【精华】高中物理教案
作为一位杰出的老师,有必要进行细致的教案准备工作,教案是教学蓝图,可以有效提高教学效率。快来参考教案是怎么写的吧!下面是小编为大家收集的高中物理教案,仅供参考,欢迎大家阅读。
高中物理教案1
教学目标
一、知识目标
1、知道什么是反冲运动,能举出几个反冲运动的实例;
2、知道火箭的飞行原理和主要用途。
二、能力目标
1、结合实际例子,理解什么是反冲运动;
2、能结合动量守恒定律对反冲现象做出解释;
3、进一步提高运用动量守恒定律分析和解决实际问题的能力
三、德育目标
1、通过实验,分析得到什么是反冲运动,培养学生善于从实验中总结规律和热心科学研究的兴趣、勇于探索的品质。
2、通过介绍我国成功地研制和发射长征系列火箭的事实,结合我国古代对于火箭的发明和我国的现代火箭技术已跨入世界先进先烈,激发学生热爱社会主义的情感。
教学重点
1、知道什么是反冲。
2、应用动量守恒定律正确处理喷气式飞机、火箭一类问题。
教学难点
如何应用动量守恒定律分析、解决反冲运动。
教学方法
1、通过观察演示实验,总结归纳得到什么是反冲运动。
2、结合实例运用动量守恒定律解释反冲运动。
教学用具
反冲小车、玻璃棒、气球、酒精、反冲塑料瓶等
课时安排
1课时
教学步骤
导入新课
[演示]拿一个气球,给它充足气,然后松手,观察现象。
[学生描述现象]释放气球后,气球内的气体向后喷出,气球向相反的方向飞出。
[教师]在日常生活中,类似于气球这样的运动很多,本节课我们就来研究这种。
新课教学
(一)反冲运动 火箭
1、教师分析气球所做的运动
给气球内吹足气,捏紧出气孔,此时气球和其中的气体作为一个整体处于静止状态。松开出气孔时,气球中的气体向后喷出,气体具有能量,此时气体和气球之间产生相互作用,气球就向前冲出。
2、学生举例:你能举出哪些物体的运动类似于气球所作的运动?
学生:节日燃放的礼花。喷气式飞机。反击式水轮机。火箭等做的运动。
3、同学们概括一下上述运动的特点,教师结合学生的叙述总结得到:
某个物体向某一方向高速喷射出大量的液体,气体或弹射出一个小物体,从而使物体本身获得一反向速度的现象,叫反冲运动
4、分析气球。火箭等所做的反冲运动,得到:
在反冲现象中,系统所受的合外力一般不为零;
但是反冲运动中如果属于内力远大于外力的情况,可以认为反冲运动中系统动量守恒。
(二)学生课堂用自己的装置演示反冲运动。
1、学生做准备:拿出自己的在课下所做的反冲运动演示装置。
2、学生代表介绍实验装置,并演示。
学生甲:
装置:在玻璃板上放一辆小车,小车上用透明胶带粘中一块浸有酒精的棉花。
实验做法:点燃浸有酒精的棉花,管中的酒精蒸气将橡皮塞冲出,同时看到小车沿相反方向运动。
学生乙:
装置:二个空摩丝瓶,在它们的底部用大号缝衣针各钻一个小洞,这样做成二个简易的火箭筒,在铁支架的立柱端装上顶轴,在放置臂的两侧各装一只箭筒,再把旋转系统放在顶轴上,往火箭筒内各注入约4 mL的酒精,并在火箭筒下方的棉球上注入少量酒精。点燃酒精棉球,片刻火箭筒内的酒精蒸气从尾孔中喷出,并被点燃,这时可以看到火箭旋转起来。
学生丙:用可乐瓶做一个水火箭,方法是用一段吸管和透明胶带在瓶上固定一个导向管,瓶口塞一橡皮塞,在橡皮塞上钻一孔,在塞上固定一只自行车车胎上的进气阀门,并在气门芯内装上小橡皮管,在瓶中先注入约1/3体积的水,用橡皮塞把瓶口塞严,将尼龙线穿过可乐瓶上的导向管,使线的一端拴在门的上框上,另一端拴在板凳腿上,要使线拉直,将瓶的进气阀与打气筒相接,向筒内打气到一定程度时,瓶塞脱开,水从瓶口喷出,瓶向反方向飞去。
过渡引言:同学们通过自己设计的实验装置得到并演示了什么是反冲运动,那么反冲运动在实际生活中有什么应用呢?下边我们来探讨这个问题。
(三)反冲运动的应用和防止
1、学生阅读课文有关内容。
2、学生回答反冲运动应用和防止的实例。
学生:反冲有广泛的应用:灌溉喷水器、反击式水轮机、喷气式飞机、火箭等都是反冲的重要应用。
学生:用枪射击时,要用肩部抵住枪身,这是防止或减少反冲影响的实例。
3、用多媒体展示学生所举例子。
4、要求学生结合多媒体展示的物理情景对几个物理过程中反
冲的应用和防止做出解释说明:
①对于灌溉喷水器,
当水从弯管的喷嘴喷出时,弯管因反冲而旋转,可以自动地改变喷水的方向。
②对于反击式水轮机:当水从转轮的叶片中流出时,转轴由于反冲而旋转带动发电机发电。
③对于喷气式飞机和火箭,它们靠尾部喷出气流的反冲作用而获得很大的速度。
④用枪射击时,子弹向前飞去枪身向后发生反冲,枪身的.反冲会影响射击的准确性,所以用步枪时我们要把枪身抵在肩部,以减少反冲的影响。
教师:通过我们对几个实例的分析,明确了反冲既有有利的一面,同时也有不利的一面,在看待事物时我们要学会用一分为二的观点。
我们知道:反冲现象的一个重要应用是火箭,下边我们一认识火箭:
(四)火箭:
1、演示:把一个废旧白炽灯泡敲碎取出里面的一根细玻璃管,往细玻璃管装由火柴刮下的药粉,把细管放在支架上,用火柴或其他办法给细管加热。
现象:当管内的药粉点燃时,生成的燃气从细口迅速喷出,细管便向相反方向飞去。教师讲述:上述装置就是火箭的原理模型。
2、多媒体演示古代火箭,现代火箭的用途及多级火箭的工作过程,同时学生边看边阅读课文。
3、用实物投影仪出示阅读思考题:
①介绍一下我国古代的火箭。?
②现代的火箭与古代火箭有什么相同和不同之处?
③现代火箭主要用途是什么?
④现代火箭为什么要采用多级结构?
4、学生解答上述问题:
①我国古代的火箭是这样的:
在箭上扎一个火药筒,火药筒的前端是封闭的,火药点燃后生成的燃气以很大速度向后喷出,火箭由于反冲而向前运动。
②现代火箭与古代火箭原理相同,都是利用反冲现象来工作的。
但现代火箭较古代火箭结构复杂得多,现代火箭主要由壳体和燃料两大部分组成,壳体是圆筒形的,前端是封闭的尖端,后端有尾喷管,燃料燃烧产生的高温高压燃气从尾喷管迅速喷出,火箭就向前飞去。
③现代火箭主要用来发射探测仪器、常规弹头或核弹头,人造卫星或宇宙飞船,即利用火箭作为运载工具。
④在现代技术条件下,一级火箭的最终速度还达不到发射人造卫星所需要的速度,发射卫星时要使用多级火箭。
用CAI课件展示多级火箭的工作过程:
多级火箭由章单级火箭组成,发射时先点燃第一级火箭,燃料用完工以后,空壳自动脱落,然后下一级火箭开始工作。
教师介绍:多级火箭能及时把空壳抛掉,使火箭的总质量减少,因而能够达到很高的温度,可用来完成洲际导弹,人造卫星、宇宙飞船等的发射工作,但火箭的级数不是越多越好,级数越多,构造越复杂,工作的可靠性越差,目前多级火箭一般都是三级火箭。
那么火箭在燃料燃尽时所能获得的最终速度与什么有关系呢?
5、出示下列问题:
火箭发射前的总质量为M、燃料燃尽后的质量为m,火箭燃气的喷射速度为v1,燃料燃尽后火箭的飞行速度v为多大?
[学生分析并解答]:
解:在火箭发射过程中,由于内力远大于外力,所以动量守恒。
发射前的总动量为0,发射后的总动量为(M-m)v-mv1(以火箭的速度方向为正方向)则:(M-m)v-mv1=0
师生分析得到:燃料燃尽时火箭获得的最终速度由喷气速度及质量比M/m决定。
巩固训练 水平方向射击的大炮,炮身重450 kg,炮弹射击速度是450 m/s,射击后炮身后退的距离是45 cm,则炮受地面的平均阻力是多大?
小结
1、当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量而向相反方向运动,这种向相反方向的运动,通常叫做反冲运动。
2、对于反冲运动,所遵循的规律是动是守恒定律,在具体的计算中必须严格按动量守恒定律的解题步骤来进行。
3、反冲运动不仅存在于宏观低速物体间,也存在于微观高速物体。
高中物理教案2
一、教学任务分析
匀速圆周运动是继直线运动后学习的第一个曲线运动,是对如何描述和研究比直线运动复杂的运动的拓展,是力与运动关系知识的进一步延伸,也是以后学习其他更复杂曲线运动(平抛运动、单摆的简谐振动等)的基础。
学习匀速圆周运动需要以匀速直线运动、牛顿运动定律等知识为基础。
从观察生活与实验中的现象入手,使学生知道物体做曲线运动的条件,归纳认识到匀速圆周运动是最基本、最简单的圆周运动,体会建立理想模型的科学研究方法。
通过设置情境,使学生感受圆周运动快慢不同的情况,认识到需要引入描述圆周运动快慢的物理量,再通过与匀速直线运动的类比和多媒体动画的辅助,学习线速度与角速度的概念。
通过小组讨论、实验探究、相互交流等方式,创设平台,让学生根据本节课所学的知识,对几个实际问题进行讨论分析,调动学生学习的情感,学会合作与交流,养成严谨务实的科学品质。
通过生活实例,认识圆周运动在生活中是普遍存在的,学习和研究圆周运动是非常必要和十分重要的,激发学习热情和兴趣。
二、教学目标
1、知识与技能
(1)知道物体做曲线运动的条件。
(2)知道圆周运动;理解匀速圆周运动。
(3)理解线速度和角速度。
(4)会在实际问题中计算线速度和角速度的大小并判断线速度的方向。
2、过程与方法
(1)通过对匀速圆周运动概念的形成过程,认识建立理想模型的物理方法。
(2)通过学习匀速圆周运动的定义和线速度、角速度的定义,认识类比方法的运用。
3、态度、情感与价值观
(1)从生活实例认识圆周运动的普遍性和研究圆周运动的必要性,激发学习兴趣和求知欲。
(2)通过共同探讨、相互交流的学习过程,懂得合作、交流对于学习的重要作用,在活动中乐于与人合作,尊重同学的见解,善于与人交流。
三、教学重点难点
重点:
(1)匀速圆周运动概念。
(2)用线速度、角速度描述圆周运动的快慢。
难点:理解线速度方向是圆弧上各点的切线方向。
四、教学资源
1、器材:壁挂式钟,回力玩具小车,边缘带孔的旋转圆盘,玻璃板,建筑用黄沙,乒乓球,斜面,刻度尺,带有细绳连接的小球。
2、课件:flash课件——演示同样时间内,两个运动所经过的弧长不同的匀速圆周运动;——演示同样时间内,两个运动半径所转过角度不同的匀速圆周运动。
3、录像:三环过山车运动过程。
五、教学设计思路
本设计包括物体做曲线运动的条件、匀速圆周运动、线速度与角速度三部分内容。
本设计的基本思路是:以录像和实验为基础,通过分析得出物体做曲线运动的条件;通过观察对比归纳出匀速圆周的特征;以情景激疑认识对匀速圆周运动快慢的不同描述,引入线速度与角速度概念;通过讨论、释疑、活动、交流等方式,巩固所学知识,运用所学知识解决实际问题。
本设计要突出的重点是:匀速圆周运动概念和线速度、角速度概念。方法是:通过对钟表指针和过山车两类圆周运动的观察对比,归纳出匀速圆周运动的特征;设置地月对话的情景,引入对匀速圆周运动快慢的描述;再通过多媒体动画辅助,并与匀速直线运动进行类比得出匀速圆周运动的'概念和线速度、角速度的概念。
本设计要突破的难点是:线速度的方向。方法是:通过观察做圆周运动的小球沿切线飞出,以及由旋转转盘边缘飞出的红墨水在纸上的径迹分布这两个演示实验,直观显示得出。
本设计强调以视频、实验、动画为线索,注重刺激学生的感官,强调学生的体验和感受,化抽象思维为形象思维,概念和规律的教学体现“建模”、“类比”等物理方法,学生的活动以讨论、交流、实验探究为主,涉及的问题联系生活实际,贴近学生生活,强调对学习价值和意义的感悟。
完成本设计的内容约需2课时。
六、教学流程
1、教学流程图
2、流程图说明
情境I录像,演示,设问1
播放录像:三环过山车,让学生看到物体的运动有直线和曲线。
演示:让学生向正在做直线运动的乒乓球用力吹气,体验球在什么情况下将做曲线运动。
设问1:物体在什么情况下将做曲线运动?
