现在位置:范文先生网>教案大全>数学教案>六年级数学教案>六年级数学上册教案

六年级数学上册教案

时间:2024-07-08 12:21:21 六年级数学教案 我要投稿

六年级数学上册教案必备[15篇]

  作为一名为他人授业解惑的教育工作者,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么问题来了,教案应该怎么写?下面是小编为大家整理的六年级数学上册教案,欢迎阅读与收藏。

六年级数学上册教案必备[15篇]

六年级数学上册教案1

  教学目标

  1、让学生认识圆环,了解并掌握圆环的特征和圆环面积的计算方法。

  2、通过操作、研究、发现、交流等教学活动,培养学生的合作意识和创新意识。

  3、发展学生的空间观念与交流能力。

  4、学会计算圆环的组合图形的面积,根据图形特征有效地选择计算方法。

  重点:掌握计算圆环的面积的方法。

  难点:圆环面积计算在实际生活中的应用。

  课件、圆纸片、剪刀、直尺、圆规。

  教学过程

  1、计算圆的面积。

  (1)半径是5 cm;

  (2)直径是8 cm。

  学生独立完成,2名学生板演。

  2、师:说一说圆的面积计算公式推导过程。

  师:通过上节课的学习,同学们对圆的面积计算公式都有了了解,今天我们继续来探究圆的面积。(板书课题:圆的面积(2))

  1、认识环形。

  师:我们来欣赏一组美丽的图片。

  (课件出示:环形花坛、奥运五环标志、光盘等环形图案。)

  师:图片的形状和我们学过的什么图形很相似?(圆)

  教师拿出环形光盘说明:像这样的图形,我们称它环形或圆环。

  师:请同学们想想生活中有哪些是环形?(学生自由回答。)

  2、制作圆环。

  (1)利用手边的工具自己做出一个圆环。

  (2)学生可利用工具剪出环形或画出环形。

  3、发现环形特点。

  老师拿着学生制作的环形提问:这个环形,你是怎样得到的?(从大圆中剪掉一个小圆。)

  (1)解释什么叫外圆半径和内圆半径。

  (2)求环形面积是求哪部分面积?

  (3)你怎样求这个环形的面积?(要求学生先独立思考,再在小组内交流。)

  师:谁能总结一下环形的面积是怎样计算的?(学生讨论、交流、总结,教师点拨、总结。板书:环形的.面积=外圆面积—内圆面积,S=πR2-πr2。)

  师:这道题你们会了,老师的黑板上还有一道例题,你们能帮助老师解决吗?

  4、课件出示教材第68页例2。

  光盘的银色部分是一个圆环,内圆半径是2 cm,外圆半径是6 cm。它的面积是多少?

  (1)学生读题。

  师:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?

  (2)学生讨论,交流算法,学生将列式板书:

  (3)比较两种算法的不同。

  师:环形的面积还可以这样计算。S=π(R2-r2)。

  1、计算阴影部分的面积。

  半个环形:R=10 cm,r=6 cm。

  学生独立完成,小组内相互说一说解题思路,集体讲评。

  2、判断。

  (1)在圆内剪去一个小圆就得到一个圆环。()

  (2)环宽=外圆半径-内圆半径。()

  3、让学生用学过的知识解答生活中的实际问题:一圆形花圃直径是10 m,要在它的外围修一条2 m宽的环形小路,这条路的面积是多少平方米?

  让学生先议一议解题方法。(内外圆半径)通过这节课的学习,你有什么收获?

  教学反思

  这节课是在学生掌握了求圆的面积基础上进行教学的。教师先让学生认识生活中的圆环,再用硬纸板做了环形进行演示,这让学生获得了直接的经验。虽然大部分同学都能求出环形的面积,但是同学们对环形特征的认识还不够深刻。因此,教师从认识环形的特征入手来完成本节课的教学,让学生把做环形的过程说出来,他们在表述的过程中,自然而然地说出了圆环的特征。教师引导学生通过操作、交流、讨论、合作学习等方式,让他们自主参与环形面积的计算这一知识的获取过程。这样他们就会学得积极主动,学习效果好。

六年级数学上册教案2

  教学内容:课本第4—6页,例2,例3及“做一做”,练习二1—4题。

  教学目标:

  (1)使学生理解一个数乘分数的意义,掌握分数乘以分数的计算法则。

  (2)学会分数乘分数的简便计算。

  (3)通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重、难点:

  理解一个数乘分数的意义,掌握分数乘分数的计算方法;推导算理,总结法则。

  教学过程:

  一、复习。

  1、计算下列各题并说出计算方法。

  2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  二、新课。

  引入:这节课我们来学习一人数乘以分数的意义和计算方法。(板书课题:一个数乘以分数)

  1、理解一个数乘以分数的意义。

  (1)第一幅图:一瓶桔汁重千克,3瓶重多少千克?怎样列式?

  指名列式,板书:

  问:表示什么意思?指名回答,板书:求3个或求的3倍。

  (2)出示第二幅图:一瓶桔汁重千克,半瓶重多少千克?怎样列式?怎样表示半瓶?

  指名回答:半瓶用表示;式子为:。

  说明:是求的`一半是多少,也就是求的是多少。板书:求的。

  (3)出示第三幅图:一瓶桔汁重千克,瓶重多少千克?怎样列式?

  指名回答,板书:,问:表示什么意思?指名回答,板书:求的。

  2、引导学生小结。

  ①指出三个算式都是分数乘法,比较三个算式的不同点:

  第一个算式与第二、三个算式中乘数有什么不同?

  想一想:第一个算式与第二、三个算式中乘法的意义有没有不同。有什么不同?

  学生齐读课本的结语。

  练习:

  课本的做一做1、2题。

  说一说下列算式的意义。

  理解分数乘以分数的计算方法。

  (1)出示例3(先出示第一个问题)。

  问:你根据什么列出式子?

  得出:根据“工作效率×工作时间=工作总量”列出式子:。

  问:如果我们用一个长方形表示1公顷,那么公顷怎样表示?

  问:公顷的是什么意思?

  要求学生观察图

  (2)问:在图中的对于1公顷来说,是1公顷的几分之几?

  引导得出:

  观察这个式子有什么特点?

  出示例3的第二个问题。

  问:已经求公顷的是公顷,那么公顷的应有这样的几份?就是多少公顷?

  板书:公顷)

  (2)引导学生小结分数乘以分数的计算方法。

  观察分数乘以分数的计算过程,谁能说一说计算方法?

  教师归纳,再看书上结语。

  再说明,为了计算的简便,也可以先约分,再乘。

  例:

  (3)做一做。

  三、巩固练习:练习二第1、2题。

  四、小结。

  这节课我们学习了什么内容?

  一个数乘以分数的意义是什么?

  分数乘以分数的计算方法是什么?

  五、作业。

  练习二第3、4题。

六年级数学上册教案3

  教学内容:

  课本第41页“练习与应用”第7-13题,“探索与实践”第14、15题。

  教学目标:

  1、培养学生认真观察、思考的能力。

  2、培养学生及时总结,自我评价的能力。

  3、提高学生主动探索,发现问题的能力。

  教学重点:

  提高学生的思考能力。

  教学难点:

  培养学生运用所学知识解决问题的能力。

  课前准备:

  小黑板

  教学过程:

  一、基本练习

  1、计算。

  5/12×9/10 34×10/51

  10/21×12/25×7/8 3/20×14×5/7

  2、解答应用题。

  (1)甲地到乙地公路长180千米,一辆汽车已经行了全程的 ,已经行了多少千米?

  (2)小强跑了1000米,小明跑的是小强的4/5,小军跑的是小明的3/2,小军跑了多少米?

  3、完成练习与应用第7-9题。

  独立完成,完成后集体讲评。

  二、探索与实践

  1、第14题。

  学生自己探索规律。

  学生在小组内交流自己的发现。

  全班交流。

  第一小题后一个分数总是前一个的.一半。

  第二小题前一个数乘3/2得后一个数。

  2、第15题。

  学生按照要求涂色。

  进行交流。

  学生提出问题,其他学生解答。

  3、思考题。

  规律是:分母是相邻的自然数(不为0)、分子是1的两个分数的差是它们的积。

  三、评价与反思

  1、学生自己对学习情况进行评价。

  2、学生小组交流。

  3、指名全班进行交流。

  4、教师根据交流情况进行指导。

  四、课堂总结

  通过这节课的学习,你有什么收获呢?

