常我们数学上可以用字母表示数。今天我们就选字母a和b来表示两个加数。a表示第一个加数,b表示第二个加数。用字母就可以表示成:a+b=b+a
学了这么多的知识,每个同学都信心十足。敢不敢接受挑战?
【巩固练习】
1.应用加法交换律在下面□中填上适当的数。
29+17=□+29 128+□=15+□
□+□=323+186 54+x=□+□
2.填空。(1)一个数+0=()+()
(2)两个加数()位置,()不变,这叫做加法()。
3.下面各等式哪些符合加法交换律?符合的'画“√”。
(1)276+124=180+220()
(2)a+20=400+a()
(3)550+240=240+550()
(4)a+c=c+a()
4.计算下面各题,并用加法交换律验算。
38+456=验算:
307+348=验算:
【课堂小结】
(1)这节课上,同学们个个表现都很棒,积极思考,踊跃回答问题,学习热情不断高涨,数学家们总结的规律,我们也能发现,同学们真棒。想一想我们探索加法交换律的过程,你有什么收获呢?
(2)看来这节课同学们对加法计算的规律了解了不少,在加法的计算过程中还有很多的规律,比如说25+32+75怎样计算更简便呢?让我们带着这些问题的思考来迎接下一节课吧!
【课后作业】
1.教材第19页练习五第2题。
2.完成练习册中本课时的练习。
加法运算定律(1)--加法交换律
40+56=96 56+40=96
40+56=56+40
两个数相加,交换加数的位置,和不变。这叫做加法交换律。
用字母表示:a+b=b+a
四年级下册数学运算教案11
一、说教材
(一)教学内容的地位、作用及意义:
《小数加减法的混合运算》是人教版小学数学四年级下册第六单元的教学内容,是在学生学习了整数四则运算、小数的意义、性质以及简单的小数加、减法的基础上进行学习的。本节课内容是在生产和生活中有着广泛的应用,掌握这部分知识对今后学习和解决实际问题具有重要的意义。
(二)教学目标:
1、掌握小数的加减混合运算的运算顺序,正确计算小数加减法法混合运算。
2、能运用小数加减法解决简单的实际问题,提高解决问题的能力。
3、培养学生具体问题具体分析的习惯。
教学重点:小数的加减混合运算的运算顺序
教学难点:选择正确合理的计算方法
教学资源:多媒体课件
二、说学法:
根据四年级学生的年龄和心理特点,及学生已有的知识结构特征,学生在三年级下期已学过简单的小数加减法,已掌握了一位小数的加减法,多数的同学对于两位及以上的小数加减法也能正确计算,而且四年级的学生已具备了一定的生活经验,因此,本节课采用尝试探索的教学方法。在教学中可以运用迁移规律,抓住新旧知识的连接点,认旧引新。小数加减法混合运算的运算顺序完全可以从整数加减法混合运算的运算顺序中进行迁移,进而掌握小数加减法的运算顺序,这样知识再次迁移,最后转化为技能技巧,从感性认识上升到理性认识。发现法,在教学过程中,让学生充分展开思维,发现方法,发现联系,体现学生的主体作用,最大限度地发挥了学生学习的积极性,创造性。练习法,使教师及时获得反馈信息,有效的调控教学过程。本课时的练习,是在例题教学后安排的,有针对小数混合运算的运算顺序进行的题组练习,通过分组比赛再讲评订正 ,及联系实际生活的应用题,使学生进一步掌握小数混合运算的运算顺序,提高其计算和灵活运用的能力。
三、说教学过程设计:
一、温故互查
1、口算(出示口算题纸卡)
0.4+8.7= 7.1-3.5= 9.7-7=
1.4-0.9= 0.28+0.54= 1-0.6=
4.5+3.6= 5-2.7= 5+6.5=