情境II观察、对比,设问2
观察、对比钟表指针和过山车这两类圆周运动。
设问2:以上两类圆周运动有什么不同?钟表指针所做的圆周运动有什么共同特征?建立匀速圆周运动的概念。
情境III演示,动画
情景:月、地快慢之争。
多媒体动画:演示同样时间内两个运动所经过的弧长不同的匀速圆周运动,比较得出线速度表
表达式。
演示1:用细绳捆着小球在水平面内做圆周运动,突然松开绳的一端,看到小球沿着圆弧切线方向运动。
演示2:通过实物投影演示旋转的转盘边缘飞出的红墨水在纸上的径迹分布,显示线速度的方向。
情景:变换教室内电风扇的变速档,看到圆周运动转动快慢的不同情况,引入角速度概念。
多媒体动画:演示同样时间内两个运动半径所转过角度不同的匀速圆周运动,比较得出角速度表达式。
活动讨论、实验、交流、小结。
识别:请同学们说说生活中有哪些圆周运动可以看作是匀速圆周运动。了解学生对匀速圆周运动的理解以及是否具有建模能力。
观察分析:磁带、涂改修正带、自行车链条等传动设备中,两轮轴边缘各点的线速度有何关系。了解对线速度概念的理解情况。
算一算:计算壁挂钟的时针、分针、秒针针尖的线速度大小和它们角速度的倍数关系。了解能否通过实际测量获取有用数据,灵活运用线速度的公式和角速度公式解决实际问题。
小实验:提供回力玩具小车,玻璃板,建筑用黄沙,通过对实验的观察说明汽车车轮的挡泥板应安装在什么位置合适,了解对线速度方向的掌握情况。
释疑:评判地球与月亮之争。
小结:幻灯片小结。
3、教学主要环节本设计可分为四个主要的教学环节:
第一环节,通过播放录像和演示,归纳物体做曲线运动的条件。
第二环节,通过观察对比,建立理想模型,归纳匀速圆周运动特征,类比匀速直线运动得出匀速圆周运动概念。
第三环节,以情景激疑引入用线速度、角速度描述圆周运动,借助多媒体动画,类比匀速直线运动得出线速度、角速度定义和公式。
第四环节,以学生活动为中心,针对几个实际问题开展讨论、探究、交流,深化对本节课知识的理解和应用。
七、教案示例
第一环节物体做曲线运动的条件
[创设情景]播放录像:森林公园三环过山车的运动。
[提出问题] 1、请同学们说说过山车都做了哪些不同性质的运动? (匀速直线运动、匀加速直线运动、匀减速直线运动、曲线运动、圆周运动等)
2、什么条件下物体将做曲线运动?
[演示]让乒乓球从斜面上滚下到达水平桌面上做直线运动,请一个同学向着与球运动不一致的方向用力吹球,观察球的运动轨迹有何变化?
[结论]当物体受到的合力与速度方向不在一条直线上时,物体就做曲线运动。
[引言]运动轨迹是圆的曲线运动叫做圆周运动,下面我们就从圆周运动开始学习如何对曲线运动进行研究。
第二环节匀速圆周运动的概念
[观察讨论]钟表的时针、分针、秒针的圆周运动有什么共同的特征?它们与过山车的圆周运动有什么不同?
(钟表的时针、分针、秒针的圆周运动,它们的共同特征是匀速转动的,而过山车的圆周运动列车的速度大小是不断变化的)
[提出问题]怎样给匀速圆周运动下定义呢?(引导学生类比匀速直线运动定义匀速圆周运动)
[结论]质点在任何相同时间内,所通过的弧长都相等的圆周运动叫做匀速圆周运动。
匀速圆周运动是最基本最简单的圆周运动,它是一种理想化的物理模型。
[引言]我们如何对圆周运动进行研究呢?
第三环节线速度、角速度概念
[创设情景]地、月快慢之争
地球:我绕太阳运动1秒走29.79千米,你绕我1秒才走1.02千米,你太慢了!
月亮:你一年才绕一圈,我28天就绕一圈,你才慢呢!
[提出问题]怎样定义描述圆周运动快慢的物理量?(引导学生与匀速直线运动的速度类比)多媒体动画:演示同样时间内,两个运动所经过的弧长不同的匀速圆周运动;
[结论]线速度定义:质点经过的圆弧长度s与所用时间t的比值,叫做圆周运动的线速度。
公式:单位:m/s(米/秒)
[问题]速度是矢量,圆周运动的线速度方向是怎样的?
[演示] 1、用一端连有细线的小球,将线的一端套在钉子上,钉子竖直立在桌面上,给球初速让球在水平桌面上做圆周运动,突然向上抽出钉子,看到球沿圆周的切线方向运动;
2、通过投影仪观察旋转圆盘边缘红墨水飞出的情景以及落在纸面上的径迹分布;
[结论]线速度方向:沿圆弧的切线方向
线速度表示圆周运动的瞬时速度,它是矢量;圆周运动的线速度方向是不断改变的,所以匀速圆周运动是变速运动,匀速圆周运动中的“匀速”是“匀速率”的意思。
[情景]打开教室内的电风扇,变换不同的档观察它转动的快慢。(引导学生认识要引入与线速度不同的、描述圆周运动转动快慢的物理量)
高中物理教案3
本节教材分析
这节课通过对一些天体运动的实例分析,使学生了解:通常物体之间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体的质量很大,万有引力将起决定性作用,对天文学的发展起了很大的推动作用,其中一个重要的应用就是计算天体的质量.
在讲课时,应用万有引力定律有两条思路要交待清楚.
1.把天体(或卫星)的运动看成是匀速圆周运动,即F引=F向,用于计算天体(中心体)的质量,讨论卫星的速度、角速度、周期及半径等问题.
2.在地面附近把万有引力看成物体的重力,即F引=mg.主要用于计算涉及重力加速度的问题.
一、教学目标
1.通过对行星绕恒星的运动及卫星绕行星的运动的研究,使学生初步掌握研究此类问题的基本方法:万有引力作为物体做圆周运动的向心力。
2.使学生对人造地球卫星的发射、运行等状况有初步了解,使多数学生在头脑中建立起较正确的图景。
二、重点、难点分析
1.天体运动的向心力是由万有引力提供的,这一思路是本节课的重点。
2.第一宇宙速度是卫星发射的最小速度,是卫星运行的最大速度,它们的统一是本节课的难点。
三、教具
自制同步卫星模型。
四、教学过程
(一)引入新课
1.复习提问:
(1)物体做圆周运动的向心力公式是什么?分别写出向心力与线速
(2)万有引力定律的内容是什么?如何用公式表示?(对学生的回答予以纠正或肯定。)
(3)万有引力和重力的关系是什么?重力加速度的决定式是什么?(学生回答:地球表面物体受到的重力是物体受到地球万有引力的一个分力,但这个分力的大小基本等于物体受到地球的万有引力。如不全面,教师予以补充。)
2.引课提问:根据前面我们所学习的知识,我们知道了所有物体之间都存在着相互作用的万有引力,而且这种万有引力在天体这类质量很大的物体之间是非常巨大的。那么为什么这样巨大的引力没有把天体拉到一起呢?(可由学生讨论,教师归纳总结。)
因为天体都是运动的,比如恒星附近有一颗行星,它具有一定的速度,根据牛顿第一定律,如果不受外力,它将做匀速直线运动。现在它受到恒星对它的万有引力,将偏离原来的运动方向。这样,它既不能摆脱恒星的控制远离恒星,也不会被恒星吸引到一起,将围绕恒星做圆周运动。此时,行星做圆周运动的向心力由恒星对它的万有引力提供。(教师边讲解,边画板图。)
可见万有引力与天体的运动密切联系,我们这节课就要研究万有引力定律在天文学上的应用。
板书:万有引力定律在天文学上的应用人造卫星
(二)教学过程
1.研究天体运动的基本方法
刚才我们分析了行星的运动,发现行星绕恒星做圆周运动,此时,恒星对行星的万有引力是行星做圆周运动的向心力。其实,所有行星绕恒星或卫星绕行星的运动都可以基本上看成是匀速圆周运动。这时运动的行星或卫星的受力情况也非常简单:它不可能受到弹力或摩擦力,所受到的力只有一种——万有引力。万有引力作为其做圆周运动的向心力。
板书:F万=F向
下面我们根据这一基本方法,研究几个天文学的问题。
(1)天体质量的计算
如果我们知道了一个卫星绕行星运动的周期,知道了卫星运动的轨道半径,能否求出行星的质量呢?根据研究天体运动的基本方法:万有引力做向心力,F万=F向
(指副板书)此时知道卫星的圆周运动周期,其向心力公式用哪个好呢?
等式两边都有m,可以约去,说明与卫星质量无关。我们就可以得
(2)卫星运行速度的比较
下面我们再来看一个问题:某行星有两颗卫星,这两颗卫星的质量和轨道半径都不相同,哪颗卫星运动的速度快呢?我们仍然利用研究天体运动的基本方法:以万有引力做向心力
F万=F向
设行星质量为M,某颗卫星运动的轨道半径为r,此卫星质量为m,它受到行星对它的万有引力为
(指副板书)于是我们得到
等式两边都有m,可以约去,说明与卫星质量无关。于是我们得到
从公式可以看出,卫星的运行速度与其本身质量无关,与其轨道半径的平方根成反比。轨道半径越大,运行速度越小;轨道半径越小,运行速度越大。换句话说,离行星越近的卫星运动速度越大。这是一个非常有用的结论,希望同学能够给予重视。
(3)海王星、冥王星的发现
刚才我们研究的问题只是实际问题的一种近似,实际问题要复杂一些。比如,行星绕太阳的运动轨道并不是正圆,而是椭圆;每颗行星受到的引力也不仅由太阳提供,除太阳的引力最大外,还要受到其他行星的引力。这就需要更复杂一些的运算,而这种运算,导致了海王星、冥王星的发现。
200年前,人们认识的太阳系有7大行星:水星、金星、地球、火星、土星、木星和天王星,后来,人们发现最外面的行星——天王星的运行轨道与用万有引力定律计算出的有较大的偏差。于是,有人推测,在天王星的轨道外侧可能还有一颗行星,它对天王星的引力使天王星的轨道发生偏离。而且人们计算出这颗行星的可能轨道,并且在计算出的位置终于观测到了这颗新的行星,将它命名为海王星。再后,又发现海王星的轨道也与计算值有偏差,人们进一步推测,海王星轨道外侧还有一颗行星,于是用同样的方法发现了冥王星。可见万有引力定律在天文学中的应用价值。
2.人造地球卫星
下面我们再来研究一下人造地球卫星的'发射及运行情况。
(1)卫星的发射与运行
最早研究人造卫星问题的是牛顿,他设想了这样一个问题:在地面某一高处平抛一个物体,物体将走一条抛物线落回地面。物体初速度越大,飞行距离越远。考虑到地球是圆形的,应该是这样的图景:(板图)
当抛出物体沿曲线轨道下落时,地面也沿球面向下弯曲,物体所受重力的方向也改变了。当物体初速度足够大时,物体总要落向地面,总也落不到地面,就成为地球的卫星了。
从刚才的分析我们知道,要想使物体成为地球的卫星,物体需要一个最小的发射速度,物体以这个速度发射时,能够刚好贴着地面绕地球飞行,此时其重力提供了向心力。
其中,g为地球表面的重力加速度,约9.8m/s2。R为地球的半径,约为6.4×106m。代入数据我们可以算出速度为7.9×103m/s,也就是7.9km/s。这个速度称为第一宇宙速度。
板书:第一宇宙速度v=7.9km/s
第一宇宙速度是发射一个物体,使其成为地球卫星的最小速度。若以第一宇宙速度发射一个物体,物体将在贴着地球表面的轨道上做匀速圆周运动。若发射速度大于第一宇宙速度,物体将在离地面远些的轨道上做圆周运动。
现在同学思考一个问题:刚才我们分析卫星绕行星运行时得到一个结论:卫星轨道离行星越远,其运动速度越小。现在我们又得到一个结论:卫星的发射速度越大,其运行轨道离地面越远。这两者是否矛盾呢?
