现在位置:范文先生网>教案大全>数学教案>七年级数学上册教案

七年级数学上册教案

时间:2024-07-03 11:52:16 数学教案 我要投稿

(集合)七年级数学上册教案

  作为一位优秀的人民教师,时常会需要准备好教案,编写教案有利于我们科学、合理地支配课堂时间。那么你有了解过教案吗?以下是小编为大家收集的七年级数学上册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

(集合)七年级数学上册教案

七年级数学上册教案1

  一、目标

  1.用它们拼成各种形状不同的四边形,并计算它们的周长。

  (鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)

  2.教师揭示以上这些工作实际上是在进行整式的加减运算

  3.回顾以上过程 思考:整式的加减运算要进行哪些工作?

  生1:“去括号”

  生2:“合并同类项”

  师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,

  二、揭示如何进行整式的加减运算

  1.进行整式的'加减运算时,如果有括号先去括号,再合并同类项。

  2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.

  (本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)

  解:(2a2-4a+1)-(-3a2+2a-5)

  =2a2-4a+1+3a2-2a+5

  =5a2-6a+6

  3.拓展练习

  (1)求多项式2x -3 +7与6x -5 -2的和.

  提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)

  (2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

  (4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

  4.教学例3

  先化简下式,再求值:

  (做此类题目应先与学生一起探讨一般步骤:

  (1)去括号。

  (2)合并同类项。

  (3)代值)

  解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

  =15a2b –5ab2+4ab2 -12a2b)

  =3a2b –ab2

  三、小结

  1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

  2.进行化简求值计算时

  (1)去括号。

  (2)合并同类项。

  (3)代值

  3.通过本节课的学习你还有哪些疑问?

  四、布置作业

  习题4.5 2. (3) ;4. (2);5.。

  五、课后反思

  省略

七年级数学上册教案2

  教学目标

  1、知识与技能

  (1)在现实情境中,认识角是一种基本的几何图形,理解角的概念,学会角的表示方法、

  (2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算、

  2、过程与方法

  提高学生的识图能力,学会用运动变化的观点看问题、

  3、情感态度与价值观

  经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲、

  重、难点与关键

  1、重点:会用不同的方法表示一个角,会进行角度的换算是重点、

  2、难点:角的表示、角度的换算是难点、

  3、关键:学会观察图形是正确表示一个角的关键、

  教具准备

  多媒体设备、量角器、时钟、四棱锥、

  教学过程

  一、引入新课

  1、观察时钟、四棱锥、

  2、提出问题:

  时钟的时针与分针,棱锥相交的两条棱,都给我们什么样的平面图形的形象?请把它画出来、

  学生活动:进行独立思考、画图,然后观看教师的演示过程、

  教师活动:用多媒体演示角的形成过程:一条射线OA绕端点O旋转到OB的'位置,得到的平面图形──角、

  板书:角、

  二、新授

  1、角的概念、

  (1)提出问题:

  从上面活动过程中,你能知道角是由什么图形组成的吗?

  学生回答:两条射线、

  (2)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边、(如下图)

  2、角的表示、

  学生活动:阅读课本第137页有关内容,了解角的表示方法、

  教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法、

  请用适当的方法表示下图中的每个角、

  学生活动:请一个学生板书练习,其余学生独立练习、

  教师活动:巡视学生练习情况,给予评价,对多数同学作出肯定评价、

  学生活动:阅读课本第138页思考题,进行小组交流,获得问题结论、

  教师活动:参与学生交流,并用多媒体演示平角、周角的形成过程,启发引导学生对问题进行探索,并对学生讨论结果进行评价、

  答案:分别形成平角、周角、

  3、角的度量、

  教师活动:指导学生阅读课本P138页内容,讲解角的度量方法及度、分、秒的换算、

  板书:1周角=_____,1平角=_____,1=____,1=____、

  学生活动:思考并完成上面的填空、

  例:把一个周角7等分,每一份是多少度的角(精确到分)?