  五、布置作业

  练习与应用第10-13题。

六年级数学上册教案4

  教学目标

  1.理解一个数乘以分数的意义,明白分数乘以分数的算理,掌握计算法则。

  2.能正确地进行分数乘以分数的计算。

  3.通过学生全面参与教学过程,培养学生迁移、观察、分析、概括的能力。

  教学重点

  理解意义,掌握法则。

  教学难点

  推导计算法则。

  教学过程

  (一)复习

  2.口算下面各题,并说出算式的意义。

  (二)导入新课

  通过分数乘以整数意义的学习,使我们看到知识之间是有联系的,而且新知识都是在旧知识基础上发展的。今天我们继续研究一个数乘以分数的意义和计算方法。(板书课题)

  (三)讲授新课

  1.教师逐次出示投影片,引导学生认真观察,正确列出算式,说出算式的意义。

  投影:

  的3倍是多少。)(板书)

  投影:

  一半。)

  其中的一份。)

  师:结合题说一说,把谁平均分成2份,取其中1份?(把一瓶桔汁平均分成2份,取1份。)

  少。)(板书)

  投影:

  先观察图,然后列式,结合图说出算式意义。(小组讨论)

  汇报讨论结果,并板书。

  (3)不出示投影图,你自己还想知道多少瓶的重量呀?

  分别列式,说意义。

  列式?算式的意义是什么?

  (5)观察概括:观察(2)、(3)、(4)几题的列式,乘数是什么数?(分数)(板书)被乘数是什么数?(分数、小数、整数)我们统一叫做一个数。(板书:一个数)

  论)

  汇报讨论结果,并板书:

  一个数乘以分数的意义就是求这个数的几分之几是多少?

  (6)练习:说说算式意义。

  2.推导法则。

  我们已经学习了一个数乘以分数的意义,那么一个数乘以分数应该怎样计算呢?

  耕地多少公顷?

  (把一公顷平均分成2份,取其中一份,是1小时耕的。)

  拿出发的纸,说明:这张纸表示1公顷,你能折出一小时耕的公顷数吗?并用红斜线表示出来。(把结果贴在黑板上)

  ①再贴出一张折叠后的结果。

  这1份占1公顷的几分之几?怎样理解?(把1公顷平均分成(25)份,取其中1份,边说边用虚线延长5等分的线。)

  论,后订正,板书)

  分数有什么关系?(原式两分数的分母相乘。)

  并计算出结果。

  汇报、订正并板书。

  贴出在折纸上表示的`结果。

  观察:原式和结果分子、分母有什么关系?概括分数乘以分数的计算法则。(讨论、订正)

  (分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。)

  练一练

  投影订正三种做法:

  比较哪种方法对?哪种方法好?注意:先约分再乘。(板书)

  (四)巩固练习

  (做本上或投影片上)

  1.计算例2中算式的结果。

  投影反馈时,强调先约分。

  3.第7页,第1题,看图填空。(做书上)

  4.先说过程,再说结果:

  5.第7页,第4题,列式计算。

  6.判断:

  (五)课堂总结

  这节课我们学了哪些知识?意义是什么?法则是什么?应注意什么?

  课堂教学设计说明

  这节课是本单元的教学重点,因此,在教学设计上切忌结论式的教学,充分利用这节课的内容,发散学生的思维,提高学生各种能力。教案设计重视学生全面参与教学过程,如在教师的指导下,让学生积极主动地探索意义;用动手折叠、画,讨论等形式推导法则。使学生加深理解。教案中注意扶放结合,如例3第一问,是老师帮助学生学习,掌握分析思路,而第二问则是放开让学生依照第一题的解题思路学生自己列式、画图、说意义、推算结果。总结意义和法则的结论时,都是由感性认识到理性认识,使学生自己得出结论。

六年级数学上册教案5

  【教学内容】

  冀教版小学数学六年级上册第47-49页

  【教材分析】

  探索圆的面积公式,教材共设计了两个教学活动。

  活动一,估计飞镖版的面积。圆的面积的推导,需要将圆转化为学过的图形,而转化的关键要把圆等分为若干个小扇形,再剪拼。

  活动二 ,小组合作探索圆的面积公式。先后呈现了将圆平分为4、8、16、32份。启发学生推理并得出:如果等分的份数越多,上下两条边越来越平越来越平,到最终就完全平了,拼出的图形就是一个长方形了。进而推导出圆的面积公式。使学生学会数学方法,渗透极限思想。

  【学情分析】

  所任教的班级基础好,学习风气浓厚,探索欲望强烈这些都为本节课奠定了良好的基础。小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,六年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。本节课的设计着重在"以学生的发展为中心"的理念,将学生的已有知识结合来自生活常识的实例做为重要的课堂生成资源,运用有趣的教学手段,突破学生的思维定势,给学生充分发散思维的空间。

  【教学目标】

  知识技能

  1理解圆面积计算公式的推导。让学生利用已有的知识,运用转化的思想方法,推导出圆面积的计算公式。

  2初步运用圆面积计算公式进行圆面积的计算。

  过程和方法

  经历估算和小组合作操作﹑讨论等探索圆的面积的过程,培养学生逻辑推理能力。

  情感﹑态度﹑价值观

  通过圆面的剪拼,培养学生操作﹑观察﹑分析﹑的能力,渗透极限思想。

  【教学重点】

  圆面的剪拼,圆面积计算公式的推导

  【教学难点】

  极限思想的渗透,与公式的推导。

  【教具学具】

  投影仪,课件,等分好的圆形纸片。

  【教学过程】

  课前 三分钟

  复习前面学过的平面图形的面积公式

  一、 创设情境,导入新课

  (课件出示:绳长10分米,小羊的活动面积有多大?)

  师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察并讨论,然后指名回答。

  师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢?

  生:小羊活动的范围就是这个圆形的面积。

  师:这个圆的半径是多少?(10分米)

  师:小羊活动的面积到底有多大呢?这节课我们就一起来学习圆的面积。(板书:圆的`面积)

  师:你们能举起手中的圆形纸片比划它的面积吗?

  生动手比划。(课件演示圆的周长,面积)

  二、前置小研究,猜测感知

  (出示课件)

  (1)观察飞镖板,说一说发现了什 么。

  (2)估算一下:这块飞镖表面 的面积大约是多少平方厘米?

  交流学生的估算方法和结果

  三、 探索规律,解决问题。

  1、 由旧知引入新知

  师:大家还记得我们以前学习的平行四边形、三角形、梯形面积是用怎样的方法推导出来的吗?那么圆的面积也可以转化成我们学过的某一图形的面积来计算 今天我们先探究能不能把圆的面积转化成长方形或平行四边形的面积来计算。

  2、 探索圆面积公式

  师:拿出我们准备好的圆形剪一剪,拼一拼,看看能拼成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)

  师:下面请大家观察课件的演示和板书,能否说说平行四边形或者长方形的面积与圆面积之间的关系?并说出你的理由。(生说,教师板书)

  3、 应用圆面积公式

  师:现在请大家用圆面积公式计算小羊的活动面积有多大。或飞镖板的面积

  四、 巩固练习。

  1 、完成课本第49页"练一练"第1、2、3、4题

  五、总结

  这节课你学会了什么?