其实,它们并不矛盾,关键是我们要分清发射速度和运行速度是两个不同的速度:比如我们以10km/s的速度发射一颗卫星,由于发射速度大于7.9km/s,卫星不可能在地球表面飞行,将会远离地球表面。而卫星远离地球表面的过程中,其在垂直地面方向的运动,相当于竖直上抛运动,卫星速度将变小。当卫星速度减小到7.9km/s时,由于此时卫星离地球的距离比刚才大,根据万有引力定律,此时受到的引力比刚才小,仍不能使卫星在此高度绕地球运动,卫星还会继续远离地球。卫星离地面更远了,速度也进一步减小,当速度减小到某一数值时,比如说5km/s时,卫星在这个位置受到的地球引力刚好满足卫星在这个轨道以这个速度运动所需向心力,卫星将在这个轨道上运动。而此时的运行速度小于第一宇宙速度。所以,第一宇宙速度是发射地球卫星的最小速度,是卫星地球运行的最大速度。
板书:第一宇宙速度是发射地球卫星的最小速度,是卫星绕地球运行的最大速度。
如果物体发射的速度更大,达到或超过11.2km/s时,物体将能够摆脱地球引力的束缚,成为绕太阳运动的行星或飞到其他行星上去。11.2km/s这个速度称为第二宇宙速度。
板书:第二宇宙速度v=11.2km/s
如果物体的发射速度再大,达到或超过16.7km/s时,物体将能够摆脱太阳引力的束缚,飞到太阳系外。16.7km/s这个速度称为第三宇宙速度。
板书:第三宇宙速度v=16.7km/s
(2)同步通讯卫星
下面我们再来研究一种卫星——同步通信卫星。这种卫星绕地球运动的角速度与地球自转的速度相同,所以从地面上看,它总在某地的正上方,因此叫同步卫星。这种卫星一般用于通讯,又叫同步通讯卫星。我们平时看电视实况转播时总听到解说员讲:正在通过太平洋上空或印度洋上空的通讯卫星转播电视实况,为什么北京上空没有同步卫星呢?大家来看一下模型(出示模型):
若在北纬或南纬某地上空真有一颗同步卫星,那么这颗卫星轨道平面的中心应是地轴上的某点,而不是地心,其需要的向心力也指向这一点。而地球所能够提供的引力只能指向地心,所以北纬或南纬某地上空是不可能有同步卫星的。另外由于同步卫星的周期与地球自转周期相同,所以此卫星离地球的距离只能是一个定值。换句话说,所有地球的同步卫星只能分布在赤道正上方的一条圆弧上,而为了卫星之间不相互干扰,大约3度角左右才能放置一颗卫星,地球的同步通讯卫星只能有120颗。可见,空间位置也是一种资源。(可视时间让学生推导同步卫星的高度)
五、课堂小结
本节课我们学习了如何用万有引力定律来研究天体运动的问题;掌握了万有引力是向心力这一研究天体运动的基本方法;了解了卫星的发射与运行的一些情况;知道了第一宇宙速度是卫星发射的最小速度,是卫星绕地球运行的最大速度。最后我们还了解了通讯卫星的有关情况,本节课我们学习的内容较多,希望及时复习。
六、说明
1.设计思路:本节课是一节知识应用与扩展的课程,所以设计时注意加大知识含量,引起学生兴趣。同时注意方法的培养,让学生养成用万有引力是天体运动的向心力这一基本方法研究问题的习惯,避免套公式的不良习惯。围绕第一宇宙速度的讨论,让学生形成较正确的卫星运动图景。
2.同步卫星模型是用一地球仪改制而成,用一个小球当卫星,小球与地球仪用细线相连,细线的一端可在地球仪的不同纬度处固定。
第六章万有引力定律(四、万有引力定律在天文学上的应用)
第六章万有引力定律(四、万有引力定律在天文学上的应用)
教材分析
这节课通过对一些天体运动的实例分析,使学生了解:通常物体之间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体的质量很大,万有引力将起决定性作用,对天文学的发展起了很大的推动作用,其中一个重要的应用就是计算天体的质量。
在讲课时,应用万有引力定律有两条思路要交待清楚。
1.把天体(或卫星)的运动看成是匀速圆周运动,即F引=F向,用于计算天体(中心体)的质量,讨论卫星的速度、角速度、周期及半径等问题。
2.在地面附近把万有引力看成物体的重力,即F引=mg.主要用于计算涉及重力加速度的问题。
这节内容是这一章的重点,这是万有引力定律在实际中的具体应用.主要知识点就是如何求中心体质量及其他应用,还是可发现未知天体的方法。
教学目标
一知识目标
1.了解行星绕恒星运动及卫星绕行星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力。
2.了解万有引力定律在天文学上有重要应用。
3.会用万有引力定律计算天体的质量。
二能力目标
通过万有引力定律在实际中的应用,培养学生理论联系实际的能力。
教学重点
1.人造卫星、月球绕地球的运动;行星绕太阳的运动的向心力是由万有引力提供的。
2.会用已知条件求中心天体的质量。
教学难点
根据已有条件求中心天体的质量。
教学步骤
一导入新课
复习旧课:
1.卡文迪许实验测万有引力常量的原理是什么?
答:利用引力矩与金属丝的扭转力矩的平衡来求得。
2.万有引力常量的测出的物理意义。
答:使万有引力定律有了其实际意义,可以求得地球的质量等。
对了,万有引力常量一经测出,万有引力定律对天文学的发展起了很大的推动作用,这节课我们来学习万有引力定律在天文学上的应用。
二新课教学
(一)天体质量的计算
提出问题引导学生思考:在天文学上,天体的质量无法直接测量,能否利用万有引力定律和前面学过的知识找到计算天体质量的方法呢?
1.基本思路:在研究天体的运动问题中,我们近似地把一个天体绕另一个天体的运动看作匀速圆周运动,万有引力提供天体作圆周运动的向心力。
2.计算表达式:
例如:已知某一行星到太阳的距离为r,公转周期为T,太阳质量为多少?
分析:设太阳质量为M,行星质量为m,由万有引力提供行星公转的向心力得:
,∴
提出问题引导学生思考:如何计算地球的质量?
分析:应选定一颗绕地球转动的卫星,测定卫星的轨道半径和周期,利用上式求出地球质量。因此上式是用测定环绕天体的轨道半径和周期方法测被环绕天体的质量,不能测定环绕天体自身质量。
对于一个天体,M是一个定值.所以,绕太阳做圆周运动的行星都有。即开普勒第三定律。
老师总结:应用万有引力定律计算天体质量的基本思路是:根据行星(或卫星)运动的情况,求出行星(或卫星)的向心力,而F向=F万有引力。根据这个关系列方程即可。
例如:已知月球到地球的球心距离为r=4×108m,月亮绕地球运行的周期为30天,求地球的质量。
解:月球绕地球运行的向心力即月地间的万有引力即有:
F向=F引=
得:
求某星体表面的重力加速度
例:一个半径比地球大2倍,质量是地球的36倍的行星,它表面的重力加速度是地球表面的重力加速度的
A.6倍B.18倍C.4倍D.13.5倍
分析:在星体表面处,F引≈mg.所以,在地球表面处:
在某星球表面处:
∴
即正确选项为C
学生自己总结:求某星球表面的重力加速度,一般采用某物体在星体表面受到的重力等于其万有引力.一般采用比例计算法。
练习:金星的半径是地球的0.95倍,质量是地球的0.82倍,金星表面的重力加速度是多大?
3.发现末知天体
用万有引力定律计算天体的质量是天文学上的重要应用之一,一个科学的理论,不但要能说明已知事实,而且要能预言当时不知道的事实,请同学们阅读课本并思考:科学家是如何根据万有引力定律发现海王星的?
请同学们推导:已知中心天体的质量及绕其运动的行星的运动情况,在太阳系中,行星绕太阳运动的半径r为:
根据F万有引力=F向=,而F万有引力=,两式联立得:
在18世纪发现的第七个行星──天王星的运动轨道,总是同根据万有引力定律计算出来的有一定偏离。当时有人预测,肯定在其轨道外还有一颗未发现的新星。后来,亚当斯和勒维列在预言位置的附近找到了这颗新星。后来,科学家利用这一原理还发现了许多行星的卫星,由此可见,万有引力定律在天文学上的应用,有极为重要的意义。
海王星和冥王星的发现,显示了万有引力定律对研究天体运动的重要意义,同时证明了万有引力定律的正确性。
三例题分析
例1.木星的一个卫星运行一周需要时间1.5×104s,其轨道半径为9.2×107m,求木星的质量为多少千克?
解:木星对卫星的万有引力提供卫星公转的向心力:
,例2.地球绕太阳公转,轨道半径为R,周期为T。月球绕地球运行轨道半径为r,周期为t,则太阳与地球质量之比为多少?
解:⑴地球绕太阳公转,太阳对地球的引力提供向心力
则,得:
⑵月球绕地球公转,地球对月球的引力提供向心力
则,得:
⑶太阳与地球的质量之比
例3.一探空箭进入绕太阳的近乎圆形的轨道运行,轨道半径是地球绕太阳公转半径的9倍,则探空火箭使太阳公转周期为多少年?