  教师讲解计算过程、

  三、巩固练习

  1、课本第139页练习、

  2、计算:(1)4839+6741

  (2)90-781940

  (3)2230 (4)176523、

  此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评、

  3、想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?

  师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流,从而得出正确的答案、

  答案:76、5、

  四、课堂小结

  师生互动,完成本节课的小结:

  1、什么是角?组成角的图形是什么?如何表示一个角?

  2、本节课还复习了平面、周角?怎样得到这两种角?

  3、角的度量单位是什么?它们是如何换算的?

  五、作业布置

  1、课本第144页习题4、3第1、2、3、4题、

  2、选用课时作业设计、

  第一课时作业设计

  一、填空题、

  1、如下左图所示,把图中用数学表示的角,改用大写字母表示分别是________、

  2、将上右图中的角用不同的方法表示出来,填入下表:

  3 4

  BCA ABC

  3、( )=_____=_____6000=______=_______、

  二、选择题、

  4、在钟表上,1点30分时,时针与分针所成的角是( )、

  A、150 B、165 C、135 D、120

  5、下列各角中,不可能是钝角的角是( )、

  A、 周角 B、 平角 C、 钝角 D、 直角

  三、解答题、

  6、计算:

  (1)5328+4732 (2)1750-327

  (3)1524 (4)31425(精确到1)、

  7、如下图,分别确定四个城市相应钟表上时针与分针所成角的度数、

  8、想一想,做一做、

  (1)用字母表示图中的每个城市、

  (2)请用字母在下图分别表示以北京为中心的每两个城市之间的夹角、

  答案:

  一、1、ADE,BDE,CED,B,AED

  2、5 BCE BAC BAD 

  3、7、5 450 100 ( )

  二、4、C 5、D

  三、6、(1)101 (2)1423 (3)77 (4)62024

  7、30,0,120,90 8、略

七年级数学上册教案3

  教学内容:

  人教版小学数学教材六年级下册第107~108页例2及相关练习。

  教学目标:

  1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。

  2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

  重点难点:

  探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。

  教学准备:

  教学课件。

  教学过程:

  一、直接导入,揭示课题

  同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)

  【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

  二、探索发现,学习新知

  (一)教师与学生比赛算题

  1.教师:你知道等于多少吗?(学生:)

  教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

  2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

  在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。

  3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?

  【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的'语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

  (二)借助正方形探究计算方法

  1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

  2.进行演示讲解。

  (1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

  想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。

  (2)继续演示,谁知道除了通分,还可以怎么算?

  根据学生回答,板书。

  (3)演示:那么计算就可以得到?()。

  3.看到这儿,你发现什么规律了吗?

  4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。

  5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?

  6.尝试练习

  【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。

  (三)知识提升,探索发现

  1.感受极限。

  (1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?

  (2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)

  (3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?

  (学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)

  2.利用线段图直观感受相加之和等于“1”。

  (1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。

  (2)学生看书思考。

  (3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。

  【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。

  3.课堂小结。

  对于这种借用图形来帮助我们解决问题的方法,你有什么感受?

  教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。

  4.举一反三。

  其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)

  【设计意图】让学生体会“数形结合”是数学学习中常用的方法。

  三、练习巩固

  1.基础练习。

  (1)学生独立计算。

  (2)全班交流反馈。

  【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。

  2.小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?

  解决问题

  (1)全班读题,学生独立思考。

  (2)指名回答。

  (3)根据学生回答情况,连线(课件演示)。

  (4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。

  【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。

  四、课堂总结

  快下课了,请你来说说这节课有什么收获?