  学生自由发言。

六年级数学上册教案6

  位置与方向(二)在平面图上确定物体的位置

  教学导航

  一、教材内容

  在平面图上确定物体的位置。(教材第20~21页例2)

  二、教学目标

  1.会根据一个点相对于观测点的方向和距离确定这个点的具体位置。

  2.通过想象出物体相互之间的位置关系,培养空间观念。

  3.通过生活实例学习位置与方向的知识,感受数学与生活的紧密联系。

  三、重点难点

  重点:能根据给定的方向和距离在平面图上确定物体的位置。

  难点:明确在平面图上表示物体位置的具体过程和方法。

  四、教学准备

  教师准备:直尺、量角器、课件。

  学生准备:量角器、直尺。

  教学过程

  一、情境引入

  师:同学们,在上节课的学习过程中,我们知道了要确定一个物体的位置,需要哪几个条件?那么,如何在平面图上标出物体的位置呢?今天这节课我们继续学习位置与方向的相关知识。(板书课题:在平面图上确定物体的位置)

  二、学习新课

  教学教材第20~21页例2。

  (课件出示教材第20~21页例2)

  师:在例1的图中,B市、C市的具体位置应该标在哪里呢?请你在例1的图中标出B市、C市的具体位置。

  (1)尝试画图。

  ①学生独立思考怎样标出B市、C市的具体位置。

  ②小组交流作图的方法。

  ③尝试画图。(教师巡视,参与部分小组讨论,辅导有困难的学生。)

  (2)组织全班交流。

  ①投影展示学生完成的作品。

  ②组织交流和评议,通过交流明确在图上标出B市、C市位置的方法。

  ③教师小结作图过程。(边说边画)

  B市:先确定方向,用量角器量出A市的北偏西30°方向(量角器中心点与A市重合,量角器0°刻度线与正北方向重合,往西量出30°);再表示距离,用1 cm表示100 km,B市距离A市200 km,在图上也就是2 cm。

  C市:先确定方向,直接在图上找到A市的正北方向;再表示距离,用1 cm表示100 km,C市距离A市300 km,在图上也就是3 cm。

  (3)算一算。

  师:台风到达A市后,移动速度变为40千米/时,几小时后到达B市?(点名学生回答)

  根据学生的回答,板书:

  200÷40=5(时)

  (4)总结画图的基本步骤。

  组织学生交流:你们认为确定物体在图上的位置时,应注意什么?怎样确定?

  学生汇报,教师总结画图步骤:

  ①确定平面图中东、西、南、北的方向。

  ②确定观测点。

  ③根据所给的度数定出所画物体所在的方向。

  ④根据比例尺,定出所画物体与观测点之间的图上距离。(课件出示总结)

  三、巩固反馈

  1.完成教材第21页“做一做”。(教师画出平面图,点名学生板演)

  2.完成教材第24页“练习五”第5题(学生独立完成,集体订正)

  四、课堂小结

  1.说一说这堂课的收获。

  2.谈谈在解决实际问题中有哪些需要注意或不太懂的地方?

  板书设计

  在平面图上确定物体的位置

  例2:

  200÷40=5(时)

  答:台风5小时后到达B市。

  教学反思

  1.从学生的'课堂练习来看,学生画示意图还存在以下几个问题:方向角没有找准;距离没有按单位长度换算(少数);中心点的位置没有找准;物体的具体位置没有明显地表示出来,或者没有标出名字,让人看不清楚;也有学生方向找错了。根据这些情况,我认为教师在教学时更应该注重画示意图的细节,注重对学生空间观念的培养。

  2.我的补充:

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  备课资料参考

  典型例题准备

  【例题】一艘轮船在大海中以每小时16千米的速度向正东方向航行,10时发现北偏东30°方向24 km处有一座灯塔,11时30分这座灯塔在轮船的什么位置?

  分析:根据题意可知,从10时到11时30分,轮船行驶了16×1。5=24(km)。画出图形可知,轮船原来的位置、轮船现在的位置、灯塔所构成的三角形是等边三角形,根据等边三角形的特点即可解决问题。

  解答:16×1。5=24(km)

  根据题意作图如下:

  答:11时30分这座灯塔在轮船的西偏北60°方向24 km处。

  解法归纳:解本题的关键是运用路程、速度和时间之间的关系求出轮船行驶的路程,从而作出图形,进而根据等边三角形的特点找出图中边角间的关系。

  相关知识阅读

  南辕北辙

  从前有一个人,从魏国到楚国去。他带了很多的盘缠,雇了上好的车,驾上骏马,请了驾车技术精湛的车夫,就上路了。楚国在魏国的南面,可这个人不问青红皂白就让驾车人赶着马车一直向北走去。

  路上有人问他的车是要往哪儿去,他大声回答说:“去楚国!”路人告诉他说:“到楚国去应往南方走,你这是在往北走,方向不对。”那人满

  不在乎地说:“没关系,我的马快着呢!”路人替他着急,拉住他的马,阻止他说:“方向错了,你的马再快,也到不了楚国呀!”那人依然毫不醒悟地说:“不打紧,我带的路费多着呢!”路人极力劝阻他说:“虽说你路费多,可是你走的不是那个方向,你路费多也只能白花呀!”那个一心只想着要到楚国去的人有些不耐烦地说:“这有什么难的,我的车夫赶车的本领高着呢!”路人无奈,只好松开了拉住车把子的手,眼睁睁看着那个盲目上路的魏人走了。

  那个魏国人,不听别人的指点劝告,仗着自己的马快、钱多、车夫好等优越条件,朝着相反方向一意孤行。那么,他条件越好,他就只会离要去的地方越远,因为他的大方向错了。

  寓言告诉我们,无论做什么事,都要先看准方向,才能充分发挥自己的有利条件;如果方向错了,那么有利条件只会起到相反的作用。

六年级数学上册教案7

  【教学内容】

  圆的周长

  【教学目标】

  知识与技能:

  1、让学生知道什么是圆的周长。

  2、理解并掌握圆周率的意义和近似值。

  3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

  过程与方法:让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。

  情感、态度与价值观:培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。

  【教学重难点】

  重点:理解和掌握圆的周长的计算公式。

  难点: 对圆周率的认识。

  【知识回顾】

  圆的周长与直径之间有何关系?

  【新知探究】

  例1、一辆自行车的轮子半径大约是33厘米,它转动一同,大约可以走多远?(结果保留整米数)小明家离学校1KM,轮子大约转了多少圈?

  C=2 r

  2×3.14×33=2.7.24≈2(m)

  1km=1000m

  1000÷2=500(圈)

  答:………

  【知识梳理】

  本节课你学习了哪些知识?

  【随堂练习】

  1、一张圆桌面的`直径是0.95米,求它的周长是多少米?(得数保留两位小数)

  2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

  3、钟面直径40厘米,钟面的周长是多少厘米?

  4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?

  5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

六年级数学上册教案8

  第一课时:分数四则混合运算

  教学内容:课本第59页例1、例2及“做一做”,练习十五1-5题。

  教学目标:

  知识点:

  1.掌握分数四则混合运算的运算顺序。

  2.正确进行分数四则混合运算。

  教学重点:

  掌握分数四则混合运算的运算顺序,正确地计算分数四则混合运算。

  教学难点:

  正确地计算分数四则混合运算,培养学生的迁移类推能力,提高学生的计算能力。

  教学过程:

  一、准备。

  1.板演(指名学生脱式计算)

  46+570÷80 60÷[(30+30)×10]

  二、新课。

  1.谈话:如果把板演题目中的`整数换成分数,应该怎样计算?运算的顺序是什么?这节课我们共同来研究。

  (板书课题:分数四则混合运算)

  2.学习例1.

  出示例1:计算

  (1)与整数四则混合运算比,它们之间有什么关系?(3)想一想:这个算式含有几级运算?应该先算什么?再算什么?

  (4)大家打开练习本,抄题独立完成。(指名学生板演)

  (5)订正。怎样确保计算的准确?

  3.学习例2。

  出示例2 计算

  (1)请你试着按运算顺序读出例题。

  (2)想一想:这个算式里既有小括号又有中括号,应该怎样计算?

  (3)想一想:第一步算什么?第二步,第三步呢?

  (4)在练习本上完成。

  (5)指名学生板演。

  (6)如何检查,计算时应注意什么问题?

  4.完成课本第60页上面的“做一做”题目。

  计算前,先说说这两道题的运算顺序是什么?

  三、课堂总结。

  1.这节课学习的是什么内容?

  2.通过这节课学习你有哪些收获?还有什么问题吗?怎样才能保证分数四则混合运算的正确率?