解:方法一:设火箭质量为m1,轨道半径R,太阳质量为M,地球质量为m2,轨道半径为r。
⑴火箭绕太阳公转,则
得:………………①
⑵地球绕太阳公转,则
得:………………②
∴∴火箭的公转周期为27年。
方法二:要题可直接采用开普勒第三定律求解,更为方便。
四巩固练习
1.将一物体挂在一弹簧秤上,在地球表面某处伸长30mm,而在月球表面某处伸长5mm.如果在地球表面该处的重力加速度为9.84m/s2,那么月球表面测量处相应的重力加速度为
A.1.64m/s2B.3.28m/s2
C.4.92m/s2D.6.56m/s2
2.地球是一个不规则的椭球,它的极半径为6357km,赤道半径为6378km,物体在两极所受的引力与在赤道所受的引力之比为
参考答案:
1.A2.1.0066
五小结(用投影片出示)
这节课我们主要掌握的知识点是:
1.万有引力定律在天文学中的应用,一般有两条思路:
(1)F万有引力=环绕体所需的向心力
(2)地面(或某星球表面)的物体的重力=F万有引力。
2.了解万有引力定律在天文学中具有的重要意义。
五作业
高中物理教案4
研究性实验:(1) 研究匀变速运动练习使用打点计时器:
1.构造:见教材。
2.操作要点:接50HZ,4---6伏的交流电 S1 S2 S3 S4
正确标取记:在纸带中间部分选5个点 。T 。T 。 T 。 T 。
3.重点:纸带的分析 0 1 2 3 4
a.判断物体运动情况:
在误差范围内:如果S1=S2=S3=......,则物体作匀速直线运动。
如果?S1=?S2=?S3= .......=常数, 则物体作匀变速直线运动。
b.测定加速度:
公式法: 先求?S,再由?S= aT2求加速度。
图象法: 作v-t图,求a=直线的斜率
c.测定即时速度: V1=(S1+S2)/2T V2=(S2+S3)/2T
测定匀变速直线运动的加速度:
1.原理::?S=aT2
2.实验条件:
a.合力恒定,细线与木板是平行的。
b.接50HZ,4-6伏交流电。
3.实验器材:电磁打点计时器、纸带、复写纸片、低压交流电源、小车、细绳、一端附有滑轮的'长木板、刻度尺、钩码、导线、两根导线。
4.主要测量:
选择纸带,标出记数点,测出每个时间间隔内的位移S1、S2、S3 。。。。图中O是任一点。
5. 数据处理: 0 1 2 3 4 5 6
根据测出的S1、S2、S3....... 。S1 。S2 。 S3 。S4 。 S5 。 S6 。
用逐差法处理数据求出加速度:
S4-S1=3a1T2 , S5-S2=3a2T2 , S6-S3=3a3T2
a=(a1+a2+a3)/3=(S4+S5+S6- S1-S2-S3)/9T2
测匀变速运动的即时速度:(同上)
(2) 研究平抛运动
1.实验原理:
用一定的方法描出平抛小球在空中的轨迹曲线,再根据轨迹上某些点的位置坐标,由h=求出t,再由x=v0t求v0,并求v0的平均值。
2.实验器材:
木板,白纸,图钉,未端水平的斜槽,小球,刻度尺,附有小孔的卡片,重锤线。
3.实验条件:
a. 固定白纸的木板要竖直。
b. 斜槽未端的切线水平,在白纸上准确记下槽口位置。
c.小球每次从槽上同一位置由静止滑下。
(3) 研究弹力与形变关系
方法归纳:
(1)用悬挂砝码的方法给弹簧施加压力
(2)用列表法来记录和分析数据(如何设计实验记录表格)
(3)用图象法来分析实验数据关系
步骤:
1以力为纵坐标、弹簧伸长为横坐标建立坐标系
2根据所测数据在坐标纸上描点
3按照图中各点的分布和走向,尝试作出一条平滑的曲线(包括直线)
4以弹簧的伸重工业自变量,写出曲线所代表的函数,首先尝试一次函数,如不行则考虑二次函数,如看似象反比例函数,则变相关的量为倒数再研究一下是否为正比关系(图象是否可变为直线)----化曲为直的方法等。
5解释函数表达式中常数的意义。
2. 注意事项:所加砝码不要过多(大)以免弹簧超出其弹性限度
高中物理教案5
1、在物理知识方面的要求:
(1)了解曲线运动的特点,速度方向在该点切线方向上且时刻在变,因此曲线运动一定是变速运动;
(2)了解曲线运动的条件:合外力与速度不在同一条直线上;
(3)根据学生理解能力,可将曲线运动的条件深化,即平行速度的力只改变速度大小;垂直速度的力只改变速度方向,可根据力的效果将合外力沿速度方向和垂直速度方向分解;
(4)了解合运动、分运动,掌握运动的合成与分解法则——平行四边形定则;
(5)由分运动的性质及特点综合判断合运动的性质及轨迹。
2、通过观察演示实验,有关教学软件,并联系学生生活实际总结概括出曲线运动的速度方向,曲线运动的条件,以及用运动的合成与分解处理复杂运动的基本方法。培养学生观察能力,分析概括推理能力,并激发学生兴趣。
3、渗透物理学方法的教育。研究船渡河运动,假设水不流动,可以想象出船的分运动;又假设船发动机停止工作,可想象出船只随水流而动的另一分运动。培养学生的想象能力和运用物理学抽象思维的基本方法。
1、重点是让学生掌握曲线运动为什么是变速运动,理解做曲线运动的条件及运动的合成与分解定则;
2、已知两个分运动的性质特点,判断合运动的性质及轨迹,学生不容易很快掌握,是教学的难点,解决难点的关键是引导学生把每个分运动的初始值(包括初速度、加速度以及每个分运动所受的外力)进行合成,最终还是用合运动的初速度与合外力的方向关系来判断。
1、乒乓球、小铁球、细绳。
2、斜槽、条形磁铁、铁球、投影仪、计算机软盘、彩电。
机械运动可以划分为平动和转动,而平动又可以划分为直线运动和曲线运动,所以曲线运动属于平动形式,做曲线运动的物体仍然可以看成一个质点,曲线运动比直线运动更为普遍。例如,车辆拐弯;月球绕地球约27天转一圈;地球绕太阳约一年转一周;太阳绕银河系中心约2.2亿年转一周。
因为曲线运动中速度方向连续发生变化,我们很难直观物体在某时刻的速度方向。可以设想如果某时刻的速度方向不再发生变化,物体将沿该时刻的速度方向做匀速直线运动。然后联系实际引导学生想象几种现象。
(1)让学生回答,绳拉小球在光滑的水平面上做圆周运动,当绳断后小球将沿什么方向运动?(沿切线方向飞出)然后引导学生分析原因:绳断后小球速度方向不再发生变化,由于惯性,从即刻起小球做匀速直线运动,沿切线飞出。
(2)教材内容:砂轮磨刀使火星沿切线飞出,引导学生分析原因:被磨掉的炽热微粒速度方向不再改变,由于惯性以分离时的速度方向做匀速直线运动。又如,让撑开的带有雨滴的雨伞旋转,雨滴沿伞边切线方向飞出(与上例同理)。
(3)在想象与分析的基础上,引导学生概括总结得出:曲线运动中,速度方向是时刻改变的,在某时刻的瞬时速度方向在曲线的这一点的切线方向上。并引导学生注意到:曲线运动中速度的大小和方向可能同时变化,但速度的方向是一定改变的,速度是矢量,方向一定变,速度就一定变,所以曲线运动一定是变速运动。
曲线运动是变速运动,由牛顿第二定律分析可知,速度的变化一定产生加速度,而加速度必然由外力引起,加速度与合外力成正比并且方向相同。随后提出问题,引导学生思考。
(1)如果合外力与速度在同一直线上,物体将做什么样的运动?(变速直线运动)
(2)绳拉小球在光滑水平面上做速度大小不变的圆周运动,绳子的拉力T起什么作用?(改变速度方向)
(3)演示实验(用投影仪或计算机软件):让小铁球从斜槽上滚下,小球将沿直线OO′运动。然后在垂直OO′的方向上放条形磁铁,使小球再从斜槽上滚下,小球将偏离原方向做曲线运动。又例如让小球从桌面上滚下,离开桌面后做曲线运动。
(4)观察实验后引导学生概括总结如下:
①平行速度的力改变速度大小;
②垂直速度的力改变速度的方向;
③不平行也不垂直速度的外力,同时改变速度的.大小和方向;
④引导学生得出曲线运动的条件:合外力与速度不在同一直线上时,物体做曲线运动。
物体的运动往往是复杂的,对于复杂的运动,常常可以把它们看成几个简单的运动组成的,通过研究简单的运动达到研究复杂运动的目的。
①把注满水的乒乓球用细绳系住另一端固定在B钉上,乒乓球静止在A点,画出线段BB′且使AB≈BB′(如图5),用光滑棒在B点附近从左向右沿BB′方向匀速推动吊绳,提示学生观察乒乓球实际运动的轨迹是沿AB′方向,帮助学生分析这是因为乒乓球同时参与了AB方向和BB′方向的匀速直线运动的结果,而这两个分运动的速度都等于棒的推动速度。小球沿竖直方向及沿BB′方向的运动都是分运动;沿AB′方向的是合运动。分析表明合运动的位移与分运动位移遵守平行四边形定则。
②船渡河问题:可以看做由两个运动组成。假如河水不流动而船在静水中沿AB方向行驶,经一段时间从A运动到B(如图6),假如船的发动机没有开动,而河水流动,那么船经过相同的一段时间将从A运动到A′,如果船在流动的河水中开动同时参与上述两个运动,经相同时间从A点运动到B′点,从A到B′的运动就是上述两个分运动的合运动。
注意:船头指向为发动机产生的船速方向,指分速度;船的合运动的速度方向不一定是船头的指向。这里的分运动、合运动都是相对地球而言,不必引入相对速度概念,避免使问题复杂化。
①用分运动的位移、速度、加速度求合运动的位移、速度、加速度等叫运动的合成。反之由合运动求分运动的位移速度、加速度等叫运动的分解。
②运动的合成与分解遵守矢量运算法则,即平行四边形法则。例如:船的合位移s合是两个分位移s 1 s 2的矢量和;又例如飞机斜向上起飞时,在水平方向及竖直方向的分速度分别为v 1 =vcosθ,v 2 =vsinθ,其中,v是飞机的起飞速度。如图7所示。
①两个匀速直线运动的合运动一定是匀速直线运动。提问学生为什么?(v合为恒量)
②提出问题:船渡河时如果在AB方向的分运动是匀加速运动,水仍然匀速流动,船的合运动轨迹还是直线吗?学生思考后回答并提示学生用曲线运动的条件来判断,然后引导学生综合概括出判断方法:首先将两个分运动的初始运动量及外力进行合成,然后用合运动的初速度及合运动所受的合外力的方向关系进行判断。合成结果可知,船的合速度v合与合外力F不在同一直线上,船一定做曲线运动。如巩固知识让学生再思考回答:两个不在同直线上初速度都为零的匀加速直线运动的合运动是什么运动?
(匀加速直线运动)
(1)通过此例让学生明确运动的独立性及等时性的问题,即每一个分运动彼此独立,互不干扰;合运动与每一个分运动所用时间相同。
(2)关于速度的说明,在应用船速这个概念时,应注意区别船速v船及船的合运动速度v合。前者是发动机产生的分速度,后者是合速度,由于不引入相对速度概念,使上述两种速度容易相混。
(3)问题的提出:河宽H,船速为v船,水流速度为v水,船速v船与河岸的夹角为θ,如图9所示。
①求渡河所用的时间,并讨论θ=?时渡河时间最短。
②怎样渡河,船的合位移最小?