  课后反思:

  图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近 1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。

七年级数学上册教案4

  单元教学内容

  1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系

  引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念

  2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

  (1)数轴能反映出数形之间的对应关系

  (2)数轴能反映数的性质、

  (3)数轴能解释数的某些概念,如相反数、绝对值、近似数

  (4)数轴可使有理数大小的比较形象化

  3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分

  4、正确理解绝对值的概念是难点

  根据有理数的绝对值的两种意义,可以归纳出有理数的`绝对值有如下性质:

  (1)任何有理数都有唯一的绝对值

  (2)有理数的绝对值是一个非负数,即最小的绝对值是零

  (3)两个互为相反数的绝对值相等,即│a│=│-a│

  (4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a

  (5)若│a│=│b│,则a=b,或a=-b或a=b=0

  三维目标

  1、知识与技能

  (1)了解正数、负数的实际意义,会判断一个数是正数还是负数

  (2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解

  (3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值

  (4)会利用数轴和绝对值比较有理数的大小

  2、过程与方法

  经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法

  3、情感态度与价值观

  使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言

  重、难点与关键

  1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值

  2、难点:准确理解负数、绝对值等概念

  3、关键:正确理解负数的意义和绝对值的意义

  课时划分

  1、1 正数和负数 2课时

  1、2 有理数 5课时

  1、3 有理数的加减法 4课时

  1、4 有理数的乘除法 5课时

  1、5 有理数的乘方 4课时

  第一章有理数(复习) 2课时

  1、1正数和负数

  第一课时

  三维目标

  一、知识与技能

  能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量

  二、过程与方法

  借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性

  三、情感态度与价值观

  培养学生积极思考,合作交流的意识和能力

  教学重、难点与关键

  1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

  2、难点:正确理解负数的概念。

  3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

  教具准备

  投影仪、

  教学过程

  四、课堂引入

  我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、

  在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、

  五、讲授新课

  (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号

  (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数

  (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数

  (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

  用正负数表示具有相反意义的量。

  (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。

  (6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。

  (7)、 你能再举一些用正负数表示数量的实际例子吗?

  (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量

  六、巩固练

  课本第3页,练习1、2、3、4题

七年级数学上册教案5

  教学目标:

  1.了解正数与负数是实际生活的需要.

  2.会判断一个数是正数还是负数.

  3.会用正负数表示互为相反意义的量.

  教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.

  教学难点:负数的引入.

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.

  (二)合作交流,解读探究

  举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.

  想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

  为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).

  活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.

  讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.

  总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.

  (三)应用迁移,巩固提高

  【例1】举出几对具有相反意义的量,并分别用正、负数表示.

  【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.

  【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?

  【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()

  A.3B.-3C.-2.5D.-7.45

  【点拨】读懂题意是解决本题的`关键.7:45与10:00相差135分钟.

  (四)总结反思,拓展升华

  为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.

  1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

  星期日一二三四五六

  (元)+16+5.0-1.2-2.1-0.9+10-2.6

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  (2)储蓄罐中的钱与原来相比是多了还是少了?

  (3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.

  2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.

  (1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

  (2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.

  (五)课堂跟踪反馈

  夯实基础

  1.填空题:

  (1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.

  (2)如果4年后记作+4年,那么8年前记作年.

  (3)如果运出货物7吨记作-7吨,那么+100吨表示.

  (4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.

  2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.

  (1)用正数或负数记录下午1时和下午5时的水位;

  (2)下午5时的水位比中午12时水位高多少?

  提升能力

  3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.

  (六)课时小结

  1.与以前相比,0的意义又多了哪些内容?

  2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

七年级数学上册教案6

  学习目标

  1.掌握多项式、多项式的项及其次数,常数项的概念。

  2.确定一个多项式的项、项数和次数。

  3.由单项式与多项式归纳出整式概念。

  4.在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。

  重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

  难点:多项式的次数。

  学法指导

  从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。

  《2.1.3多项式》同步四维训练含答案

  新学期,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:

  (1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的.整式表示);

  (2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的高度.