  四、课堂练习。

  1.填空:

  (1)( )与整数、小数四则混合运算的运算顺序相同。

  (2)分数四则混合运算,没有括号的,要先算( ),再算( );有括号的,要先算( ),再算( )。

  2.判断正误:

  下面的计算正确吗?错误的原因。

六年级数学上册教案9

  教学内容:

  纳税

  教学目标:

  1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

  2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。

  3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

  4、进行学科教学渗透法制教育,主要渗透《宪法》第56条,《中华人民共和国税收征收管理法》第4条,《中华人民共和国个人所得税法》第1条。

  教学重点:

  税额的计算。

  教学难点:

  税率的理解。

  教学过程:

  一、复习

  1、口答算式。

  (1)100的5%是多少?

  (3)1000元的8%是多少?

  2、什么是比率?

  二、新授

  2)50吨的10%是多少?

  (4)50万元的20%是多少?(

  1、阅读p122页有关纳税的内容。说说:什么是纳税?

  进行学科教学渗透法制教育,渗透《宪法》第56条,《宪法》第56条规定:中华人民共和国公民有依照法律纳税的义务。

  2、税率的认识。

  (1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。

  进行学科教学渗透法制教育,渗透《中华人民共和国税收征收管理法》第4条,《中华人民共和国税收征收管理法》第四条规定:法律、行政法规规定负有纳税义务的单位和个人

  为纳税人。法律、行政法规规定负有代扣代缴、代收代缴税款义务的单位和个人为扣缴义务人。纳税人、扣缴义务人必须依照法律、行政法规的规定缴纳税款、代扣代缴、代收代缴税款。

  (2)试说以下税率表示什么。

  a、商店按营业额的.5%缴纳个人所得税。这里的5%表示什么?

  b、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?

  3、进行学科教学渗透法制教育,渗透《中华人民共和国个人所得税法》第1条,《中华人民共和国个人所得税法》第1条规定:在中国境内有住所,或者无住所而在境内居住满一年的个人,从中国境内和境外取得的所得,依照本法规定缴纳个人所得税。在中国境内无住所又不居住或者无住所而在境内居住不满一年的个人,从中国境内取得的所得,依照本法规定缴纳个人所得税。

  4、税款计算

  (1)出示例5(课本99页)

  一家大型饭店十月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

  (2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)

  (3)要求“应缴纳营业税款多少”就是求什么?

  (4)让学生独立完成?

  5、看课本98页内容。读一读,什么是纳税?什么是税率?

  三、练习

  1、巩固练习:练习三十二第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)

  2、依据第5题,学生各自发表意见。

  板书设计

六年级数学上册教案10

  【教学目标】

  知识技能:让学生理解圆面积的含义,经历猜想、操作、验证、讨论和归纳等过程,探索并掌握圆的面积计算公式的推导过程及其公式的应用。

  数学思考:经历自主探索圆的面积计算公式的推导过程,体会和掌握“转化”和“极限”的数学思想方法,发展空间观念。

  问题解决:培养学生发现和提出问题,分析和解决问题的能力。

  情感态度:培养学习数学的兴趣,增强合作交流的意识,在提升自我的同时,尊重他人,在表现自我的同时,心中有他人。

  【教学重点】

  掌握圆的面积计算公式,能够正确地计算圆的面积。

  【教学难点】

  理解圆的面积计算公式的推导过程。

  【教学准备】

  (1)软硬件设备:多媒体教学课件、平板互动系统、教师和学生平板终端,

  (2)教具:圆纸片、不同等分的圆卡片

  (3)学具:剪刀、圆纸片、不同等分的圆卡片。

  【教学过程】

  学生课前完成课前导学案(后附课前导学案的内容)

  一、课前互动:

  师:同学们,前段时间我看到了一个很有意思绘本故事,想看吗?大家请看,其中一张图片是这样的,猜一猜最后的这一棵盆栽会长出怎样的图形呢?为什么?

  生:越来越接近圆形。

  生:圆形,因为从三角形开始,然后到正方形、正五边形……图形越来越接近圆形。

  师:说的太好,看来我们班的同学们都是观察能力强,思维敏捷的同学。随着正多边形边数越来越多,越来越多,这个图形就会越来越接近一个圆了

  师:哪一个图形最特别。

  生:圆形,因为它是曲线围成的图形,其它是由线段围成的图形。

  师:真棒,其实这一张图片蕴藏着一个非常重要的数学思想,这个思想帮助我们解决了一个历史难题,想知道是什么思想吗?

  生:想。

  师:那么希望通过这节课的学习,大家会有所感悟。下面我们就开始上课了。上课。

  二、创设情境,引发问题

  师:同学们,我们已经认识了圆,知道了怎样求圆的周长,今天这节课我们要研究的内容是圆的面积。(板书课题)

  师:看到课题你最想研究什么问题?

  (预设)生:什么是圆的面积?

  (预设)生:如何求圆的面积?

  师:问的好,能提出问题的一定是会思考的同学,很多伟大的发明往往从提问开始,我们来整理一下提出的问题,主要是:圆的面积是什么?如何求圆的面积?(教师板书:是什么?如何求?)

  【设计意图】数学课程标准提出四基和四能,其中一项是培养学生提出问题的能力,这也是很多教师所忽视的环节,通常让学生提问题的环节让本课的研究更能激发学生的兴趣,针对性更强。

  师:现在我们逐个问题来解决。请看,这里有一个圆(出示一个圆的方框)谁来说一说什么是这个圆的面积?

  (预设)生:圆的大小就是它的面积,

  师:说的对,是这一部分的大小吗?(课件把圆填充颜色)

  师:(拿出手表)那么,什么是这个圆形手表镜面的面积?(手表镜面占平面的大小),所以圆占平面的大小就是它的面积,看来,“什么是圆的面积”这个问题大家很容易就解决了。

  (课件出示)

  师:接着我们来研究如何求圆的面积。请看,第一个正方形是由四个小正方形组成的,每个小正方形的边长是r,那么每个小正方形的面积大家会求吗?(会,是r×r,也就是r2),这个大正方形的面积就是4

  r2,等于4个小正方形的面积之和,大家猜一猜第二个正方形的面积大约等于几个这样的小正方形的面积呢?

  (预设)生:2个小正方形的面积

  (预设)生:3个小正方形的面积

  师:这样猜还是有一点困难,根据我们以前的经验,可以把第二个正方形重叠到第一个图像上来比比。

  (预设)生:等于两个正方形的面积之和,也就是2r2,。

  师:那么这个圆的面积呢?还要重叠过来吗?

  师:原来这个圆的半径和小正方形的边长是相等的。谁来说说这个圆的面积是多少?

  (预设)生:大约是3r2

  师:能确定?为什么不估2r2和4r2

  (预设)生:因为里面这个绿色的正方形的面积是2r2,圆的面积比它大,而蓝色大正方形的面积是4r2,圆的面积比它小。所以我估算是3r2.

  师:分析得有道理,太棒了,通过这比较的办法,我们知道了圆的面积的范围,就是大于2个以圆的半径为边长的正方形面积之和,小于4个小正方形面积之和。这也是数学上经常说的“内外逼近”的方法。

  (课件出示)两个正方形的面积<圆的面积<4个正方形的面积

  2r2<S圆<4r2

  师:那么圆的面积与r2(也就是与以圆的半径为边长的这个小正方形的面积),是否存在一个固定的倍数关系呢?如果有,又是几倍的关系呢?根据课前我对多个学校六年级学生的调查,发现主要有以下的几种想法。

  (平板电脑出示题目和选项:那么圆的面积与它的.r2是否存在一个固定的倍数关系呢?如果存在,它是几倍的关系呢?