分析①用船在静水中的分运动讨论渡河时间比较方便,根据运动的独立性,渡河时间
分析②当v船>v水时,v合垂直河岸,合位移最短等于河宽H,根向与河岸的夹角。
1、曲线运动的条件是F合与v不在同一直线上,曲线运动的速度方向为曲线的切线方向。
2、复杂运动可以分解成简单的运动分别来研究,由分运动求合运动叫运动的合成,反之叫运动的分解,运动的合成与分解,遵守平行四边形定
3、用曲线运动的条件及运动的合成与分解知识可以判断合运动的性质及合运动轨迹。
最后一例题可作为思考题先留给学生。在学生思考后讲解效果更好。
高中物理教案6
一、“学案导学”教法的提出
教学中不应该只重知识的传授,而应该把教的目标转化成学习方案展示给学生,建立一个有目标的学习向导,给学生以明确的思维向导,调动学生的学习积极性和主动性,让学生最大限度地参与到学习的全过程中,提高课堂教学效果。我们将这个学习方案简称为“学案”。
物理学案导学就是针对学生在学习过程中存在的问题,依据物理教育规律而提出的一种以学案为操作材料,以突出学生自学、探究、教师调控为手段,以培养学生物理学习能力和学习情感、提高课堂效益为目的,注重学法指导的教学方法,它是实现“教的目的最终是为了不教”、“学为主体教为主导”、“教学的宗旨是教会学生学习”等素质教育理论提法的可操作性的教学策略。
二、“学案”的设计
学案编写的原则是,管而不列,放而不乱,既要发挥学案的指导作用,又要留有余地;既要有知识能力点,又要有思维创新面,使不同层次的学生都能跳一跳摘到桃子,获得成功的喜悦。在学案制作过程中,必须切实做好三项工作:
1.认真研究:研究教材和教学大纲,研究所教知识与学生思维能力;研究学生的知识水平和学习方法,研究知识规律。
2.制定好学习目标:学案中要有明确、简练、具体的学习目标,让学生一看便知,一听即明。学习目标的确定要切实可行,少而精,要符合教学大纲和教材关于“知识”、“能力”、“思想教育”的原则要求和学生实际,充分体现目标的整体性、层次性、外显性和可测性及前后目标的联系。
3.做好知识体系的编排:编排知识体系要根据学生认识规律,将知识点进行拆分或组合,深入挖掘知识宽度,充分发挥每个知识点的能力价值和情感价值,设计成不同层次的问题,找出一条引导学生积极认知的最佳思维网络。把涉及这些知识点的问题分类归纳变形组合,能提高学生的物理学习兴趣,给我们的教学带来意外收获。
三、“学案导学”的操作说明
1.示案自学:根据学生自学能力的个别差别不同,学案应在课前适当时间内发给学生,让其提前展开自学。
2.趣味引入,营造气氛。教师需要在课上前几分钟创设良好的课堂氛围,采取新颖多变的教学方法,调动学生探索新知的`兴趣。如学习变阻器一节时,教师拿出滑动变阻器对学生说:这个滑动变阻器是我发明的,学生会感到惊讶!接着教师满有情味地演示出发明滑动变阻器的过程,让学生在迫切求知的心理需求下进入学习变阻器的情境之中。
3.启发引导,探究领悟。在教学中,教师应尽可能地将演示实验变成学生分组探索实验,合理地分配探索实验和验证性实验。如变阻器一节,教师可以通过演示调光台灯,引导学生设计出调光台灯的电路图,这虽然课本上有现成答案,但经过学生独立思考,自己设计出来电路,学生感到无比喜悦,同时也尝到创造成功的体验。
4.自主质疑,积极思辨。教师应鼓励学生大胆暴露心中的疑虑、困惑,以及大胆的质疑,应始终以赞赏的态度对待学生,哪怕学生的问题幼稚、离奇,甚至怪诞,也不能有半点埋怨、责怪、厌烦的表示,以形成宽松、和谐的质疑环境。
问题提出后,引导学生自行研讨,积极思辨,给学生创造自己参与的机会。学生自学后又通过讨论能自己解决的问题,老师绝不能包办代替,学生不能解决的问题,教师应及时整理,根据学生实际存在的问题进行课上再备课,迅速确定“指导”的内容和形式。
5.达标检测。它是对学习过程的整体评价,起着引导学生再学习再提高的作用。操作中主要是让学生做学案上的达标检测题,以了解全班学生对各个知识、能力点的掌握情况。根据各种反馈的结果,采取多种补齐填缺措施,如:采用当堂讨论的形式、同桌互批互改、班内全体改正等,对薄弱部分进行补救,对错误部分进行纠正,力争整体达标。
6.自我反思,知识内化。在教学中,教师应注意培养学生的反思意识,教给学生反思的方法,以改进学习习惯,完善学习过程,找到适合自身的一套高效的学习方法,提高自我建构能力。如课后小结时,引导学生自主确定学习的重点、难点及解决策略,所学内容在整体知识中的地位,解决了哪些问题,新知与原有知识的联系与区别对比等。
7.推荐作业。在布置作业中,应根据学生不同的思维特征和要求,设置不同层次的适量的习题,让学生自由选做。推荐作业保证了物理学案导学的完整性,既面向学生全体,又分层教学。
高中物理教案7
教学目标:
1、理解麦克斯韦电磁场理论的两个支柱:变化的磁场产生电场、变化的电场产生磁场。了解变化的电场和磁场相互联系形成同一的电磁场。
2、 了解电磁场在空间传播形成电磁波。
3、 了解麦克斯韦电磁场理论以及赫兹实验在物理学发展中的贡献。体会两位科学家研究物理问题的思想方法。
教学过程:
一、伟大的预言
说明:法拉第发现电磁感应现象那年,麦克斯韦在苏格兰爱丁堡附近诞生,从小就表现出了惊人的数学和物理天赋,他从小热爱科学,喜欢思考,1854年从剑桥大学毕业后,精心研读了法拉第的著作,法拉第关于“场”和“力线”的思想深深吸引了麦克斯韦,但麦克斯韦也发现了法拉第定性描述的弱点,那就是不能定量的描述电场和磁场的关系。因此,这位初出茅庐的科学家决定用他的数学才能来弥补。1860年初秋,麦克斯韦特意去拜访法拉第,两人虽然在年龄上相差四十岁,在性情、爱好、特长方面也迥然各异,可是对物质世界的看法却产生了共鸣。法拉第鼓励麦克斯韦:“你不应停留在数学解释我的观点”,而应该突破它。
说明:麦克斯韦学习了库仑、安培、奥斯特、法拉第、亨利的研究成果,结合了自己的创造性工作,最终建立了经典电磁场理论。
说明:法拉第电磁感应定律告诉我们:闭合线圈中的磁通量发生变化就能产生感应电流,我们知道电荷的定向移动形成电流,为什么会产生感应电流呢?一定是有了感应电场,因此,麦克斯韦认为,这个法拉第电磁感应的'实质是变化的磁场产生电场,电路中的电荷就在这个电场的作用下做定向移动,产生了感应电流。即使变化的磁场周围没有闭合电路,同样要产生电场。变化的磁场产生电场,这是一个普遍规律
说明:自然规律存在着对称性与和谐性,例如有作用力就有反作用力。既然变化的磁场能够产生电场,那么变化的电场能否产生磁场呢?麦克斯韦大胆地假设,变化的电场能够产生磁场。
问:什么现象能够说明变化的电场能够产生磁场?(例如通电螺线管中的电流发生变化,那么螺线管内部的磁场要发生变化)
说明:根据这两个基本论点,麦克斯韦推断:如果在空间在空间某区域中有不均匀变化的电场,那么这个变化的电场能够引起变化的磁场,这个变化的磁场又引起新的变化的电场.........这样变化的电场引起变化的磁场,变化的磁场又引起变化的电场,变化的电场和磁场交替产生,由近及远传播就形成了电磁波。
二、电磁波
问:在机械波的横波中,质点的振动方向和波的传播方向之间有何关系?(两者垂直)
说明:根据麦克斯韦的理论,电磁波中的电场强度和磁感应强度互相垂直,而且两者均与电磁波的传播方向垂直,电磁波是横波。
问:电磁波以多大的速度传播呢?(以光速C传播)
问:在机械波中是位移随时间做周期性变化,在电磁波中是什么随时间做周期性变化呢?(电场强度E和磁感应强度B)
三、赫兹的电火花
说明:德国科学家赫兹证明了麦克斯韦关于电磁场的理论
板书设计
一、伟大的预言
1、变化的磁场产生电场
变化的电场产生磁场
2、变化的电场和磁场交替产生,由近及远传播形成电磁波
二、电磁波
1、电磁波是横波,E和B互相垂直,而且两者均与电磁波的传播方向垂直÷
2、电磁波以光速C传播)
3、电磁波中电场强度E和磁感应强度B随时间做周期性变化
三、赫兹的电火花
赫兹证明了麦克斯韦关于电磁场的理论
高中物理教案8
课前预习
一、安培力
1.磁场对通电导线的作用力叫做___○1____.
2.大小:(1)当导线与匀强磁场方向________○2_____时,安培力最大为F=_____○3_____.
(2)当导线与匀强磁场方向_____○4________时,安培力最小为F=____○5______.
(3) 当导线与匀强磁场方向斜交时,所受安培力介于___○6___和__○7______之间。
3.方向:左手定则:伸开左手,使大拇指跟其余四个手指__○8____,并且都跟手掌在___○9___,把手放入磁场中,让磁感线___○10____,并使伸开的四指指向 _○11___的方向,那么,拇指所指的方向,就是通电导线在磁场中的__○12___方向.
二、磁电式电流表
1.磁电式电流表主要由___○13____、____○14___、____○15____、____○16_____、_____○17_____构成.
2.蹄形磁铁的磁场的方向总是沿着径向均匀地分布的,在距轴线等距离处的磁感应强度的大小总是相等的,这样不管线圈转到什么位置,线圈平面总是跟它所在位置的磁感线平行,I与指针偏角θ成正比,I越大指针偏角越大,因而电流表可以量出电流I的大小,且刻度是均匀的,当线圈中的电流方向改变时,安培力的方向随着改变,指针偏转方向也随着改变,又可知道被测电流的方向。
3、磁电式仪表的优点是____○18________,可以测很弱的电流,缺点是绕制线圈的导线很细,允许通过的电流很弱。
课前预习答案
○1安培力○2垂直○3BIL○4平行○50○60○7BIL○8垂直○9同一个平面内○10垂直穿入手心○11电流○12受力○13蹄形磁铁 ○14 铁芯○15绕在线框上的线圈○16螺旋弹簧○17指针○18灵敏度高
重难点解读
一、 对安培力的认识
1、 安培力的性质:
安培力是磁场对电流的作用力,是一种性质力。
2、 安培力的作用点:
安培力是导体中通有电流而受到的力,与导体的中心位置无关,因此安培力的作用点在导体的几何中心上,这是因为电流始终流过导体的所有部分。
3、安培力的方向:
(1)安培力方向用左手定则判定:伸开左手,使大拇指和其余四指垂直,并且都跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流方向,那么大拇指所指的方向就是通电导体在磁场中的受力方向。
(2)F、B、I三者间方向关系:已知B、I的方向(B、I不平行时),可用左手定则确定F的唯一方向:F⊥B,F⊥I,则F垂直于B和I所构成的平面(如图所示),但已知F和B的方向,不能唯一确定I的方向。由于I可在图中平面α内与B成任意不为零的夹角。同理,已知F和I的方向也不能唯一确定B的方向。
(3)用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
4、安培力的大小:
(1)安培力的计算公式:F=BILsinθ,θ为磁场B与直导体L之间的夹角。
(2)当θ=90°时,导体与磁场垂直,安培力最大Fm=BIL;当θ=0°时,导体与磁场平行,安培力为零。
(3)F=BILsinθ要求L上各点处磁感应强度相等,故该公式一般只适用于匀强磁场。
(4)安培力大小的特点:①不仅与B、I、L有关,还与放置方式θ有关。②L是有效长度,不一定是导线的实际长度。弯曲导线的有效长度L等于两端点所连直线的长度,所以任意形状的闭合线圈的有效长度L=0
二、通电导线或线圈在安培力作用下的运动判断方法
(1)电流元分析法:把整段电流等效为多段很小的直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断出整段电流所受合力方向,最后确定运动方向.
(2)特殊位置分析法:把通电导体转到一个便于分析的特殊位置后判断其安培力方向,从而确定运动方向.
(3)等效法:环形电流可等效成小磁针,通电螺线管可以等效成条形磁铁或多个环形电流,反过来等效也成立。
(4)转换研究对象法:因为电流之间,电流与磁体之间相互作用满足牛顿第三定律,这样,定性分析磁体在力的作用下如何运动的问题,可先分析电流在磁场中所受的安培力,然后由牛顿第三定律,再确定磁体所受作用力,从而确定磁体所受合力及运动方向.
典题精讲
题型一、安培力的方向
例1、电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转?