2、说说下面各题的`运算顺序。
48-35+76 41+58-90 695-(1000-745)
说说整数的加减混合运算的顺序。
3、同学们,你们喜欢吗?你们喜欢看什么体育比赛项目?你们喜欢看自行车比赛吗?今天,老师就会同学们一起去看自行车越野比赛。
设计了口算、说说下列混合运算的运算顺序和简便计算的题目及创设情境导入新课,这样安排的目的是让学生通过复习,归类总结,对已学过的知识进行梳理,激活思维,为学习新知识做好铺垫。
二、设问导读
1、观看自行车越野赛之前,我们先来了解一下自行车越野赛到底是一个怎样的体育比赛项目。(意义市场已“低碳环保,绿色出行”,强身健体等。设有起点站和终点站,共有几站;每个赛段的比赛日期和路程;整个比赛的路程。)
2、出示自行车越野赛资料一览表
师:你能看懂这张表吗?把你了解到的信息和你的同桌交流一下。(学生交流)
师:谁愿意把你知道的信息和大家交流一下。(学生汇报)
师:评价学生反馈的信息。今天是几号呀?(27日)今天正好是第二段比赛。现在第二赛段比赛也结束了,我们先一起来看看这两天的比赛情况。第一个赛段,自行车运动员骑了多少千米?第二个赛段自行车运动员又骑了多少千米呢?看到这里,你能提出哪些数学问题呢?(学生提问题口头回答)
当学生在处在急于求实的状态时,及时揭示课题,展示学习目标,让学生明确本节课的学习任务,后面的教学活动就紧紧围绕着目标展开。
师:当第二个赛程结束后,运动员最想了解什么呢?
(引导学生回答:第二个赛段结束后,运动员还要骑多少千米?)
师:你这个问题提的非常好,这正是观众们所关心的问题,也是我们这节课同学们要重点解决的问题。
3、出示问题:第二个赛段结束后,运动员还要骑多少千米?
(1)、全班学生齐读题目——独立解决——互相交流
(2)、找3名学生板演,并说说你是怎样想的
483.4-(39.5+98.8) 165+80.7+99.4 483.4-39.5-98.8
=483.4-138.3 =245.7+99.4 =443.9-98.8
=345.1(千米) =345.1(千米) =345.1(千米)
以学生自主探索为主,让学生在探索过程中发现规律,培养学生的归纳概括能力。
(3)、三名同学分别用了不同的方法解决了同一个问题,同学们你们观察一下这三个算式,有什么发现?把你的发现和同桌说一说。(学生讨论)
(4)、哪个同学来说一说你的哪些发现?(小组汇报)
小结:有括号的要先算括号里面的,再算括号外面的,在没有括号的算式里,如果只有加减,应按从左到右的顺序计算对吗?从而我们可以看出小数加减法的运算顺序和整数加减法的运算顺序是一样的。这就是我们这节课要学习的运算。(板书课题)小数的加减混合运算
(5)、师总结运算顺序,生也说一遍。
让学生通过合作、交流、反馈及教师点拨等手段,类推小数加减混合运算的计算方法。
三、自我检测
计算下面各题
8.3+6.75+3.08 4.75+0.53+2.48
5-2.89+3.76 7.6-(2.75+1.87)
四、巩固练习
1.下面计算对吗?把不对的改正过来。
7.5-2.4-1.3
=7.5-1.1
=6.4( )
52.9-(7.8+6.4)
=45.1+6.4
=51.5( )
5.18-(2.36+1.24)
=5.18-3.6
=1.58( )
2.解决问题
五、拓展练习
一只蜗牛要爬到一棵高11.5米的树上。它白天能爬3.5米,但是每到晚上又滑下1.5米,这只蜗牛第几天才能爬到树顶?
六、课堂总结
今天我们学习了什么新知识?你有什么收获?