  A:圆的面积是它的r2的3倍

  B:圆的面积是它的r2的3.5倍

  C:圆的面积是它的r2的π倍

  D:圆的面积是它的r2存在其他的倍数关系

  D:圆的面积与它的r2不存在固定的倍数关系)

  师:你认同哪一种呢?请大家根据刚才的分析和昨天课前的思考,在平板电脑上独立作出选择。(学生选完后系统对数据进行统计,并出示条形统计图)

  师:有30%的同学认为圆的面积是它的r2的3倍

  ,有50%的同学认为圆的面积是它的r2的π倍,还有少部分同学有其他的想法。太棒了,这些都是我们自己珍贵的猜想,很多伟大的发明都是来源于猜想,至于这些猜想是否正确呢?就要进行验证,最后得出结论(板书:猜想、验证、结论)现在我们一起进入验证的环节,请大家先思考一下,你打算怎样验证自己的猜想,可以独立思考或小组合作,也可以结合昨天的课前小研究、还可以利用桌面的圆纸片。比一比谁最快有思路。开始吧!

  【设计意图】通过比较圆与小正方形的面积关系,不仅让学生巩固了圆面积的概念,初步了解圆的面积在2

  r2与4

  r2之间,还体会了“内外逼近”的数学思想。另外,在学生提出猜想的环节加入平板互动系统的统计,更加清晰和全面地反映了学生的思维困惑,更加直面学生的认知基础,既关注了全体学生的培养,又重视了学生的个性化发展,给学生提供了一个更大的学习空间,充分地体现先学后教的教学理念。

  三、启发探究,尝试验证

  (一)数格子验证

  师:谁来说说你的想法?

  (预设)生:可以利用数格子的方法。

  (学生的课前研究单上有一个半径是3厘米的圆)

  (预设)生:我数了半径是3厘米的圆,不满一个的算半格,每个格子是1平方厘米,圆的面积大约26格。所以面积大约是26平方厘米。

  师:数格子(板书:数格子),很好的思路,数出圆的面积再除以半径的平方就可以知道它们之间的倍数关系了。26除以半径的平方大约等于3,大家觉得这个思路怎样?这样数出来的得数有误差吗?

  (预设)生:有,这些不满格的要估算。

  师:有道理,你看,这些不满格的还有这么大面积需要估算(指着图),那么,有什么办法提高数格子的精准度?如果把格子变小一点,像这样(课件出示下图)估算的误差会不会小一点。

  (预设)生:会,因为这样需要估算的面积就会越少,所以更准确。

  (课件展示)

  师:如果继续把格子变小,无限地变小,想象一下,这样数出来的结果就会(就会很准确了)。

  师:讲得太棒了,像这样把格子无限地平均分,其实相当于把圆平均分成无数个格子,这种思想就是我们数学常说的极限思想。(板书:数格子

  极限思想)

  师:但是,如果格子分得太细的话,我们能数得过来吗?(不能),看来,通过数格子的办法也很难准确地求出圆的面积,还有没有别的思路?

  【设计意图】数格子是学生计算新图形面积的常用办法,通过汇报“课前研究单”中数圆的面积,并比较格子的大小对估算圆面积大小的影响,让学生初步感受数格子中的极限思想,同时引出了数格子的不足,为下一步把圆平均分成无数个近似三角形埋下伏笔。

  (二)“对折”验证

  (预设)生:我用对折的办法,把圆对折、再对折、再对折,折到这么小,就很像一个三角形,这样就可以求出三角形的面积,再乘以三角形的数量就是圆的面积了。

  师:真棒,思路非常独特,你觉得同学们都听懂了吗?你觉得哪个地方同学们不是很理解,还要重点再讲讲?

  (预设)生:要尽量折得小一点,这样圆的这条曲边就会越来越直(边操作,边说),这样就会越来越近似于三角形。

  师:大家同意吗?太厉害了,我觉得这里应该有掌声。这个同学用对折的办法,相当于把圆平均分成若干份,(拿着学生的圆)平均分成4份的时候,这个近似三角形的底边还是比较弯曲的,对折几次后这个近似三角形的底边就会越来直了,如果让这条边变得更直的话,我们要怎样做?

  (预设)生:再对折。

  师:折一折,看一看,这条边是不是更直了,再对折看看

  (预设)生:太小了,折不了,

  师:没关系,纸片折不了,我们可以利用平板电脑帮忙,请大家打开平板,继续把圆平均分,看看有什么发现(学生利用平板电脑点击把圆平均分成32、64、128份)

  师:(学生展示平均分成128份)这是大家平板上的画面,你来说说。

  (预设)生:随着平均分的分数越多,这条边就会越直,128等分的时候,这条边已经很直了。

  师:请大家闭上眼睛想象一下,如果继续无限地平均分,这条底边就会(简直就变成直线了)

  师:太棒了,刚才同学们想到了,把圆平均分(板书:平均分)成无限个近似的三角形,这样每个近似三角形的这条曲边就会无限的接近于直线,这就是极限思想的魅力,它能画曲为直(板书:化曲为直),然后只要求出一个近似三角形的面积,再乘三角形的数量就等于圆的面积了。

  【设计意图】这一环节很多教师的做法是让学生折纸以后再用课件展示,这种做法中学生的体验是不足的,因此在这里引入平板电脑的手段,让学生不但可以通过折一折,还能利用平板电脑把圆平均分成更多等分,再结合分享和展示,增加学生在操作中的体会和经历,更加直观地理解化曲为直和极限数学思想。

  (三)等积转化验证

  师:还有其他的思路吗?

  (预设)生:把圆平均分后再拼成我们学过的图形,就像把平行四边形剪拼成长方形。

  师:说得好,你的思维很敏锐,厉害,转化,把未知转化成已知,像求平行四边形面积的时候,把它剪拼转化成长方形,然后再推导出计算公式,这样就不用数近似三角形的数量了,直接就能求出圆的面积就,不如我们一起来试试看。(板书:转化

  、推导)

  师:在每人的平板电脑上里都有4等分、8等分、16等分的圆,也可以利用等分圆的学具,还可以利用圆纸片进行任意的剪拼,请以小组为单位展开探索

  活动要求:1.拼一拼。将等分后的圆拼成一个我们学过的图形。

  2.比一比,拼成的图形中哪一个更接近于我们学过的图形。

  (学生在小组内操作的画面在讲台的一体机中流动显示)

  师:谁来说说你的发现,你是几号平板(马上在一体机中调出学生的画面)

  (预设)生:16等分的圆拼成的图形更接近于我们学过的平行四边形。因为16等分拼成的图形的底边是最直的。

  师:为什么会最直呢?

  (预设)生:像刚才一样,平均分成的分数越多,每一份就越近似于一个三角形,底边就越直,拼成的图形就越近似于平行四边形。

  师:如果像这样继续平均分,会变成怎样呢?请打开平板系统,继续试一试(每人的平板出示32、64、128等分的圆)

  师:谁来讲讲发现。

  (预设)生:你看,等分圆的份数越多,拼成的图形的底边会越来越直,而且(指着图形的两条宽)左右两条边跟底边就越接近于垂直,所拼成的图形越接近于长方形。

  师:请大家闭上眼睛想象一下,如果像这样继续无限地平均分,平均分成256分等等……,然后再拼起来,拼成的图形就会无限的接近一个长方形了,这个极限思想太了不起了,不仅能画曲为直,还能化圆为方。(板书:化圆为方)

  我建议我们要把这个过程留在板书上,我们通过把圆平均分成若干个近似的小三角形,然后拼成近似的长方形,随着无限地平均分,这样拼成的图形就会无限地接近一个真正的长方形。(板书:16等分的圆拼成的图形和一个长方形)

  【设计意图】这一环节融合信息技术手段能有效打破传统学具的限制,传统的学具最多把圆平均分成32份,这样拼起来的图形与长方形还是有很大的区别,理解化圆为方的思想有些困难。当信息技术与传统学具融合后,学生不仅能更直观、更方便地探究,而且又避免了信息化手段容易固化学生研究思维的缺点,让学生还能利用常规学具进行随意剪拼,这样学生研究的素材更多元化。另外,通过平板系统,学生在探究和分享、师生互动、学生间互相学习的过程中都能随时调用画面到屏幕上进行互动。让教学更加直观形象,让交流分享更加充分和完善,让学生的互相学习更加有效。

  师:研究到这里,到了最关键的一步了,就是推导计算公式,这个过程是老师教你,还是大家自己来。

  (预设)生:自己来。

  师:真的,我就站在旁边,有困难就举手。

  四、寻找联系、推导公式

  要求:

  想一想:近似长方形的长和宽与圆的什么有关呢?