解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。(本题用其它方法判断也行,但不如这个方法简洁)。
答案:向左偏转
规律总结:安培力方向的判定方法:
(1)用左手定则。
(2)用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
(3)用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
题型二、安培力的大小
例2、如图,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直。线段ab、bc和cd的长度均为L,且 。流经导线的电流为I,方向如图中箭头所示。导线段abcd所受到的磁场的作用力的合力
A. 方向沿纸面向上,大小为
B. 方向沿纸面向上,大小为
C. 方向沿纸面向下,大小为
D. 方向沿纸面向下,大小为
解析:该导线可以用a和d之间的直导线长为 来等效代替,根据 ,可知大小为 ,方向根据左手定则.A正确。
答案:A
规律总结:应用F=BILsinθ来计算时,F不仅与B、I、L有关,还与放置方式θ有关。L是有效长度,不一定是导线的实际长度。弯曲导线的有效长度L等于两端点所连直线的长度,所以任意形状的闭合线圈的有效长度L=0
题型三、通电导线或线圈在安培力作用下的运动
例3、如图11-2-4条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会__(增大、减小还是不变?)水平面对磁铁的摩擦力大小为__。
解析:本题有多种分析方法。⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩擦力。⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的'反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
答案:减小 零
规律总结:分析通电导线或线圈在安培力作用下的运动常用方法:(1)电流元分析法,(2)特殊位置分析法, (3)等效法,(4)转换研究对象法
题型四、安培力作用下的导体的平衡问题
例4、 水平面上有电阻不计的U形导轨NMPQ,它们之间的宽度为L,M和P之间接入电动势为E的电源(不计内阻).现垂直于导轨搁一根质量为m,电阻为R的金属棒ab,并加一个范围较大的匀强磁场,磁感应强度大小为B,方向与水平面夹角为θ且指向右斜上方,如图8-1-32所示,问:
(1)当ab棒静止时,受到的支持力和摩擦力各为多少?
(2)若B的大小和方向均能改变,则要使ab棒所受支持力为零,B的大小至少为多少?此时B的方向如何?
解析:从b向a看侧视图如图所示.
(1)水平方向:F=FAsin θ①
竖直方向:FN+FAcos θ=mg②
又 FA=BIL=BERL③
联立①②③得:FN=mg-BLEcos θR,F=BLEsin θR.
(2)使ab棒受支持力为零,且让磁场最小,可知安培力竖直向上.则有FA=mg
Bmin=mgREL,根据左手定则判定磁场方向水平向右.
答案:(1)mg-BLEcos θR BLEsin θR (2)mgREL 方向水平向右
规律总结:对于这类问题的求解思路:
(1)若是立体图,则必须先将立体图转化为平面图
(2)对物体受力分析,要注意安培力方向的确定
(3)根据平衡条件或物体的运动状态列出方程
(4)解方程求解并验证结果
巩固拓展
1. 如图,长为 的直导线拆成边长相等,夹角为 的 形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为 ,当在该导线中通以电流强度为 的电流时,该 形通电导线受到的安培力大小为
(A)0 (B)0.5 (C) (D)
答案:C
解析:导线有效长度为2lsin30°=l,所以该V形通电导线收到的安培力大小为 。选C。
本题考查安培力大小的计算。
2..一段长0.2 m,通过2.5 A电流的直导线,关于在磁感应强度为B的匀强磁场中所受安培力F的情况,正确的是( )
A.如果B=2 T,F一定是1 N
B.如果F=0,B也一定为零
C.如果B=4 T,F有可能是1 N
D.如果F有最大值时,通电导线一定与B平行
答案:C
解析:当导线与磁场方向垂直放置时,F=BIL,力最大,当导线与磁场方向平行放置时,F=0,当导线与磁场方向成任意其他角度放置时,0 3. 首先对电磁作用力进行研究的是法国科学家安培.如图所示的装置,可以探究影响安培力大小的因素,实验中如果想增大导体棒AB摆动的幅度,可能的操作是( ) A.把磁铁的N极和S极换过来 B.减小通过导体棒的电流强度I C.把接入电路的导线从②、③两条换成①、④两条 D.更换磁性较小的磁铁 答案:C 解析:安培力的大小与磁场强弱成正比,与电流强度成正比,与导线的长度成正比,C正确. 4. 一条形磁铁放在水平桌面上,它的上方靠S极一侧吊挂一根与它垂直的导电棒,图中只画出此棒的截面图,并标出此棒中的电流是流向纸内的,在通电的一瞬间可能产生的情况是( ) A.磁铁对桌面的压力减小 B.磁铁对桌面的压力增大 C.磁铁受到向右的摩擦力 D.磁铁受到向左的摩擦力 答案:AD 解析:如右图所示.对导体棒,通电后,由左手定则,导体棒受到斜向左下方的安培力,由牛顿第三定律可得,磁铁受到导体棒的作用力应斜向右上方,所以在通电的一瞬时,磁铁对桌面的压力减小,磁铁受到向左的摩擦力,因此A、D正确. 5..质量为m的通电细杆ab置于倾角为θ的平行导轨上,导轨宽度为d,杆ab与导轨间的动摩擦因数为μ.有电流时ab恰好在导轨上静止,如图右所示.,下图是沿b→a方向观察时的四个平面图,标出了四种不同的匀强磁场方向,其中杆与导轨间摩擦力可能为零的是 A.①② B.③④ C.①③ D.②④ 答案: A 解析: ①中通电导体杆受到水平向右的安培力,细杆所受的摩擦力可能为零.②中导电细杆受到竖直向上的安培力,摩擦力可能为零.③中导电细杆受到竖直向下的安培力,摩擦力不可能为零.④中导电细杆受到水平向左的安培力,摩擦力不可能为零.故①②正确,选A. 6.如图所示,两根无限长的平行导线a和b水平放置,两导线中通以方向相反、大小不等的恒定电流,且Ia>Ib.当加一个垂直于a、b所在平面的匀强磁场B时;导线a恰好不再受安培力的作用.则与加磁场B以前相比较( ) A.b也恰好不再受安培力的作用 B.b受的安培力小于原来安培力的2倍,方向竖直向上 C.b受的安培力等于原来安培力的2倍,方向竖直向下 D.b受的安培力小于原来安培力的大小,方向竖直向下 答案:D 解析:当a不受安培力时,Ib产生的磁场与所加磁场在a处叠加后的磁感应强度为零,此时判断所加磁场垂直纸面向外,因Ia>Ib,所以在b处叠加后的磁场垂直纸面向里,b受安培力向下,且比原来小.故选项D正确. 7. 如图所示,在绝缘的水平面上等间距固定着三根相互平行的通电直导线a、b和c,各导线中的电流大小相同,其中a、c导线中的电流方向垂直纸面向外,b导线电流方向垂直纸面向内.每根导线都受到另外两根导线对它的安培力作用,则关于每根导线所受安培力的合力,以下说法中正确的是( ) A.导线a所受合力方向水平向右 B.导线c所受合力方向水平向右 C.导线c所受合力方向水平向左 D.导线b所受合力方向水平向左 答案:B 解析:首先用安培定则判定导线所在处的磁场方向,要注意是合磁场的方向,然后用左手定则判定导线的受力方向.可以确定B是正确的. 8.如图所示,在空间有三根相同的导线,相互间的距离相等,各通以大小和方向都相同的电流.除了相互作用的磁场力外,其他作用力都可忽略,则它们的运动情况是______. 答案: 两两相互吸引,相聚到三角形的中心 解析:根据通电直导线周围磁场的特点,由安培定则可判断出,它们之间存在吸引力. 9.如图所示,长为L、质量为m的两导体棒a、b,a被置在光滑斜面上,b固定在距a为x距离的同一水平面处,且a、b水平平行,设θ=45°,a、b均通以大小为I的同向平行电流时,a恰能在斜面上保持静止.则b的电流在a处所产生的磁场的磁感应强度B的大小为 . 答案: 解析: 由安培定则和左手定则可判知导体棒a的受力如图,由力的平衡得方程: mgsin45°=Fcos45°,即 mg=F=BIL 可得B= . 10.一劲度系数为k的轻质弹簧,下端挂有一匝数为n的矩形线框abcd.bc边长为l.线框的下半部处在匀强磁场中,磁感应强度大小为B,方向与线框平面垂直.在下图中,垂直于纸面向里,线框中通以电流I,方向如图所示.开始时线框处于平衡状态,令磁场反向,磁感强度的大小仍为B,线框达到新的平衡.在此过程中线框位移的大小Δx______,方向______. 答案: ;位移的方向向下 解析:设线圈的质量为m,当通以图示电流时,弹簧的伸长量为x1,线框处于平衡状态,所以kx1=mg-nBIl.当电流反向时,线框达到新的平衡,弹簧的伸长量为x2,由平衡条件可知 kx2=mg+nBIl. 所以k(x2-x1)=kΔx=2nBIl 所以Δx= 电流反向后,弹簧的伸长是x2>x1,位移的方向应向下. 【学习目标】 l. 知道曲线运动中速度的方向,理解曲线运动是一种变速运动. 2.知道物体做曲线运动的条件是所受的合外力与它的速度方向不在一条直线上. 【学习重点】 1.什么是曲线运动. 2.物体做曲线运动的方向的确定. 3.物体做曲线运动的条件. 【学习难点】 物体做曲线运动的条件. 【学习过程】 1.什么是曲线的切线? 阅读教材33页有关内容,明确切线的 概念。 如图1,A、B为曲线上两点,当B无限接近A时,直线AB叫做 曲线在A点的__________ A B 图 2.速度是矢量,既有大小,又有方向,那么速度的变化包含哪几层含义? 3.质点做曲线运动时,质点在某一点的速度,沿曲线在这一点的____________。 4.曲线运动中,_________时刻在变化,所以曲线运动是__________运动,做曲线运动的物体运动状态不断发生变化。 5.如果物体所受的合外力跟其速度方向____________,物体就做直线运动。如果物体所受的合外力跟其速度方向__________________,物体就做曲线运动。 【同步导学】 1.曲线运动的特点 ⑴ 轨迹是一条曲线 ⑵ 曲线运动速度的方向 ① 质点在某一点(或某一时刻)的速度方向是沿曲线的这一点的切线方向。 ② 曲线运动的速度方向时刻改变。 ⑶ 是变速运动,必有加速度 ⑷ 合外力一定不为零(必受到外力作用) 例1 在砂轮上磨刀具时可以看到,刀具与砂轮接触处有火星沿砂轮的切线飞出,为什么由此推断出砂轮上跟刀具接触处的质点的速度方向沿砂轮的切线方向? 2.物体作曲线运动的条件 当物体所受的合力的方向与它的速度方向在同一直线时,物体做直线运动;当物体所 1 专心 爱心 用心 受合力的方向与它的速度方向不在同一直线上时,物体就做曲线运动. 例2 关于曲线运动,下面说法正确的是( ) A.物体运动状态改变着,它一定做曲线运动 B.物体做曲线运动,它的运动状态一定在改变 C.物体做曲线运动时,它的加速度的方向始终和速度的方向一致 D.物体做曲线运动时,它的加速度方向始终和所受到的合外力方向一致 3.