  《2.1.2多项式》课时练习含答案

  1.下列说法中正确的是( )

  A.多项式ax2+bx+c是二次多项式

  B.四次多项式是指多项式中各项均为四次单项式

  C.-ab2,-x都是单项式,也都是整式

  D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项

  2.如果一个多项式是五次多项式,那么它任何一项的次数( )

  A.都小于5 B.都等于5

  C.都不小于5 D.都不大于5

  3.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是( )

  A.a10+b19 B.a10-b19

  C.a10-b17 D.a10-b21

  4.若xn-2+x3+1是五次多项式,则n的值是( )

  A.3 B.5 C.7 D.0

  5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有.(填序号)

  6.一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.

  7.多项式的二次项系数是.

  8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的话还没有说完,甲同学抢着说:“这个多项式最多只有六项.”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式.”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?

  9.如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值.

  10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.

  (1)请把游戏最后丁所报出的答案用整式的形式描述出来;

  (2)若甲取的数为19,则丁报出的答案是多少?

七年级数学上册教案7

  教学目标:

  1、了解正数与负数是实际生活的需要。

  2、会判断一个数是正数还是负数。

  3、会用正负数表示互为相反意义的量。

  教学重点:

  会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义。

  教学难点:

  负数的引入。

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示 珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况。

  (二)合作交流,解读探究

  举出一些生活中常遇到的具有相反意义的量,如温度是零上7 ℃和零下5 ℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等。

  想一想 以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

  为了用数表示具有相反意义的量,我们把具有其中一种意义的.量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“—”(读作负)号来表示(零除外)。

  活动 每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示。

  讨论 什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数。

  总结 正数是大于0的数,负数是在正数前面加“—”号的数,0既不是正数,也不是负数,是正数与负数的分界点。

  (三)应用迁移,巩固提高

  【例1】举出几对具有相反意义的量,并分别用正、负数表示。

  【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等。

  【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02 g,记作+0.02 g,那么—00.3 g表示什么?

  【例3】 某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正。例如,9:15记为—1,10:45记为1等等。依此类推,上午7:45应记为(  )

  A.3  B.—3  C.—2.5  D.—7.45

  【点拨】读懂题意是解决本题的关键。7:45与10:00相差135分钟。

  (四)总结反思,拓展升华

  为了表示现实生活中具有相反意义的量引进了负数。正数就是我们过去学过(除零外)的数,在正数前加上“—”号就是负数,不能说“有正号的数是正数,有负号的数是负数”。另外,0既不是正数,也不是负数。

  1、下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

  星期 日 一 二 三 四 五 六

  (元) +16 +5.0 —1.2 —2.1 —0.9 +10 —2.6

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  (2)储蓄罐中的钱与原来相比是多了还是少了?

  (3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣。

  2、数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4。用“+”表示“站”,“—”(负号)表示“蹲”。

  (1)由一个同学大声喊:+1,—2,—3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:—1,—2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

  (2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏。

  (五)课堂跟踪反馈

  夯实基础

  1、填空题:

  (1)如果节约用水30吨记为+30吨,那么浪费20吨记为xxx吨。

  (2)如果4年后记作+4年,那么8年前记作xxx年。

  (3)如果运出货物7吨记作—7吨,那么+100吨表示xxx。

  (4)一年内,小亮体重增加了3 kg,记作+3 kg;小阳体重减少了2 kg,则小阳增加了xxx。

  2、中午12时,水位低于标准水位0。5米,记作—0。5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0。5米。

  (1)用正数或负数记录下午1时和下午5时的水位;

  (2)下午5时的水位比中午12时水位高多少?

  提升能力

  3、粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49。8公斤。如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数。

  (六)课时小结

  1、与以前相比,0的意义又多了哪些内容?

  2、怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

七年级数学上册教案8

  学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。

  3、电脑演示:

  如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。

  由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。

  四、做一做(实践)

  1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。

  2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。

  五、试一试(探索)

  课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。

  教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体

  1、以正四面体为例,说出它的顶点数、棱数和面数。

  2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。

  3、(延伸):若随意做一个多面体,看看是否还是那个结果。

  学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。

  六、小结,布置课后作业:

  1、用六根火柴:①最多可以拼出几个边长相等的.三角形?②最多可以拼出如图所示的三角形几个?