(学习小数的加减混合运算,小数的加减混合运算同整数的加减混合运算的顺序相同。)
通过分组比赛和“变式练习、开放练习”考察学生对学习目标的达成情况。 这样设计练习题,主要体现了练习的针对性、层次性和由易到难的原则。既达到了教学目标,又发散了学生思维。
七、课堂检测
9-4.37-1.63 9-(4.37+1.63)
6.48-(4.48+0.9) 6.48-4.48-0.9
八、 板书设计
小数的加减混合运算
483.4-(39.5+98.8) 165+80.7+99.4 483.4-39.5-98.8
=483.4-138.3 =245.7+99.4 =443.9-98.8
=345.1(千米) =345.1(千米) =345.1(千米)
小数的加减混合运算同整数的加减混合运算的顺序相同
设计了以上板书内容,目的是突出本节课的重点,突破难点,使学生对学习内容一目了然。
四年级下册数学运算教案12
教学目标
1、知识与技能:①结合具体的情境,引导学生认识和理解加法交换律和结合律的含义。
2、过程与方法:能用字母式子表示加法交换律和结合律,初步学会应用加法交换律和结合律进行一些简便运算。
3、情感态度与价值观:
①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。
②培养学生观察,比较,抽象,概括的初步思维能力。
教学重点:认识和理解加法交换律和结合律的含义。
教学难点:引导学生抽象概括加法交换律和加法结合律。
教学过程:
一、创设情境,导入新课
李叔叔今天一共骑了多少千米?
问题:
1、你能列式计算吗?40+56=96或56+40=96
2、为什么用加法计算?
二、在情境中初步感知加法交换律
(一)尝试解决问题
问题:
1、 40+56和56+40这两种列式都对吗?
2、这两个算式相等吗?
(二)枚举中验证规律
问题:你还能举出像这样的等式吗?
(学生举例,老师写在黑板上,大约四组。)
(三)在比较中概括规律
问题:
1、像这样的'算式你写的完么?
2、这些算式有什么共同的特点?
两个数相加,交换加数的位置,和不变。这叫做加法交换律。
3、你能用自己喜欢的方式表示加法交换律吗?(展示大家的表示方法,让学生自己进行比较。)
三、在情境中初步感知加法结合律
(一)尝试解决问
问题:你能解决李叔叔提出的问题吗?
方法一:
88+104+96=192+96=288
方法二:
88+(104+96)=88+200=288
(二)迁移学习经验,概括规律
问题:
1、你还能举出像这样的等式吗?(学生举例,老师写在黑板上,大约四组。)
2、整体观察,为什么这些算式都相等?(都是相同的三个数求和。)
3、这些算式有什么共同的特点?(三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这叫做加法结合律。)
4、你能用自己喜欢的方式表示加法结合律吗?(展示大家的表示方法,让学生自己进行比较。)
四、巩固练习,提升认识
1、应用加法交换律,用线连一连。
2、根据加法交换律填空。
3、根据加法结合律填空。
4、先计算,再填表。
五、布置作业
作业:第19页练习五,第2题。
四年级下册数学运算教案13
备教材内容
1.本节课学习的是教材79页的内容。
2.本节课教材分两个层次进行编排:第一个层次:呈现几组有特点的算式,让学生通过观察、计算发现每组算式的特点,进而引发学生的数学思考,并通过举例验证探索得到的规律,从而明确:整数加法运算定律对于小数加法同样适用;第二个层次:整数加法运算定律在小数加法中的运用,例4直接呈现了1个有特点的小数连续相加的算式,并呈现了不同的计算方法,通过两种计算方法的比较,使学生体会到小数计算中应用加法运算定律可使计算简便,从而使学生学会根据数据特点自觉应用运算定律进行简算。
3.小数的简便算法是在学生学习了整数的运算定律和小数加减混合运算的基础上学习的。对于提高学生的计算能力、加强学生计算的正确性、熟练性、灵活性有着重要的作用,同时本节课也拓展了加法运算定律的使用范围。
备已学知识
知识要点
加法交换律
a+b=b+a
加法结合律
(a+b)+c=a+(b+c)
小数加减混合运算的运算顺序
没有括号的.,按从左到右的顺序依次计算;有括号的,要先算括号里面的。
备教学目标
知识与技能
1.理解整数的运算定律在小数运算中同样适用。
2.能根据数据的特点正确运用运算定律进行简便计算。
过程与方法
1.经历观察、猜测、验证等数学活动,发展学生迁移类推的能力。
2.体会解决问题策略的多样性,增强优化意识。
情感、态度与价值观