关于物体做直线和曲线运动条件的进一步分析 ① 物体不受力或合外力为零时,则物体静止或做匀速直线运动 ② 合外力不为零,但合外力方向与速度方向在同一直线上,则物体做直线运动,当合外力为恒力时,物体将做匀变速直线运动(匀加速或匀减速直线运动),当合外力为变力时,物体做变加速直线运动。 ③ 合外力不为零,且方向与速度方向不在同一直线上时,则物体做曲线运动;当合外力变化时,物体做变加速曲线运动,当合外力恒定时,物体做匀变速曲线运动。 例3.一质量为m的物体在一组共点恒力F1、F2、F3作用下而处于平衡状态,如撤去F1,试讨论物体运动情况怎样? 【巩固练习】 1.关于曲线运动速度的方向,下列说法中正确的是 ( ) A.在曲线运动中速度的方向总是沿着曲线并保持不变 B.质点做曲线运动时,速度方向是时刻改变的,它在某一点的瞬时速度的方向与这—点运动的轨迹垂直 C.曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向就是在曲线上的这—点的切线方向 D.曲线运动中速度方向是不断改变的,但速度的.大小保持不变 2.如图所示的曲线为运动员抛出的铅球运动轨迹(铅球视为质点),A、B、C为曲线上的三点,关于铅球在B点的速度方向,说法正确的是 ( ) A.为AB的方向 B.为BC的方向 C.为BD的方向 D.为BE的方向 3.物体做曲线运动的条件为 ( ) A.物体运动的初速度不为零 B.物体所受的合外力为变力 C.物体所受的合外力的方向上与速度的方向不在同一条直线上 D.物体所受的合外力的方向与加速度的方向不在同—条直线上 (第2题) 专心 爱心 用心 2 A.变速运动—定是曲线运动 B.曲线运动—定是变速运动 C.速率不变的曲线运动是匀速运动 D.曲线运动也可以是速度不变的运动 5.做曲线运动的物体,在其轨迹上某一点的加速度方向 ( ) A.为通过该点的曲线的切线方向 B.与物体在这一点时所受的合外力方向垂直 C.与物体在这一点速度方向一致 D.与物体在这一点速度方向的夹角一定不为零 6.下面说法中正确的是( ) A.做曲线运动的物体的速度方向必变化 B.速度变化的运动必是曲线运动 C.加速度恒定的运动不可能是曲线运动 D.加速度变化的运动必定是曲线运动 7.一质点在某段时间内做曲线运动,则在这段时间内( ) A.速度一定不断改变,加速度也一定不断改变; B.速度一定不断改变,加速度可以不变; C.速度可以不变,加速度一定不断改变; D.速度可以不变,加速度也可以不变。 8.下列说法中正确的是( ) A.物体在恒力作用下不可能做曲线运动 B.物体在变力作用下一定做曲线运动 C.物体在恒力或变力作用下都可能做曲线运动 D.做曲线运动的物体,其速度方向与加速度方向一定不在同一直线上 9.如图所示,物体在恒力F作用下沿曲线从A运动到B,这时突然使它所受的力方向改变而大小不变(即由F变为-F),在此力作用下物体以后的运动情况,下列说法正确的是( ) A.物体不可能沿曲线Ba运动; B.物体不可能沿曲线Bb运动; C.物体不可能沿曲线Bc运动; D.物体可能沿原曲线由B返回A。 b 10.一个做匀速直线运动的物体,突然受到一个与运动方向不在同一直线上的恒力作用时,物体运动为 ( ) A.继续做直线运动 B.一定做曲线运动 C.可能做直线运动,也可能做曲线运动 D.运动的形式不能确定 一、教学目标 1.知道非纯电阻电路中的能量转化情况,并能进行相关计算。 2.通过纯电阻电路和非纯电阻电路在能量转化过程中的对比,提高归纳总结、对比分析的能力。 3.提高物理学习兴趣,发现生活中的物理知识。 二、教学重难点 【重点】非纯电阻电路中的能量转化。 【难点】纯电阻、非纯电阻电路的区分,纯电阻电路和非纯电阻电路在能量转化过程中的区别。 三、教学过程 (一)新课导入 复习导入:提问焦耳定律讨论的是电路中怎样的.能量转化情况?学生回答电能完全转化为内能的情况。 进一步提问:实际中有些电路除含有电阻外还含有其他负载,如电动机,那电动机的能量转化情况又是如何呢?进而引入新课——《电路中的能量转化》。 (二)新课讲授 1.非纯电阻电路中的能量转化 提问:结合生活经验,电动机是将消耗的电能全部转化成机械能了吗? 学生回答:电动机除了将电能转化成机械能以外,还有一部分电能转化成了内能。 小组讨论:当电动机接上电源后,会带动风扇转动,这里涉及哪些功率?功率间的关系又如何? 课 题:碰撞 教学目标: 1、使学生了解碰撞的特点,物体间相互作用时间短,而物体间相互作用力很大。 2、理解弹性碰撞和非弹性碰撞,了解正碰、斜碰及广义碰撞散射的概念。 3、初步学会用动量守恒定律解决一维碰撞问题。 重点: 强性碰撞和非弹性碰撞 难点: 动量守恒定律的应用 教学过程: 1、碰撞的特点: 物体间互相作用时间短,互相作用力很大。 2、弹性碰撞: 碰撞过程中,不仅动量守恒、机械能也守恒,碰撞前后系统动能之和不变 3、非弹性碰撞 碰撞过程中,仅动量守恒、机械能减少,碰撞后系统动能和小于碰撞前系统动能和,若系统结合成一个整体,则机械能损失最大。 4、对心碰撞和非对心碰撞 5、广义碰撞散射 6、例题 例1、在气垫导轨上,一个质量为600g的滑块以15cm/s的速度与另一个质量为400g、速度为10cm/s方向相反的滑块迎面相撞,碰撞后两个滑块并在一起,求碰撞后的滑块的速度大小和方向。 例2、质量为m速度为υ的`A球跟质量为3m静止的B球发生正碰。碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度允许有不同的值。请你论证:碰撞后B球的速度可能是以下值吗? (1)0.6υ(2)0.4υ(3)0.2υ。 7、小结:略 8、学生作业P19 ③⑤ 教学目标 (一)知识与技能 1.知道弹力产生的条件。 2.知道压力、支持力、绳的拉力都是弹力,能在力的示意图中画出它们的方向。 3.知道弹性形变越大弹力越大,知道弹簧的弹力跟弹簧的形变量成正比,即胡克定律.会用胡克定律解决有关问题。 (二)过程与方法 1.通过在实际问题中确定弹力方向的能力。 2.自己动手进行设计实验和操作实验的能力。 3.知道实验数据处理常用的方法,尝试使用图象法处理数据。 (三)情感态度与价值观 1.真实准确地记录实验数据,体会科学的精神和态度在科学探究过程的重要作用。 2.在体验用简单的工具和方法探究物理规律的`过程中,感受学习物理的乐趣,培养学生善于把物理学习与生活实践结合起来的习惯。 教学重点 1.弹力有无的判断和弹力方向的判断。 2.弹力大小的计算。 3.实验设计与操作。 教学难点 弹力有无的判断及弹力方向的判断. 教学方法 探究、讲授、讨论、练习 教学手段 教具准备 弹簧、钩码、泡沫塑料块、粉笔、烧瓶(内装红墨水瓶塞上面插细玻璃管)、 演示胡克定律用的铁架台、刻度尺、弹簧、钩码等等. 一、教学目标 【知识与技能】 1、知道常见的形变,了解物体的弹性; 2、知道弹力产生的条件; 3、知道压力、支持力、绳的拉力都是弹力,能在力的示意图中画出它们的方向。 【过程与方法】 通过探究弹力的存在,能提高在实际问题中确定弹力方向的能力,体会假设推理法解决问题的巧妙。 【情感态度与价值观】 观察和了解形变的有趣现象,感受自然界的奥秘,感受学习物理的乐趣,建立把物理学习与生活实践结合起来的习惯。 二、教学重难点 【重点】 弹力产生的条件及弹力方向的判定 【难点】 接触的物体是否发生形变及弹力方向的确定 三、教学过程 环节一:导入新课 教学一开始前,给每个学生小组分发弹簧和尺子,让每个小组试着把玩这些物件,如用力拉或压弹簧,用力弯动尺子等。在操作过程中思考被拉或压的弹簧,弯动的尺子的.有什么共同点是什么?大家可否试着举出生活中其他的一些诸如这个弹簧和尺子的例子? 物体的形状都发生了改变。由此引入物体的形态发生了变化是源于物体都受到了力的作用,这种力就是今天要学习的弹力。 环节二:新课讲授 (一)弹性形变和弹力 概念:物体在力的作用下形状或体积的改变叫做形变。 提问:刚才举的那些例子都很容易观察到,如果一本书放在桌面上,书和桌面发生形变了没有? 学生会产生疑惑分歧,但教师此时可以不用详解,而是做现场演示实验1,让学生观察用手挤压时XX形变(双手握住注满红墨水的烧瓶,用力挤压底部。上插玻璃管中的红墨水液面上升。) 为了让学生有更直观深刻的印象,也会用视频播放演示实验2:桌面微小形变的激光演示(在一个大桌上放两个平面镜M和N,让一束光依次被这两面镜子反射,最后射在刻度尺上形成一个光点。用力压桌面,观察刻度尺上光点位置的变化。) 学生观察后思考:通过上面的实验,我们观察到什么样的实验现象?我们用了什么样的方法?那书放在桌面上,书和桌面发生形变了没有? 分析得出:通过微观放大的方法观察,我们发现原来不容易观察的瓶子和桌面也发生了形变。 归纳:由此我们可以想到一切物体都可以发生形变,形变分为很多种类,有些物体在形变后能够恢复原状,这种形变叫做弹性形变。 提问:发生弹性形变的物体是不是在所有的情况下都可以恢复原状呢?请举例说明? 学生能举出有时弹簧拉得过长就恢复不了原状。指出:如果形变过大,超过一定的限度,撤去作用力后物体不能完全恢复原来的形状,这个限度叫做弹性限度。 根据前面的铺垫,总结弹力的概念:发生形变的物体,由于要恢复原状,对与它接触的物体会产生力的作用,这种力叫做弹力。例举蹦床的例子说明。 (二)几种弹力的方向 教师在黑板上画出书与桌面之间的相互作用力,与学生一起分析之间的相互作用关系,指出书对桌面的压力和桌面对书的支持力都是弹力。 举出实例:给出吊灯图片,做出分析。以灯为研究受力对象,链子指向链子收缩的方向吊住吊灯,链子发生形变。链子被拉长,就要企图恢复形变。这里施力物体——链子,受力物体——灯。这时候链子对灯的拉力的方向是——竖直向上,指向链子收缩的方向。 做出总结:弹力方向——施力物体形变恢复的方向;与施力物体形变方向相反。压力和支持力的方向总是垂直于接触面指向受力物体,绳的拉力总是沿着绳子指向绳收缩的方向。 环节三:巩固提高 给出如下三个图片,要求学生画出弹力的示意图。 归纳总结: 三种接触情况下弹力的方向: (1)面面接触,垂直于接触面指向被支持的物体 (2)点面接触,垂直于接触面指向被支持的物体 (3)点点接触,垂直于接触点的切面指向被支持物体。 环节四:小结作业 小结:师生归纳弹力的相关知识点。 作业:预习后面胡克定律,了解弹力大小的特点。 四、板书设计 五、教学反思 一、知识与技能 1.粗略了解物理学史上对电荷间相互作用力的认识过程。 2.知道电荷间的相互作用是通过电场发生的,电场是客观存在的一种特殊的形态。 3.理解电场强度的概念及其定义,会根据电场强度的定义进行有关的计算。知道电场强度是矢量,知道电场强度的方向是怎样规定的。 4.能根据库仑定律和电场强度的定义推导点电荷场强的计算式,并能用此公式进行有关的计算。 5.知道场强的叠加原理,并能应用这一原理进行简单的计算。 二、过程与方法 1.经历“探究描述电场强弱的物理量”的过程,获得探究活动的体验。 2.领略通过电荷在电场中所受静电力研究电场、理想模型法、比值法、类比法等物理学研究方法。 三、情感态度与价值观 1.体验探究物理规律的艰辛与喜悦。 2.学习科学家严谨科学的态度。 【教学重点】 1.探究描述电场强弱的物理量。 2.理解电场、电场强度的概念,并会根据电场强度的定义进行有关的计算。 【教学难点】 探究描述电场强弱的物理量。 