  2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。

  让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。

七年级数学上册教案9

  教学内容:

  小学数学六年级下册P112-113练习二十二1~7题。

  教学目标:

  1.通过练习,进一步掌握统计与概率的相关知识。

  2.能解决统计与概率相关的简单实际问题。

  3.感受数学与生活的紧密联系,提高学习数学的兴趣和学好数学的自信心。

  重点、难点:

  1.掌握统计与概率的基本知识和方法。

  2.灵活应用统计与概率的相关知识解决实际问题。

  教学准备:

  教学挂图,小黑板,自主检测题等。

  教学过程

  一、情境引入,回顾再现

  1.回顾统计与概率的相关知识。

  组织学生简单回忆,说一说:

  本单元学习了统计图,统计表;平均数,中位数,众数;以及游戏公平,可能性等概率问题。

  2.揭示课题。

  师:那么这节课我们就来对本部分知识进行练习。

  板书课题:统计与概率练习

  二、分层练习,强化提高

  (一)基本练习。

  1.

  (1)该公司去年全年的销售情况如何?

  (2)该公司的发展前景怎样?

  (3)你还能提出哪些问题?

  ①组织学生独立解答.

  ②汇报订正,说解题思路。

  教师引导学生从图中的变化趋势上来分析问题,从而得出结论:该公司去年总体经营情况很好,产量和销量不断增长,第四季度增长幅度较快,而且出现了销量大于产量的良好势头。由此可以作出预测:该公司在未来的一段时间内将有良好的发展。

  2.

  ①组织学生独立解答.

  ②汇报订正,说解题思路

  教师注意提醒学生考虑事件发生的等可能性以及几率的多少。

  (二)综合练习。

  ①组织学生独立解答第一小题。

  ②小组交流讨论,解答第二小题。

  师根据学生的.汇报,让学生明确在研究一组数据的分布情况时,用平均数、中位数或众数作为数据的代表都是可以的。但是在一般情况下,用平均数作为数据代表的时候较多,它与这组数据中的每个数据都有关系,但它易受极端数据的影响,所以为了减少这种影响,在评分时就采取去掉一个分和一个最低分,再计算平均数,这样做是合理的。

  ①组织学生独立思考。

  ②小组交流讨论,汇报结果。

  本题是有关众数的应用的练习。从进货和销售数量的差来看,尺码是35、37、39三种型号的鞋进货有些多了,下一次进货时可考虑适当降低数量;但从销量来看,37码的鞋仍然排名第一,36和38码的列第二、三名,所以每种型号的鞋的进货量的比例总体上不会有大的变化。研究一组数据的频数大小分布情况时,应用了众数的知识。

  (三)提高练习。

  ①组织学生独立思考。

  ②小组交流讨论,汇报结果。

  六(2)班同学的血型情况如图,

  (1)从图中你能得到哪些信息?

  (2)该班有50人,各种血型有多少人?

  本题是有关可能性的习题,对简单事件发生的可能性作出预测。从两队的历史战绩来看,各是两胜一平两负,不相上下;从这一点来判断,两队获胜的可能性都是二分之一。但是,仔细观察可以发现:在离比赛日最近的两场比赛中均是乙队获胜,说明最近乙队的状态好于甲队,由此可以预测:乙队获胜的可能性稍大一些。这种判断也有一定道理。

  三、自主检测,评价完善

  自主检测

  1.填空:

  (1)人们对收集的统计数据经过分析整理后可以制成( )还可以制成( )

  (2)( )统计图可以清楚地表示出各部分同总数之间的关系。

  (3)( )统计图既能表示出数量的多少,又能反映出数量变化情况

  2.选择:

  (1)评价一个班整体学习成绩情况,看( )比较合适?