  试一试:把推导的过程写下来。

  师:我把这个画面(圆形转化成长方形的过程的画面)发到大家的平板上,大家可以结合我们刚刚的发现来推导。

  学生分享:

  (预设)生:因为拼成的长方形的面积等于圆的面积,拼成的长方形的长近似于圆周长的一半,宽近似于圆的半径,而且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。

  因为C=2πr,所以S圆=πr×r,S圆=πr2。

  师:我真没想到我们班同学能把这个问题讲的这么清楚,你觉得大家在哪一部分的理解还是有点欠缺呢?要不要再讲讲?

  (预设)生:我觉得长方形的长近似于圆周长的一半这点是比较难发现的,要这样来看,在圆平均分成若干份后,把这些近似的小三角形分成了上下两部分,例如下面这部分,这些小三角形的底边就是原来圆的边,它们的总长就是原来圆的周长的一半。

  【设计意图】通过平板系统的引入,在推导公式的过程中,每个小组不仅可以把推导的过程发送到互动平台让其他小组互相学习,而且在分享中也能随时调出其他小组的作品加以质疑和评价,从而提高了学习的深度学习。

  师:太棒了,见过厉害的,但是没见过这么厉害的,掌声鼓励一下。

  师:经过大家的研究我们似乎把公式推导出来了,我们一起来整理一下,

  师:拼成的近似长方形的面积等于圆的面积,长方形的长近似于圆周长的一半,宽近似于圆的半径,长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。

  因为C=2πr,所以S圆=πr×r,S圆=πr2。

  (板书)

  S长方形=长×宽

  S圆=周长的一半×半径=C÷2×r=2πr÷2×r=πr2

  师:太好了,终于把公式推导出来了,原来圆的面积就等于它半径的平方再乘π,圆的面积与它半径的平方之间是π倍的关系,哪些同学猜对了(学生举手),掌声表扬,你们有数学家的眼光。没猜对的同学也不要紧,因为你们已经把公式推导出来了,也掌声鼓励。你知道吗,在古代,曾经有很多的数学家对圆的面积做了详细的研究,其中比较著名的就是魏晋数学家刘徽的千古绝技

  “割圆术”请看。

  五、感受数学文化的魅力

  (展示魏晋数学家刘徽割圆术视频)

  师:刘徽在当时这么简单的条件下计算了正3072边形面积。他提出的计算圆周率的科学方法,奠定了此后一千多年来,中国圆周率计算在世界上的领先地位。此时此刻我再一次为我国古代的数学文化感到震撼和自豪。而且,这也是我们课前小游戏的奥秘,无限分割和极限思想。所以我也为大家在这节课上的发现和总结感到骄傲。

  【设计意图:通过介绍魏晋数学家刘徽的割圆术,让学生进一步感受优秀传统中国数学文化,不仅增加了民族自豪感,还培养了数学素养】

  六、巩固知识,实际应用

  师:既然已经我们推导出圆的面积公式,接着来尝试运用公式来解决实际的问题(板书:运用),你会吗?(会)

  1.一个圆形沙井盖的半径是30厘米,这是沙井盖表面的面积是多少?

  2.一个圆形花坛的周长是12.56米,这个花坛的面积是多少?

  七、全课总结,课堂延伸

  师:大家请看(指着板书),我们班的同学太棒了,一节课下来有了那么多的总结,如果要圈出本课的重点,你觉得要圈什么?(圈出本课的核心)

  (预设)生:S圆=πr2

  、转化、化曲为直、极限……

  师:刚才我们遇到问题的时候,采取了什么策略,(猜想、验证、结论、运用),在验证的过程中运用了什么方法(转化、化曲为直、极限思想)

  师:对于圆的面积你有什么新的思考。

  (预设)生:圆的面积还有其他的推导方法吗?

  师:问的好,生活中还有很多的有趣的推导圆面积的方法,例如可以把它拼成一个三角形甚至是拼成梯形,大家可以带着这个问题回去继续探索,只要大家用数学的眼光和数学解决问题的方法去研究,你会有更多的发现。这节课就上到这里,下课。

  八、布置作业

  书本第68页做一做的第一题。

  (题目:一个圆形茶几的直径是1M,它的面积是多少平方米?)

  2、书本71页第4题。

  (题目:小刚量得一颗树干的周长是125.6cm,这棵树干的横截面近似于圆,它的面积大约是多少?)

  3、尝试用不同的方法推导出圆的面积计算公式,下一节课与同学们分享。

  九、板书设计

  附录:《课前导学案》

  《圆的面积》课前小研究工作纸

  班别:

  学号:

  姓名:

  同学们!大家好,上一节课我们已经学习了圆的周长,接着要学习什么呢?当然是圆的面积啦!还等什么呢,赶快出发吧,马上进入数学的神奇世界……

  同学们,看到《圆的面积》这个课题,你想到什么问题?请把它写下来。(写2-3个问题)

  2、请大家先观察下面图,你知道圆的面积和这个小正方形的面积有什么关系?

  圆的面积小于于()个小正方形的面积

  我们可以这样分析:

  圆的面积大于()个小正方形的面积

  ()<圆的面积<()

  3、我们还可以通过数格子的办法数出圆的面积,试试看吧!

  图中每个格子的面积是1平方厘米,圆的半径是3厘米,请你数一数,这个圆形的面积大约占了()个格子,所以圆的面积大约是()平方厘米。

  (为了方便数数,你可以在格子中写数字或作记号)

  4、圆可以转化成我们学过的图形吗?

  (1)圆可以转化成()形,请画图说明。转化后的图形与圆有什么关系?你能尝试推导圆的面积计算公式吗?

  (2)除了书本的推导办法,还有其它的办法推导出圆的面积吗?可以和家长一起探索,也可以上网搜索查询。

六年级数学上册教案11

  教学目标:

  1.通过整理和复习形成知识网络,对前面学习的知识进行归纳整理。

  2.学会自己归纳总结学过的知识点。

  3.在数学活动和解决问题的过程中,进一步感受数学与生活的联系,知道数学能解决生活中的问题。

  教学重点:

  学会自己归纳总结学过的知识点。

  教学难点:

  进一步培养学生系统整理知识的习惯和能力。

  教学过程:

  一、创设情境

  师:时间过得真快啊,半个学期过去了,同学们学会了什么呢?还有哪些地方存在疑问?

  学生可能回答

  我认识了曲线图形圆,会计算圆的周长和面积。

  我认识了百分数,会解决一些简单的百分数问题。

  我学习了分数混合运算,能解决一些相关的分数问题。

  我还进一步学习了观察物体。……

  师:同学们还真学会了不少知识呢。现在咱们就分单元进行归纳总结吧!

  二、探究体验

  1.圆。

  师:“圆”这一单元涉及的知识点很多,同学们先在小组里跟小组成员说一说,可以列成表格加以整理,也可以画成图加以整理,只要能系统地把所学知识展示出来就好。

  学生进行小组活动,教师巡视了解情况。

  教师组织学生交流展示自己整理的结果,重点说说自己的思路。

  我们先是认识了圆,了解圆的特征,包括圆各部分的名称:圆心用字母O表示,半径用字母r表示,直径用字母d表示;同一圆中直径和半径的关系,用字母表示是d=2r;还学会了画圆,知道了圆是轴对称图形,有无数条对称轴。

  在认识了圆的基础上,我们通过测量得到圆的周长是直径的3倍多一些,知道了圆的周长除以直径的商,是一个固定不变的数,叫圆周率,用字母π表示;总结出了圆的周长公式,用字母表示是C=πd或C=2πr。

  知道了圆的周长公式之后,我们探究了圆的面积公式,推导时先把圆平均分成若干等份,然后拼成近似的平行四边形,分的份数越多,拼成的图形越相似平行四边形,且平行四边形的面积与圆的面积相等,平行四边形的底相当于圆周长的一半,高相当于圆的半径,所以由平行四边形的面积公式得出圆的面积公式,用字母表示是S=πr2。

  学过关于圆的知识之后就是为了应用,可以利用圆的特征解释生活中的一些现象,如井盖为什么是圆的;还可以利用圆的周长和面积公式解决一些实际问题。

  师:总结得很好,条理清楚,覆盖面全,继续努力。

  2.分数混合运算。

  师:用同样的方法,自己试着归纳“分数混合运算”的`相关知识。

  学生尝试自己归纳,教师巡视了解情况。

  师:谁愿意说说你归纳的某一板块的知识点呢?