【教学用具】多媒体课件 【设计思路】 以“电荷间相互作用如何发生”、“如何描述电场的强弱”两大问题为主线展开,具体操作思路是: 1.学生自学电场,培养学生阅读、汲取信息的能力。 2.通过实验模拟和定量分析的方法探究描述电场强弱的物理量。 3.通过练习巩固加深对电场强度概念的理解,探讨点电荷的电场及场强叠加原理。 【教学设计】 一、复习提问、新课导入(5分钟) 教师:上一节课我们学习了库仑定律,请同学们回忆一下:库仑定律的内容是什么? 学生回答:略 教师:我们不免会产生这样的疑问: 投影展示问题1:真空中?它们之间相隔一定的距离这种相互作用是如何产生的呢?难道能够不需介质超越空间? 投影展示“探究影响电荷间相互作用力的因素”图片(1.2-1)。 教师:这幅图大家不陌生,那么相同的小球在不同的位置所受作用力不一样,说明了什么? 学生回答:库仑力的大小与距离有关。 教师:其本质原因又是什么呢?(投影展示问题2) 教师:带着这两个疑问,本节课我们一齐来学习第三节电场强度。(板书课题) 二、新课教学(35分钟) (一)电场 教师:请同学们带着以下问题自学“电场”内容。 (1)电荷间的相互作用是如何发生的?这一观点是谁提出来的? (2)请用自己的语言描述一下什么是电场? (3)电场有什么本领? 学生自学,师板书“一、电场”。 学生回答:(1)略; 教师:法拉第同学们曾记否? 学生(集体)回答:电磁感应现象。 教师:法拉第是英国物理学家、化学家,对事物的本质有着非常敏锐的洞察力,在电学上有着突出的贡献。依据法拉第的观点,我们如何描述电荷A、B之间的作用力。 师生共析。 (2)略; 教师启发引导:场是“物质”──它和分子、原子组成的实物一样具有能量、质量和动量,电视机、收音机信号的发射与接受就是电磁场在空间的传播;“特殊”──看不见、摸不着;“存在于电荷周围”并板书。 (电场是)存在于电荷周围的一种特殊的物质。 教师:场与实物是物质存在的两种不同形式。 (3)学生回答:对放入其中的电荷有静电力的作用。 (二)科学探究描述电场强弱的方法 教师:下面我们再来探讨第二个问题。 依次投影问题:①相同的小球在不同的位置所受作用力不一样,其本质原因是什么呢?(对照“探究影响电荷间相互作用力的因素”图片说明) 学生回答:电场强弱不同。 ②那么如何来描述电场的强弱呢? 教师启发:像速度、密度等寻找一个物理量来表示。 ③如何来研究电场? (学生思考) 教师启发引导:电场的本领是对场中的其他电荷具有作用力,这也是电场的最明显、最基本的特征之一。因此在研究电场的性质时,我们可以从静电力入手。(板书研究方法) 教师:对于像电场这样,看不见,摸不到,但又客观存在的物质,可以根据它表现出来的性质来研究它,这是物理学中常用的研究方法。 教师:还需要什么? 学生回答:电场及放入其中的电荷。 多媒体依次展示,教师简述:①“探究影响电荷间相互作用力的因素”中的试探电荷;②场源电荷。 师生共析对试探电荷的要求。 教师:下面请同学们仔细观察模拟实验的动画演示,并描述你看到的现象说明了什么。多媒体动画模拟:①不同位置偏角不同;②增加试探电荷带电量偏角均增加。 学生回答:不同位置受力不同;同一位置试探电荷带电量增加,受力增大,但不同位置受力大小关系不变。 教师:下面我们再通过表格定量地来看一看: 将表格填完整,并分析、比较表格中的数据有什么特点和规律,看你能否得出如何来描述电场的`强弱。多媒体展示表格,学生回答后依次填入:①F1、F2、F3及F1<F2<F3;②2F1、3F1、4F1、nF1等。 表一:(P1位置) 试探电荷 q 2q 3q 4q nq 静电力 F1 2F1 3F1 4F1 nF1 表二:(P2位置) 试探电荷 q 2q 3q 4q nq 静电力 F2 2F2 3F2 4F2 nF2 表三:(P3位置) 试探电荷 q 2q 3q 4q nq 静电力 F3 2F3 3F3 4F3 nF3 (学生思考并交流讨论) 学生回答: (1)不同的电荷,即使在电场中的同一点,所受静电力也不同,因而不能直接用试探电荷所受的静电力来表示电场的强弱; (2)电场中同一点,比值F/q是恒定的,与试探电荷的电荷量无关;(同一张表格) (3)在电场中不同位置比值F/q不同。(三张表格比较) 师生共同小结:比值由电荷q在电场中的位置决定,与电荷q的电荷量大小无关,它才是反映电场性质的物理量。 教师:在物理学中我们定义放入电场中某点的电荷所受的静电力F跟它的电荷量q的比值,叫做该点的电场强度。并板书。 (三)电场强度 1.定义: 教师:以前我们还学过哪些物理量是用比值法来定义的? 学生回答:略。 教师:从它的定义,电场强度的单位是什么? 学生回答:N/C 教师介绍另一种单位并板书。 2.单位:N/C或V/m,1N/C=1V/m 教师结合板画:在电场中不同位置,同种电荷受力方向不同,说明场强是矢量还是标量? 学生(集体)回答:矢量 教师结合板画:电场中同一点放入正电荷和负电荷受力方向不同,如何确定场强的方向呢? 教师:在物理学中作出了这样的规定。(板书) 3.方向:电场中某点电场强度的方向跟正电荷在该点所受静电力的方向相同。 教师:按照这个规定,如果放入电场中的是负电荷呢? 学生回答:与负电荷在电场中某点所受静电力的方向相反。 投影练习: 练习1(加深对场强的理解,探讨点电荷的场强大小与方向) 点电荷是最简单的场源电荷。设一个点电荷的电荷量为+Q,与之相距为r的A点放一试探电荷,所带电荷量为+q。 (1)试用所学的知识推导A点的场强的大小,并确定场强的方向; (2)若所放试探电荷为-2q,结果如何? (3)如果移走所放的试探电荷呢? (请两位同学板演前两问后,共同完成第三问) 师生共同归纳总结: 1.点电荷电场的场强大小与方向。(多媒体动画演示方向的确定方法) 2.电场强度是描述电场(力的)性质的物理量,在静电场中,它不随时间改变。电场中某点的场强完全由电场本身决定,与是否放入电荷,放入电荷的电荷量、电性无关! 辨析 和 的关系,强调 的适用条件。 练习2(探讨场强的叠加,巩固对场强的理解及公式的灵活运用,加强计算能力培养) 如图所示,真空中有两个点电荷Q1=+3.0×10-8C和Q2=-3.0×10-8C,它们相距0.1m,A点与两个点电荷的距离r相等,r=0.1m。求: (1)电场中A点的场强; (2)在A点放入电量q=-1×10-6C,求它受的电场力。 教师:题中场源电荷不止一个,如何来确定电场中某点的场强? 学生:平行四边形定则 (请两位同学板演) 教师:根据场强的叠加原理对于一个比较大的不能看成点电荷的带电物体产生电场的场强如何确定? 学生思考后回答:无限等分成若干个点电荷。 教师:根据以上方法,同学们设想一下一个半径为R的均匀带电球体(或球壳)外部产生电场的场强,如何求解? 学生思考后回答:等效成电荷量集中于球心的点电荷。 三、小结(多媒体依次投影,并简述) 通过本节课的学习,我们知道电荷间的相互作用是通过电场发生的,电场是存在于电荷周围的一种特殊的物质,它最基本的特征是对放入其中的电荷具有力的作用。正是利用电场的这一特性,我们通过研究试探电荷的所受静电力特点,引入了描述电场强弱的物理量──电场强度。电场强度是用比值法定义的,它是矢量,有方向。 电场、电场强度的概念是电学中最重要的概念之一,它的研究方法和定义方法也是物理学中比较常见的方法。 四、板书设计 一、电场 客观存在的一种特殊的物质形态 二、电场强度 1.定义:E=F/q 2.单位: 3.方向:跟正电荷在该点所受静电力的方向相同 三、点电荷的电场 1.推导: 2.大小: 3.方向: 四、电场强度的叠加 五、布置作业 教材P16-171、2、7 思考题: 完成课本P173,比较电场强度E=F/q与重力加速度g=G/m有什么相同点和不同点 六、教学反思 探究描述电场强弱的物理量是本节课的重难点内容之一,应给学生充分的思考时间,并让学生相互交流讨论,教师还可进行适当启发引导。另外,探究时间很难控制,在内容处理上应做到详略得当,发挥学生的主动性,如对电场及练习题的处理,尽可能由学生完成。 一、教材分析 本节教材选自人民教育出版社全日制普通高中课程标准实验教科书(物理2·必修)第五章《曲线运动》第六节《向心力》。 教材的内容方面来看,本章节主要讲解了向心力的定义、定义式、方向及验证向心力的表达式,变速圆周运动和一般曲线运动。前面几节已经学习了曲线运动、圆周运动、向心加速度,这节讲的是描述使物体做圆周运动的合外力,是对物体运动认识上的升华,为接下来万有引力的的学习奠定了基础。所以在整个教材体系中起了承上启下的作用,并且这样的安排由简单到复杂,符合学生的认知规律。 从教材的地位和作用方面来看,本章节是运动学中的重要概念,也是高一年级物理课程中比较重要的概念之一,是对物体运动认识上的升华,它把运动学和动力学联系在了一起,具有承上启下的桥梁作用,也是学生知识系统中不可或缺的重要组成部分。 二、学情分析 【知识基础方面】在学习本节课前学生已经学习了曲线运动、圆周运动、向心加速度,具备了探究向心力的基本知识和基本技能,这为本节课的探究性学习起到了铺垫作用。 【思维基础方面】高一的学生通过初中科学和第一学期的学习,具有了一定的物理思维方法和较强的计算能力,但接受能力尚欠缺,需要教师正确的引导和启发。 【情感态度方面】在学生的生活经验中,与向心力有关的现象有,但是有一些是错误的这就给学生理解向心力的概念带来困难。 三、教学目标 【知识技能目标】理解向心力的定义; 能说出向心力的定义、写出向心力的定义式和单位理解向心力的作用效果;用圆锥摆粗略验证向心力的表达式; 【过程方法目标】 通过对向心力,向心加速度,圆周运动,牛顿第二定律的理解与学习,相互联系,体验对物理概念的学习方法 【情感态度与价值观目标】 通过用概念前后联系的方法得出加速度的概念,感悟到探索问题解决问题的`兴趣和学无止境的观点; 通过向心力的教学引导学生从现实的生活经历与体验出发,激发学生的学习兴趣;通过一些有趣的实验实验,加深学生的印象,容易让学生理解,引起学生兴趣; 四、重点与难点 重点:向心力表达式验证,向心力来源与作用效果。设定一定运动情景,来验证向心力表达式。来源进行举例说明,进行受力分析。(重点如何落实) 难点:向心力表达式的验证。通过用圆锥摆粗滤验证表达式,通过圆锥摆做匀速圆周运动解释原理,分析其在运动角度和手里角度的合外力,测量数据与测量器材,一步步得出表达式的正确。(难点咋么突破) 五、教学方法与手段 教学方法:演示法,讲授法,讨论法教学手段:多媒体,口述 六、教学过程 1.引入 回顾本章内容,复习向心加速度,放一个有关视屏,向同学提问物体为甚么做圆周运动? 2.新课教学(熟悉一下过渡) 一、做小球做圆周运动的实验,多问题进行思考,得出向心力特点进行总结 二、教授有关向心力的有关知识并进行一定补充。 三、用圆锥摆粗滤验证向心力表达式小结:向心力定义表达式 【高中物理教案】相关文章: 高中物理教案03-05 高中物理教案《功率》08-24 高中物理教案范文11-02 [精品]高中物理教案06-16 高中物理教案(精品)06-29 高中物理教案优秀09-26 高中物理教案【精品】07-05 高中物理教案(15篇)02-15 高中物理教案13篇01-09高中物理教案9
高中物理教案10
高中物理教案11
高中物理教案12
高中物理教案13
高中物理教案14
高中物理教案15