1.让学生感受解题策略的多样性和灵活性。
2.根据具体情况采用灵活的方法解决问题。
备重点难点
重点:理解整数的运算定律在小数运算中同样适用。
难点:能运用整数加法的运算定律和减法的运算性质灵活地进行简便运算。
备知识讲解
知识点一 整数加法运算定律推广到小数
知识回顾 整数加法运算定律即加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)。
问题导入 下面每组算式两边的结果相等吗?你有什么发现?(教材79页)
3.2+0.5○0.5+3.2
(4.7+2.6)+7.4○4.7+(2.6+7.4)
过程讲解
1.观察算式,发现特点
2.计算比较,发现规律
3.2+0.5
0.5+3.2
(4.7+2.6)+7.4
4.7+(2.6+7.4)
发现:(1)在小数加法中,交换加数的位置,和不变。符合加法交换律。(2)三个小数相加,先把前两个小数相加或者先把后两个小数相加,和不变。符合加法结合律。
3.举例验证,明确规律
7.3+9.2=9.2+7.3
(4.9+5.25)+1.75=4.9+(5.25+1.75)
得出结论:在小数加法中,加法交换律和加法结合律依然成立。
归纳总结
整数加法的交换律、结合律对小数加法同样适用。
知识点二 加法运算定律在小数运算中的应用
问题导入 计算0.6+7.91+3.4+0.09。(教材79页例4)
方法讲解
1.方法一
(1)算法分析。
按照四则混合运算的运算顺序进行计算。因为是同级运算,所以按照从左到右的顺序进行计算。
(2)计算过程。
0.6+7.91+3.4+0.09
=8.51+3.4+0.09
=11.91+0.09
=12
2.方法二
(1)算法分析。
运用加法交换律和加法结合律计算。观察4个加数,发现0.6和3.4、7.91和0.09结合到一起分别能凑成整数,因此交换7.91和3.4的位置,再应用加法结合律计算比较简便。
(2)计算过程。
0.6+7.91+3.4+0.09
=(0.6+3.4)+(7.91+0.09)
=4+8
=12
归纳总结
整数运算定律在小数运算中同样适用。因此,在小数四则混合运算的过程中,要仔细观察每个数的特点,注意数与数之间的关系及每个数前面的运算符号,恰当地运用加法交换律和加法结合律进行简便运算。
拓展提高
在小数连减运算中,减法的运算性质依然成立。如:8.96-3.37-2.63=8.96-(3.37+2.63)。
知识巧记
小数运算莫着急,数的特点看仔细。
要想计算变简便,各个数据要看全。
合理使用运算律,计算简单又快捷。
备易错易混
误区一 计算5.84+4.16-5.84+4.16。
5.84+4.16-5.84+4.16
=(5.84+4.16)-(5.84+4.16)
=10-10
=0
错解分析 此题错在审题不认真,只看每个数的特点,却忽略了数与数之间的关系及每个数前面的运算符号。
错解改正 5.84+4.16-5.84+4.16
=(5.84-5.84)+(4.16+4.16)
=0+8.32
=8.32
温馨提示
小数加减混合运算中,要想交换数的位置,一定要连同数前面的运算符号一同交换。
误区二 计算15.46-5.7+4.3。
15.46-5.7+4.3
=15.46-(5.7+4.3)
=15.46-10
=5.46
错解分析 此题错在没有依据运算定律或运算性质而盲目简算。如果此题是连减运算,那么可以根据减法的运算性质把两个减数相加,而此题是加减混合运算,所以不能盲目简算。
错解改正
15.46-5.7+4.3
=9.76+4.3
=14.06
温馨提示
只有运用运算定律或运算性质才能改变运算顺序,否则只能按四则运算的顺序依次计算。
四年级下册数学运算教案14
教学内容
人教版小学数学四年级下册P17—18。
学习目标
1.理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2.经历探索加法交换律和加法结合律的过程,培养学生的概括推理能力。
3.获得成功的体验,增强对数学的兴趣和信心,形成独立思考和探究问题的意识习惯。
学习重点:
理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
学习难点:
经历探索加法交换律和加法结合律的过程,发现并概括出运算律。
学习准备
课件、学习单
学习过程
一、创设情境,提出问题。
1.师:暑假是外出旅游的大好时节,好多人都旅游去了,当然李叔叔也不例外,看他是怎么去的?课件出示:
生:骑自行车。
师:你们看的真准,再仔细看看,你从图中还了解到了哪些信息?