  A.平均数B.中位数C.众数

  (2)为了清楚地表示出20xx年各月平均气温变化情况,应绘制( )。

  A.条形B.折线C.扇形

  3.做一做:

  有A—J 10张字母卡片,小明翻字母卡片,小红猜小明的字母卡片,如果小红猜对,小红获胜,如果小红猜错了,小明获胜。

  (1)你认为这个游戏规则对双方公平吗?对谁有利?

  (2)请设计一个双方公平的游戏规则。

  四、课堂总结

  1.教师评价:通过本节课的练习大都分同学掌握较好,值得表扬。

  2.学生谈收获:通过本节课练习你有什么新的收获?

  板书设计:

  统计与概率练习

  统计表

  统计图:条形统计图;折线统计图;扇形统计图

  统计量:平均数;中位数;众数

  可能性:等可能;公平;

  作业设计

  基础:

  1.简单的统计图有( )统计图、( )统计图和( )统计图。

  2.( )统计图是用长短不同、宽窄一致的直条表示数量,从图上很容易看出( )。

  3. 4、7.7、8.4、6.3、7.0、6.4、7.0、8.6、9.1这组数据的众数是( ),中位数是( ),平均数是( )。

  4.在一组数据中,( )只有一个,有时( )不止一个,也可能没有( )。(填众数或中位数)

七年级数学上册教案10

  一、教学目标

  知识与技能

  1.理解单项式及单项式系数、次数的概念。

  2.会准确迅速地确定一个单项式的系数和次数。

  过程与方法

  通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

  情感态度与价值观

  初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

  二、重点难点

  重点

  列单项式表示数量关系,单项式及其系数、次数的意义.

  难点

  列单项式表示数量关系.

  三、学情分析

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  四、教学过程设计

  问题设计师生活动设计意图

  [活动1]

  举世瞩目的青藏铁路于20xx年7月1日建成通车,实现了几代中国人梦寐以求的愿望。青藏铁路是世界上海拔最高、线路最长的高原铁路。青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的`行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答问题:

  列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

  提问:字母表示数有什么意义?

  学生独立思考,尝试解决

  解答:

  1002=200千米

  1003=300千米

  100t=100t千米

  我们用含字母t的式子100t表示路程。用字母表示数后,可以用含有字母的式子把数量关系简明地表达出来,更适合一般规律的表达。

  从学生已有的数学经验和现实问题情境出发,感受用字母表示数的意义。

  以青藏铁路为引例,对学生进行爱国主义教育的德育渗透。

七年级数学上册教案11

  教学目标和要求:

  1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念.

  2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.

  3.初步体会类比和逆向思维的数学思想.

  教学重点和难点:

  重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念.

  难点:多项式的次数.

  教学过程:

  一、复习引入:

  观察以上所得出的四个代数式与上节课所学单项式有何区别.

  (由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力.通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充.)

  二、讲授新课:

  1.多项式:

  由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constantterm).例如,多项式3x2?2x+5有三项,它们是3x2,-2x,5.其中5是常数项.

  一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2?2x+5是一个二次三项式.

  注意:

  (1)多项式的次数不是所有项的次数之和;

  (2)多项式的每一项都包括它前面的符号.

  (教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想.)

  2.例题:

  例1:判断:

  ①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;

  ②多项式3n4-2n2+1的次数为4,常数项为1.

  (这两个判断能使学生清楚的.理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中.另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数.)

  例2:指出下列多项式的项和次数:

  (1)3x-1+3x2;(2)4x3+2x-2y2.

  解:(1)三项,二次;(2)三项,三次.

  例3:指出下列多项式是几次几项式.

  (1)x3-x+1;(2)x3-2x2y2+3y2.

  解:(1)三次三项式;(2)四次三次式.

  例4:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件.

  解:该多项式中的项次数分别为n、1和常数,又多项式为三次,即n=3;而该多项式至少有两项3xn和1,当m?1≠0时,该多项式即为三项式,与已知不符,所以m=1.