  生1:关于分数混合运算的计算,首先涉及的是运算顺序,分数混合运算的顺序与整数的一样,计算的时候,要按运算顺序依次计算。

  生2:在运用分数混合运算解决问题时,画图可以表示数量关系,帮助我们找等量关系,然后用算术方法或方程解答。

  3.百分数。

  师:关于百分数的知识,你想说点什么呢?

  生1:在比较时,除了以前学习过的比较谁多谁少,还可以比较谁占谁的百分之几。

  生2:百分数表示一个数是另一个数的百分之几,在解决实际问题时,我们都要先思考问题中百分数表示的意思是什么。

  生3:百分数问题的解答和分数问题非常类似,很多类型的题目具有相同的分析思路。……

  三、总结

  师:同学们,今天我们对这半个学期来学的知识进行了全面的、系统的整理和复习,你们开心吗?今后我们要逐步学会自己整理所学知识。

六年级数学上册教案12

  【教学内容】

  【教学目标】

  知识与技能:1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  过程与方法:1、通过操作、观察,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际

  和数学交流的能力,体验数学探究的乐趣和成功。

  情感态度价值观:1、在估一估和探究圆面积公式的活动中,体会"化曲为直"的思想,并渗透极限、转化的数学思想。

  2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念。

  【教学重点】 圆面积概念的建立,公式的推导及应用。

  【教学难点】 理解把圆转化为平行四边形、长方形推倒出圆的面积的计算公式的过程。

  【教学关键】 弄清圆与转化后的近似图形之间的关系。

  【教具准备】 投影仪,多媒体课件。

  【学具准备】 剪刀、刻度尺、两张圆形纸片。

  【教学设计】

  一、创设情景,提出问题

  1、多媒体出示:学校草坪中间的"喷水喉"洒了一圈水。

  师:看了刚才的演示,你想提出哪些与数学有关的问题?

  (结合学生的.提问,抓住有关周长和面积的问题,引导学生区分圆的周长和面积,同时引出课题"圆的面积")

  2、"圆面积"的含义:圆所占平面的大小叫做圆的面积。

  教师:你们想知道这样一个自动喷水头它喷射一周浇灌的农田面积是多少吗?这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。 (板书:圆的面积)

  二、自主探究,合作交流

  1、猜想:

  (1)出示大小不同的两个圆,让学生比较,猜想圆面积的大小和什么有关?(半径)那么圆的面积和半径的关系究竟是怎么样的呢?

  (2)出示边长和大圆直径相同的正方形,和大圆比较,你发现了什么?(重叠后,大圆刚好能够放进正方形里面)这说明了什么?(边长=2r)

  引导学生将大正方形分割成四个小正方形,观察比较(每个小正方形的面积是r2,大正方形的面积就是4r2,圆的面积比4r2小,可能比3r2大。)

  2、验证:

  (1)引导转化:

  师:猜想只能是大致的估计,圆的面积公式需要同学们动手推导出来。回忆一下,以前学过的平面图形(课件出示),它们的面积公式是什么?分别怎么推导出来的?

  以上这些图形都是通过剪拼转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形,推导面积公式呢?你能猜一猜吗?(长方形、正方形、平行四边形、三角形、梯形)

  (2)动手操作:

  ①分小组动手操作,把圆平均分成若干份,剪开后,拼成其他图形,看谁拼得好,拼出的图形多。

  ②展示交流并介绍:你是怎样拼接的?拼出来的图形近似于什么?为什么只能说是"近似"?能不能把拼出的图形的边变直一点?

  学生回答,课件演示(以拼成的近似长方形为例,平均分成32份、64份)想象一下,平均分成128份、256份……会是什么情形?

  ③小结:分的份数越多,拼成的图形越接近于长方形。

  (3)动手推导:

  ①引导:当圆转化成近似的长方形后,圆和它有什么联系呢?(近似长方形的长和宽与圆的周长和半径有什么关系?)如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,怎样推导出所要研究的圆的面积公式?

  ②学生讨论交流:长方形的长是圆周长的一半,即C/2=2πr/2=πr,宽是圆的半径。(教师板书 )

  质疑:为什么不能把圆转化成一个近似的正方形吗?(用假设法,如果圆能拼成近似的正方形,那么它的其中一条边是圆周长的一半,另一条是圆的半径。而无论哪个圆,它的半径都不可能与圆周长的一半相等。)

  你还能用其他更简洁的方法推导圆的面积吗?

  学生1:用圆的1/4拼成一个近似的小平行四边形

  学生2:圆的1/16就是一个近似的小三角形

  学生3:

  ③归纳评价:通过把圆转化成近似的长方形、平行四边形、三角形,或先算出其中的一小份再求出总的面积的方法,都能推导出圆的面积公式:S =πr2

  你认为哪种推导方法最好呢?为什么?

  理解r2的含义并口答:62、72、102、0.52

  (4)情景延续:

  ①如果"喷水喉"的最远射程是5米,你可以自己来回答刚才提出的问题吗?(学生求周长和面积)

  ②由于改进技术,"喷水喉"的最远射程是原来的2倍,那么它的喷洒面积也是原来的2倍。对吗?(学生回答)

  3、学生自做68页例题。

  4、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)是否只有知道半径才能求圆的面积?(学生回答)

  三、拓展应用

  第一关:

  (1)圆的周长计算公式为(     ),圆的面积计算公式为(     )。

  (2)一个圆的半径是3厘米,求它的周长,列式(   ),求它的面积,列式(   )。

  (3)一个圆的周长是18.84分米,这个圆的直径是(  )分米,面积是(  )平方分米。

  第二关:

  (1)半径是2厘米的圆,周长和面积相等(  )

  (2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14 X 1.52=3.14 X 3=9.42平方厘米。(  )。

  (3)直径相等的两个圆,面积不一定相等。(   )

  (4)一个圆的半径扩大3倍,面积也扩大3倍。(   )

  (5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。(  )

  第三关:

  (1)如图,绳长2.17米,问小狗的活动面积有多大?

  (2)北京天坛公园的回音壁是世界闻名的声学奇迹,它是一道圆形围墙。圆的直径约为65.2米,周长和面积分别是多少?(结果保留一位小数)

  同学们,经过一番激烈的竞争,个个都是最棒的,我们在以后的学习中还应发扬竞争精神,合作学习,争取更大进步!

  四、课下实践练习:

  圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?你有哪些方案?

  板书设计:

  3圆 的 面 积

  长方形的面积=长×宽

  圆的面积 = πr×r =πr2

  S = πr2

六年级数学上册教案13

  第12课时 练习课

  教学内容:

  课本第101页练习十六第11-17题。

  教学目标:

  1、使学生进一步理解税率、利率、折扣的含义,知道它们内在实际生活中的应用,能解决相关的实际问题。

  2、进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值,获得一些成功的体验,增强学好数学的信心。

  教学重点:

  理解税率、利率、折扣的含义。

  教学难点:

  百分数解决实际问题的数量之间的关系。

  课前准备:

  小黑板

  教学过程:

  一、基本训练

  1、找出下列各题中的单位“1”,并说出下列句子的含义。

  (1)一件上衣打八折售出。

  (2)今年的'营业额比去年增加20%。

  (3)定期三年的存款年利率是5.00%。

  2、计算。

  40%X=144 X-25%X=3 X+20%X=180

  二、比较练习

  (1)一台电视机原价1800元,打九五折销售,现价多少元?

  (2)一台电视机打九五折后的售价是1710元,原价多少元?