生1:李叔叔准备骑车旅行一周。
生2:李叔叔上午骑了40km,下午骑了56km。
2.师:根据了解到的信息你能提出什么问题?
生1:李叔叔今天一共骑了多少千米?
生2:李叔叔今天上午比下午少骑多少千米?
二.合作探究,解决问题。
(一)探究加法交换律
1.列式计算
师:今天我们选取“李叔叔今天一共骑了多少千米”来做我们的学习材料,要解决这个问题我们应该怎么列式?
生1:40+56(板书)
师:还可以怎样列式?
生2:56+40(板书)
师:它们之间可用什么符号连接?
生:等号。(师板书等号)
师:为什么可以用等号连接?
生1:因为它们的和都是96千米。
生2:因为它们都是求的李叔叔一天行的总路程。
2.课件出示:
123+377 Ο 377+123
1124+76 Ο 76+1124
师:这两道题,它们的算式之间的能用等号相连吗?请你算一算!
生:能
师:为什么?
生:因为它们的和都相等。
师板书:
3.师:观察这三个等式,你发现了什么吗?
生:两个数相加,交换加数的位置,和不变。
师:从刚才的发现中,你们会猜想到什么呢?
生:是否所有的加法算式两个加数交换位置和不变呢?
(板书:两个数相加,交换加数的位置,和不变?)
4.师:口说无凭,你打算怎样验证咱们的猜想?
生:我们可以再举几个例子来验证一下。
师:那请大家拿出本子来,举几个这样例子来验证看看!
(生独立举例验证)
5.师:谁来上台说说你是怎么举例验证的?
生:(百以内的加法、多位数的加法、小数加法……)
师:通过刚才这两位同学的举例,都能证明我们的发现是正确的。谁有没有发现交换加数位置和不相等的情况吗?
生:没有。
师:也就是说,我们举不出反例,那证明我们该刚才的发现是正确。
师:谁能够再一次总结一下我们刚才发现的这个规律?
生:两个数相加,交换加数的位置,和不变。
师:旁边的问号是不是可以擦掉了?!
师:这个规律,数学家们给它起了一个名字,叫做“加法交换律”
(板书加法交换律)
6.师:刚才同学们举了那么多的例子,这样的例子能举完吗?
生:举不完。
师:是啊,像这样的等式我们能写出很多很多来。
(师边说便在等式的下面板书“……”)
师:既然像这样的等式写不完,你能否开动你的脑筋,想办法用一个算式表示出所有的等式吗?试一试,把你的想法在本子上写出来。
(学生尝试)
7.师:谁来说一说你是用一个怎样的算式表示加法交换律的?
生1:甲数+乙数=乙数+甲数。
生2:△+□=□+△
生3:a+b=b+a
师:这三位同学的方法能表示出所有的情况吗?
生:能。
师:这三种方法,你更欣赏哪一种?
生:第三种。
师:说说你的理由。
生:因为第三种更方便、更简洁。
师:其实咱们的数学家想到的式子,跟生3的想法不谋而合,也是a+b=b+a。
(师板书a+b=b+a)
师:你觉得a和b可以表示哪些数?
8.师:同学们现在回想一下,我们是怎样探索出“加法交换律”的,同桌互相交流一下。
生1:我们是先观察发现,再举例验证,最后是总结规律。
师:很简单明了,还有谁来说一说?
生2:我们第一步是观察发现,我观察这三个等式,发现了任意两个数相加,它们的和不变,第二步是举例验证,我们举了好多例子,证明我们是正确的,最后一步是总结规律,总结的规律是“两个数相加,交换加数的位置,和不变”。
师:说的好不好?把掌声送给他!
(板书:观察发现→举例验证→总结规律。)
9.师:我们刚才是通过观察发现,然后是举例验证,再总结规律,这是一种非常好的学习方法。刚才大家经历了一次像数学家一样做数学的过程,那你能不能用这种学习方法去探索其他的运算定律呢?