  (让学生口答例2、例3,老师在黑板上规范书写格式.讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式(integralexpression).例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.)

  三、课堂小结:

  ①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.

  ②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统.(让学生小结,师生进行补充.)

  教学后记:

  从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点.掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性.最后列举几个例子,与学生一起完成.教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成.要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识.

七年级数学上册教案12

  教学目标

  1.知识与技能

  ①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.

  2.过程与方法

  经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.

  3.情感、态度与价值观

  通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

  教学重点难点

  重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.

  教与学互动设计

  (一)创设情境,导入新课

  讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的.数.

  (二)合作交流,解读探究

  学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

  议一议你能说说这些数的特点吗?

  学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.

  说明:我们把所有的这些数统称为有理数.

七年级数学上册教案13

  教学目标:

  1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

  2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

  教学重点:

  深化对正负数概念的理解.

  教学难点:

  正确理解和表示向指定方向变化的量.

  教与学互动设计:

  (一)知识回顾和理解

  通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

  [问题1]:“零”为什么既不是正数也不是负数呢?

  学生思考讨论,借助举例说明.

  参考例子:用正数、负数和零表示零上温度、零下温度和零度.

  思考“0”在实际问题中有什么意义?

  归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

  如:水位不升不降时的水位变化,记作:0 m.

  [问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

  (二)深化理解,解决问题

  [问题3]:(课本P3例题)

  【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

  【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

  美国减少6.4%,德国增长1.3%,

  法国减少2.4%,英国减少3.5%,

  意大利增长0.2%,中国增长7.5%.

  写出这些国家这一年商品进出口总额的'增长率.

  解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.

  巩固练习

  1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

  2.让学生再举出一些常见的具有相反意义的量.

  3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

  中国减少866,印度增长72,

  韩国减少130,新西兰增长434,

  泰国减少3247,孟加拉减少88.

  (1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

  (2)如何表示森林面积减少量,所得结果与增长量有什么关系?

  (3)哪个国家森林面积减少最多?

  (4)通过对这些数据的分析,你想到了什么?

  阅读与思考

  (课本P6)用正数和负数表示加工允许误差.

  问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?

  2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

  (三)应用迁移,巩固提高

  1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是.

  2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

  3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

  星期一二三四

  增减-5 +7 -3 +4

  根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

  类比例题,要求学生注意书写格式,体会正负数的应用.

  (四)课时小结(师生共同完成)

七年级数学上册教案14

  一、教学目标:

  (一)教学知识点

  1。与身边熟悉的事物做比较感受百万分之一等较小的数据并用科学记数法表示较小的数据。

  2。近似数和有效数字并按要求取近似数。

  3。从统计图中获取信息并用统计图形象地表示数据。

  (二)能力训练要求

  1。体会描述较小数据的方法进一步发展数感。

  2。了解近似数和有效数字的概念能按要求取近似数体会近似数的意义在生活中的作用。

  3。能读懂统计图中的信息并能收集、整理、描述和分析数据有效、形象地用统计图描述数据发展统计观念。

  (三)情感与价值观要求:1。培养学生用数学的意识和信心体会数学的应用价值。2。发展学生的创新能力和克服困难的勇气。

  二、教学重点:1。感受较小的数据。

  2。用科学记数法表示较小的数。

  3。近似数和有效数字并能按要求取近似数。

  4。读懂统计图并能形象、有效地用统计图描述数据。

  教学难点:形象、有效地用统计图描述数据。

  教学过程:。创设情景引入新课

  三。讲授新课:请你用熟悉的事物描述一些较小的数据:大象是世界上最大的陆栖动物它的体重可达几吨。世界第一高峰——珠穆朗玛峰它的海拔高度约为8848米。

  1。哪些数据用科学记数法表示比较方便?举例说明。

  2。用科学记数法表示下列各数:

  (1)水由氢原子和氧原子组成其中氢原子的直径约为0。0000000001米。

  (2)生物学家发现一种病毒的长度约为0。000043毫米;

  (3)某种鲸的体重可达136000000千克;

  (4)20xx年5月19日国家邮政局特别发行“万众一心抗击‘非典’”邮票收入全部捐给卫生部门用以支持抗击“非典”斗争其邮票的发行量为12500000枚。

  四。课时小结:我们这节课回顾了以下知识:

  1。又一次经历感受了百万分之一进一步体会描述较小数据的方法:与身边事物比较进一步学习了利用科学记数法表示较小的`数据。

  2。在实际情景中进一步体会到了近似数的意义和作用并按要求取近似数和有效数字。

  3。又一次欣赏了形象的统计图并从中获取有用的信息。

  (1)根据上表中的数据制作统计图表示这些主要河流的河长情况你的统计图要尽可能的形象。

  (2)从上表中的数据可以看出河流的河长与流域面积有什么样的联系?

  (3)在中国地形图上找出主要河流你认为河流年径流量与河流所处的地理位置有关系吗?

  制作形象的统计图首先要处理好数据即从表格中计算出这几条河流长度的比例然后选择最大或最小作为基准量按比例形象画出即可。

  (1)形象统计图(略)只要合理即可。

  (2)从表中的数据看出河流越长其流域面积越大。

  (3)河流的年径流量与河流所处的位置有关系。

  五。课后作业:

七年级数学上册教案15

  教学目标

  1、使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数、

  2、初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系、

  重点

  掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数、

  难点

  识别单项式的系数和次数、

  教学过程

  一、创设情境,导入新课

  师:出示图片、

  青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:

  (1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?

  (2)t小时呢?

  二、推进新课

  (一)用含字母的式子表示数量关系、

  师:出示第54页例1、

  生:解答例1后,讨论问题,用字母表示数有什么意义?

  学生经过讨论得出一定的答案,但可能不会太规范,教师总结、

  师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式、一个数或表示数的字母也是代数式)、

  师生共同完成例2,进一步体会用字母表示数的意义、

  巩固练习:第56页练习、

  (二)单项式的概念、

  师:出示问题、

  引言与例1中的式子100t,0.8p,mn,a2h,—n这些式子有什么特点?

  生:通过观察、对比、讨论得出,各式都是数或字母的积、

  师:指出单项式的概念,特别地,单独的'一个数或字母也是单项式、

  巩固练习:下列各式是单项式的式子是____________、

  《整式的加减》同步练习

  1、代数式a2+a+3的值为8,则代数式2a2+2a﹣3的值为?

  2、甲、乙二人一起加工零件、甲平均每小时加工a个零件,加工2小时;乙平均每小时加工b个零件,加工3小时、甲、乙二人共加工零件___个。

  《整式的加减》单元测试卷含答案

  9、已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是()

  A、ab B、a+b C、10a+b D、100a+b

  【考点】列代数式、

  【分析】a放在左边,则a在百位上,据此即可表示出这个三位数、

  【解答】解:a放在左边,则a在百位上,因而所得的数是:100a+b、

  故选D、

  【点评】本题考查了利用代数式表示一个数,关键是正确确定a是百位上的数字、

  10、原产量n吨,增产30%之后的产量应为()

  A、(1﹣30%)n吨B、(1+30%)n吨C、n+30%吨D、30%n吨

  【考点】列代数式、

  【专题】应用题、

  【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可、

  【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨、

  故选B、

  【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系、

【七年级数学上册教案】相关文章:

数学七年级上册教案04-16

湘教版数学七年级上册教案01-09

[优]数学七年级上册教案06-13

七年级上册数学教案12-16

七年级数学上册教案(精选)06-14

七年级数学上册教案[精选]06-16

七年级数学上册教案01-11

七年级上册数学教学教案06-01

七年级上册数学教案01-19

数学新七年级上册教案模板01-24