  学生独立练习,完成后讨论比较两道题的相同点和不同点。

  三、巩固练习

  1、做练习十六第12题。

  读题,引导提问:“一共可取回多少元”是什么意思,首先必须求出什么?

  学生独立解答。

  2、做练习十六第13题。

  (1)引导学生弄清题中两个分数的不同含义。

  (2)找出题中数量之间的相等关系

  (3)独立解答,完成后交流解法。

  3、独立完成第14、16题。

  学生独立练习后由学生进行交流评讲。

  四、课堂总结

  通过这节课的学习,你有什么收获呢?

  五、布置作业

  练习十六第11、15、17题。

  六、指导阅读“你知道吗”知识。

  教学反思:

六年级数学上册教案14

  教学内容:

  1.分数的乘法

  2.分数混合运算

  3.用分数解决问题

  教材分析:本单元是在整数乘法、分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数、小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生应用数学的意识和能力。根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的内容单独安排。

  三维目标:

  知识和技能:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。使学生能够应用分数乘整数的计算法则,比较熟练的进行计算。通过观察比较,培养学生的抽象概括能力。知道分数乘整数的意义,学会分数乘整数的.计算方法。

  过程与方法:经历分数乘整数的意义及计算法则的形成过程,体验归纳概括的数学思想和方法。在进行分数乘整数的计算过程中,能够感知计算方法

  情感、态度和价值观:通过引导学生探究知识间的内在联系,激发学生学习兴趣,感悟数学知识的魅力,领会数学美。

  教法和学法:通过演示,使学生初步感悟算理。

  指导学生通过体验,归纳分数乘整数的计算方法。

  教学重点、难点:使学生理解分数乘整数的意义。掌握分数乘整数的计算方法;

  引导学生总结分数乘整数的计算方法

  授课时数:10课时

  第1课时

  学期总第1课时

  教学课题 分数乘整数

  主备教师 使用教师 授课时间 20xx年 xx月 xx日

  20xx年 xx月xx 日

  教学目标 知识与技能 在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  过程与方法 通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  情感态度与价值观 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重点 使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点 引导学生总结分数乘整数的计算法则。

  教法与 学 法 直观演示法

  教学准备及手段 课件

  教 学 流 程 二次备课

  教学内容:

  第2页,例1及“做一做”,练习一1-3题。

  教学过程:

  (一)铺垫孕伏

  1.出示复习题。(投影片)

  (1)整数乘法的意义是什么?

  (2)列式并说出算式中的被乘数、乘数各表示什么?

  5个12是多少? 9个11是多少? 8个6是多少?

  (3)计算:

  计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

  2.引出课题。

  分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)

  (二)探究新知。

  1.教学分数乘整数的意义。

  出示例1,指名读题。

  (1)分析演示:

  师:每人吃 块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。问:一个人吃了 块,三个人吃了几个 块?使学生从图中看到三个人吃了3个 块。让学生用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书: + + = = = (块),(教师将3个双层扇形图片拼成一个一块蛋糕的 图片)

  (2)观察引导:

  这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。

  (3)比较 和12×5两种算式异同:

  提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

  通过讨论使学生得出:

  相同点:两个算式表示的意义相同。

  不同点: 是分数乘整数,12×5是整数乘整数。

  (4)概括总结:

  教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

  2.教学分数乘以整数的计算法则。

  (1)推导算理:

  由分数乘整数的意义导入。

  问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

  (2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)

  观察结果: 的分子部分2×3就是算式中 的分子2与整数3相乘,分母没有变。

  (3)概括总结:

  请根据观察结果总结 的计算方法。(互相讨论)

  汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。

  根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分后约得的数要与原数上下对齐。然后让学生将 按简便方法计算。

  【启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力】

  3.反馈练习:

  ⑴教材第2页“做一做”第1题。

  订正时让学生说出乘法中被乘数、乘数各表示什么?

  ⑴教材第2页“做一做”第2题。

  教师提示:乘的时候如果分子分母能约分的要先约分。

  ⑴教材第6页“练习一”第1、2、3题。

  学生独立完成,集体交流,重点让学生说一说思路。

  (三)全课小结。

  这节课我们学习了什么?引导学生回顾总结。

六年级数学上册教案15

  教学目标:

  1.利用已有知识迁移、类推、发现百分数和小数互化的规律和方法。

  2.理解、掌握百分数和小数互化的方法,并能熟练运用,进一步体会数学之间的内在联系,增强思维的深刻性。

  教学重难点:

  探索百分数与小数的互化方法,能正确、熟练地进行百分数与小数数的互化。

  教学准备:

  PPT,练习本

  课型:

  新授课

  教学过程:

  一、交流前置作业

  1.请学生板演知识准备第1题,写出详细的计算过程。

  2.开火车核对知识准备第2题。

  二、新授(前置作业自主探究)

  1.出示例2,集体交流两个问题。

  (1)谁是谁的1.15倍?(王红完成的是指定个数的1.15倍)

  (2)谁占谁的110%?(李芳完成的是指定个数的110%)

  (3)你是怎样比较的呢?

  教师根据学生的回答明确:1.15倍是指定个数的1.15倍,110%也是指定个数的110%,所以要比较两位同学完成仰卧起坐个数的多少,就是要比较1.15和110%这两个数的大小。

  三、讨论比较方法

  1.师:你有什么好办法可以比较出这两个数的大小吗?你能把自己的想法展示在黑板上吗?鼓励学生板演,并展示多种比较方法,对正确的方法给予肯定。

  2.根据学生的方法归纳总结

  要想比较分数和百分数的大小,要么把它们都化成分数,要么把它们都化成百分数。

  (1)可以把1.15改写成百分数,与110%比较。

  (2)也可以把110%改写成小数,与1.15比较。

  3.体会互化方法,规范书写。

  (1)师问:怎样将1.15改写成百分数呢? 师板书:因为,1.15=115/100=115%,所以1.15>110% 四、归纳改写方法

  1.完成试一试

  师:1、2两组完成0.3的改写,3、4两组完成0.248的改写,请学生上黑板板演,集体核对,表扬鼓励。

  2.呈现去掉中间环节的几个等式

  0.3=30%

  0.248=24.8%

  1.15=115%

  问:把百分号前面的数与原来的小数比较,你有什么发现?

  学生全班交流自己的发现,教师帮助归纳完善:左边小数的小数点都向右移动两位就成了百分号前面的数。比如将0.248的小数点向右移动两位成了24.8,就是24.8%百分号前面的数。

  师:你能根据这一发现直接将小数化成百分数吗?

  学生尝试练一练第1题,请学生板演,并讲解自己的改写方法,重复规律。

  2.师:反过来看,怎样将百分数直接改写成小数呢?

  生总结方法,教师帮助归纳完善。

  3.尝试练一练的`第2小题,请生口答,并说出自己的方法。

  4.师:看来百分数和小数之间的互化有一定的规律,谁能说说其中的规律呢?其他同学补充。

  总结:将百分数改写成小数,可以将百分号前面的数的小数点向左移动两位,去掉百分号。将小数改写成百分数,可以将小数的小数点向右移动两位,添上百分号。

  五、巩固练习

  1.完成练习十四第13题。

  教师巡视并批改。

  2.课堂练习。

  在作业本上完成练习十四弟14题和15题。

  六、全课总结

  今天这节课你掌握了什么本领?

  板书设计:

  百分数与小数的互化

  怎样比较1.15和110%的大小呢?

  (1)1.15=115/100=115%,所以1.15>110%

  (2)110%=110/100=1.1,所以1.15>110%

  0.3=30%

  0.248=24.8% 比较:怎样把小数直接改写成百分数?怎样把

  1.15=115% 百分数直接改写成小数?

  1.1=110%

【六年级数学上册教案】相关文章:

六年级上册数学的教案09-28

六年级上册数学比的教案01-08

数学六年级上册《利率》教案08-22

苏教版数学六年级上册教案11-17

小学数学六年级上册教案11-18

六年级上册数学比的教案06-30

六年级上册数学比的教案(精选)06-30

数学上册教案01-15

六年级数学上册教案12-13

六年级上册数学复习教案01-08