生:能。
(二)探究加法结合律
1.师:现在请大家自学<学习单一》,自学之前老师给大家提供了一个学习锦囊,谁愿意大声读一遍?
生:
一.观察发现。
仔细算出每一组题的结果,你发现了什么?
二.举例验证。
你能再举出几组这样的例子吗?
三.总结规律。
你能用符号表示这个运算定律吗?
2.师:下面就请大家按照自学锦囊上的提示自学,开始。
(生独立完成)
师:完成的同学同桌交流一下。
3.师:都完成好了吗?谁愿意到前面分享一下你的自学收获?
生:我发现第一组算式都等于288,第二组算式都等于273,第三组算式都等于507,它们都可以用等号来连接。
师:每一组题的两道算式的计算方法有什么不一样吗?
生1:前一道算式都是先算前两个数的和,再和第三个数相加,后一道都是先算后两个数的和,再和第一个数相加。
师:刚才这位同学分享了这么多自学的收获,那你还发现了什么?还其他的'发现吗?
生:我还发现这三组题,后面的题都改变了运算顺序。
师:运算顺序改变了,那么什么没有变?
生:和不变。
师:还有没有什么不变?
生:数字的位置没变,只是运算顺序变了。
4.师:刚才通过这三组算式发现了一个非常重要的规律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。那这个规律对不对还需要我们怎么样?
生:举例验证。
师:那谁来说一说你举的例子?好,你来!
生1:(24+76)+28=24+(76+28)(师板书)
师:谁再来分享一下你举的例子?
生2( 8+7)+3=8+(7+3)
师:谁再来举一个?
生3:(325+178)+22=325+(178+22),他们都等于525.
5.师:谢谢大家的分享。刚才,我们大家进行了举例验证,你们验证我们发现的规律对不对?
生:对!
师:有没有举出反例的?
生:没有。
师:那由此可以说明,我们该发的规律是……
生:正确的!
师:下面请同学们把我们发现的规律齐读一边,预备,起!
生::三个数相加,先把前两个数相加,或者先把后两个数相加,和不变
师:刚才发现这个重要的规律,我们把它叫做加法结合律。
(板书:加法结合律)
6.师:这是我们发的第二个运算定律,那你能用符号表示加法结合律吗?
生:(a+b)+c=a+(b+c)。
7.师:今天这节课,我们采用观察发现、猜想验证、总结规律的学习方法,发现了两种的加法运算定律,现在你还有什么不懂得、想提出来供大家研究吗?
生:加法交换律和加法结合律有什么相同点和不同点?
师:这个问题很有研究的价值,下面就请大家小组内交流研究,开始!
(生小组交流,师巡视)
师:哪一位同学到前面来分享一下你们讨论的结果?
生1:我们小组发现的它们的相同点是都是加法,和不变;不同点是加法交换律的加数是两个数,加法结合律的加数是三个数。加法交换律是数字的位置变了,加法结合律是运算顺序变了。
师:你们同意吗?还有和这一组不一样的吗?
师:好的,看来其他组的同学的发现同他们是一样的,我们班的同学观察力和思考力非常强,那下面,我们就运用我们学会的本领来练一练,解决生活中的实际问题!
三、巩固练习,拓展提高。
1.下列等式各运用了什么运算定律?
2.你能( )中填上适当的数吗?
3.今天我和妈妈一起逛超市,看到体育用品柜台有下列物品:
4.小明在上课的时候,老师出了一道这样的题目:
四.课堂总结。
1.本节课你什么收获?还有什么疑问?
2.师:同学们今天的表现非常出色,用自己善于发现的眼睛和聪明的头脑找到了加法算式中的规律,认识并理解了加法交换律和加法结合律,并能初步应用。你看,数学家能总结出来的运算定律我们也能总结出来,我相信只要我们在以后的学习中勤动脑、多动手,一定可以把数学学得更棒!
五.板书设计
四年级下册数学运算教案15
教学目标:
1、知识与技能:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程与方法:使学生经历探索加法交换律和结合律的过程,进行比较和分析,发现并概括出运算定律。
3、情感与态度:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算定律。
教学准备:课件、实物投影仪
教学过程:
一、故事导入、激发兴趣。
1、播放视频:
师:同学们,今天老师给大家带来一个有趣的小故事,请看大屏幕(播放成语故事《朝三暮四》)。
师:老人心里暗自得意,你们知道为什么吗?
生:猴子一天得到的栗子的总量并没有改变。
师:你能用算式来说明吗?
生1:3+4=4+3
生2:3+4=7 4+3=7
师:3与4在加法运算里我们叫做(加数)、7叫做(和),在加法计算中还有很多奥秘,这个故事中就存在着一个加法运算定律,你们想知道吗?今天就让我们走进《加法运算定律》,引出课题
二、合作探究,解决问题。
(一)探究加法交换律
1、出示情境、提出问题
(1)师:“五一”小长假好多人都外出旅游放松心情去了,当然李叔叔也不例外,看他是怎么去的?(出示幻灯片)
生:骑自行车。
师:你们看的真准,再仔细看看,你从图中还了解到了哪些信息?
(2)学生汇报自己了解的信息。
(3)根据你了解到的信息你能提出什么问题?(学生提问)
(4)我们来研究其中的一个问题:李叔叔今天一共骑了多少千米?
2、在情境中初步感知加法交换律。
师:要解决这个问题我们应该怎么算?请自己列式计算然后汇报。
学生列式:40+56=96(千米)或56+40=96(千米)。
师:同样的一个问题,我们列出了两道不同的算式,师:观察这你发现了什么?
生:两个加数相同,但位置不同。
师:观察两个等式右边的和,你发现了什么?
生:两个等式的和相同。
师:两个等式的和相同,那我们可以用一个什么符号将两个等式的左边连接起来?
生:40+56=56+40 (屏示等式:40+56= 56+40)
3.观察等式,发现个案特点:仔细看这个等式,你发现了什么?
4、举例验证,并简要表示规律。
师:是不是所有的加法算式都有这样的规律呢?当我们对这个发现有疑问时,怎么办?请同学们以小组为单位举例进行验证。
生:汇报交流(汇报时,教师在黑板上写出学生举出的等式:)
生:35+53=88 53+35=88所以35+53=53+35我认为“任意两数相加,交换位置,和都不变”这个猜想是对的。
生:1000+1=1001 1+1000=1001 1000+1=1+1000我认为“任意两数相加,交换位置,和都不变”这个猜想是对的。
生:我举得是关于0的例子,因为0+50和50+0和都是50所以0+50=50+0我也认为这个猜想是对的。
师:你们的验证结果也是这样的么?
生:是的。
师:像这样的例子会有多少个呢?
生:无数个。
师:这样的例子太多了,我们不能一一记录下来,可以用……
生:省略号表示。
师:其实这个规律是我们今天学习的加法运算定律(板书)中一个重要的运算定律--加法交换律(板书)请看(出示3)
师:数学的魅力在于它的简洁和有效,刚才,我们用语言把加法交换律表达了出来,其实,我们还可以用一些更为简洁的方式来表达,比如用汉字、图形、字母等写成等式,也能表示这样的规律,你能用自己喜欢的方式来表达吗?
生1:a+b=b+a
生2:☆+○=○+☆
师:同学们所写的公式都可以很好的表示加法交换律,我们比较常用的是用a和b表示两个加数,加法交换律就可以写成a+b=b+a.在这里a和b可以是哪些数呢?
生:可能是分数。
生:可能是小数。
生:可能是我们学过的所有数字。
师:看来用字母来表示不仅简单明了而且概括性还很强呢!
5.游戏巩固(对口令)。
师:83+17= 生:等于17+83
57+44 a+b 100+60 18+75 35+65 85+768
(二)探索加法结合律
1.在情境中初步感知加法结合律。
师:同学们,你们真是太了不起了,不仅帮李叔叔解决了问题,还探讨出了加法交换律并能在游戏中运用它。李叔叔听说你们这么厉害,想再请你们帮个忙,愿意吗?请看(出示6)李叔叔需要咱帮什么忙?在情境图中我们还能得到什么信息呢?根据你整理出来的信息,老师画了这个线段图来表示,第一段表示第一天骑了88千米,第二段表示第二天骑了104千米,第三段表示第三天骑了96千米。这总的`呢就表示李叔叔三天一共骑了多少千米?
有三部分,你打算先求什么?可以怎样列式解答,动手试一试。
生: 88+104+96=288(千米)
师:你这样列式是先求什么,再求什么?为了明确表示先算前两个数,咱可以给它俩添个小括号。
师:还可以先求什么?(求第二天和第三天共骑了多少千米,再加上第一天骑的路程)现在算式怎么列?
生: 88+(104+96)=288(千米),师:现在括号加在了什么位置?表示什么?(先算104加96),也就是……
两道算式都能求出李叔叔三天骑的路程是288千米,两道算是结果相同我们就可以用等号把他们连成一个等式。(出示等号)
2.比较异同点。(屏示: (88+104)+96= 88+(104+96))
师:比较等号两边的算式,什么变了?什么没变?
生:三个加数不变,位置没变,运算顺序变了,结果不变。
师:运算顺序发生了怎样的变化?
生:第一道括号在前,表示先把前两个数相加,再和第三个数相加。
第二道括号在后,表示先把后两个数相加,再和第一个数相加。
师:那现在是不是隐隐约约发现了什么规律了呢?能说说吗?
左边是先把前两个数相加,再和第三个数相加,右边是?(先把后两个数相加再和第一个数相加)它们的和都怎么样?(不变)。
3.猜测规律,举例验证。
这个发现,会不会仅仅是一种巧合呢?如果换成其他的三个数相加,左右两边的得数还会相同吗?你能不能再举些例子来验证?同桌互相验证,全班汇报。
像这样举出的例子,被同桌证实和不变的举手!有没有同学举出的例子左右两边和不相同的?这样的例子能举完吗?(省略号)
5.归纳加法结合律。
师:看来,我们的发现不是巧合,三个数相加一定有规律!
师生共同小结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。: 师:这个规律又是我们今天要认识的另一个运算律--加法结合律。(板书:加法结合律)请看(出示7)
加法结合律也可以用字母来表示,现在需要几个字母?(3个,a、b、c)
你能用字母把加法结合律表示出来吗? (板书:(a+b)+c=a+(b+c))
三、闯关游戏,巩固新知
第一关 现学现用
1.你能在横线上填出合适的数吗? 45+- =36+-
(27+38)+62=27+(-+-)
560+(140+70)=(560+-)+- 18+(32+-)=(18+-)+24
第二关 火眼金睛
2.请把得数相同的算式连起来,并说说你的依据。 (1)83+315 A、64+(73+37)
(2)(87+42)+58 B、315+83 (3) (64+73)+37 C、87+(42+58)
第三关 快速反应
3.如果你认为屏幕上两个算式得数相同,你就起立证明自己的观点,看谁反应快!准备!
130+(70+4)(130+70)+4 (84+68)+32 84+(68+23)
(480+69)+425 480+(96+425)
4、学以致用:
今天我和爸爸一起去书店,看见儿童读物书架上的标价如下:科技书:128元/套文学书:143元/套连环画:72元/套
爸爸看后很快说出了这些书的总价,我真羡慕爸爸,他是怎样算得又快又好呢?
生:列式计算,交换143与72的位置,先算128与72的和,正好是200
师:原来巧用运算律还能使一些计算更简便呢!这就是我们下一节课研究的内容!
四、课末总结、梳理提升
本节课你有什么收获?谈谈你的收获。
板书:
加法运算定律
加法交换率 加法结合率
3+4=4+3 (88+104)+96= 88+(104+96)
....... .......
a+b=b+a (a+b)+c=a+(b+c)
提出猜想-- 举例验证 --总结规律
【四年级下册数学运算教案】相关文章:
四年级下册数学运算教案06-28
人教版四年级下册数学运算教案01-21
(推荐)四年级下册数学运算教案06-29
四年级下册数学运算教案【实用】06-29
数学混合运算教案03-06
教案:数学运算02-26
四年级下册数学《乘除法的运算性质》教案08-18
数学教案混合运算02-10
数学教案:减法的运算01-24