现在位置:范文先生网>教案大全>数学教案>四年级数学教案>四年级下册数学《三角形内角和》教案

四年级下册数学《三角形内角和》教案

时间:2024-07-10 12:13:29 四年级数学教案 我要投稿

四年级下册数学《三角形内角和》教案7篇【推荐】

  作为一位不辞辛劳的人民教师,时常会需要准备好教案,教案是备课向课堂教学转化的关节点。那么教案应该怎么写才合适呢?下面是小编帮大家整理的四年级下册数学《三角形内角和》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

四年级下册数学《三角形内角和》教案7篇【推荐】

四年级下册数学《三角形内角和》教案1

  探索与发现:三角形内角和

  课型

  新授课

  设计说明

  本节课是在学生已经掌握了钝角、锐角、直角、平角及三角形分类的基础上,让学生通过直观操作来认识和学习的。

  1.重视知识的探究与发现。

  在教学中,概念的形成没有直接给出,而是整节课都是在引导学生的实验操作、活动探究中进行。在探究活动中,不但重视知识的形成过程,而且注意留给学生充分进行主动探究和交流的空间,让学生归纳出三角形内角和等于180°。

  2.重视学生的合作探究学习。

  使学生能够积极主动地参与到数学活动中,能在实践中感知、发表自己的见解,学生感受到通过自己的努力取得成功所带来的满足感,同时也培养了学生的探究能力和创新能力。

  课前准备

  教师准备:PPT课件 量角器 直尺 三角尺

  学生准备:量角器 三角尺

  教学过程

  一、常识导入。(3分钟)

  1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。

  2.导入新课:这节课我们也来验证一下三角形的内角和。

  1.倾听教师的介绍,了解帕斯卡。

  2.明确本节课的学习内容。

  1.填空。

  (1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。

  (2)平角=( )°

  直角=( )°

  周角=( )°

  二、合作交流,探究新知。(18分钟)

  (一)量算法。

  1.探究特殊三角形的内角和。

  (1)出示一副三角尺,引导学生说一说各个角的度数。

  (2)引导学生算一算它们的内角和各是多少度。

  (3)引导学生得出结论。

  2.探究一般三角形的内角和。

  (1)引导学生猜一猜其他三角形的内角和是多少度。

  (2)组织学生验证一般三角形的内角和是180°。

  ①引导学生量出每个内角的度数,再计算三个内角的和。

  ②引导学生分工合作,把结果填入记录表中。

  ③引导学生说说自己的发现。

  (3)引导学生明确由于测量有误差,实际上三角形的内角和是180°。

  (二)剪拼法。

  1.组织学生用剪拼的方法求三角形的内角和。

  2.引导学生总结发现。

  3.课件演示,得出三角形的内角和是180°的结论。

  (三)折拼法。

  1.引导学生结合剪拼法尝试折拼法。

  2.引导学生得出结论。

  3.课件演示折拼法。

  (一)1.(1)说出每个三角尺中各个角的度数。

  ①90°;60°;30°。

  ②90°;45°;45°。

  (2)独立算出每个三角尺的内角和。

  (3)得出结论:这两个三角尺的内角和都是180°。

  2.(1)同桌之间互相说说自己的看法。

  猜测:一种是内角和可能是180°,另一种是内角和一定是180°。

  (2)小组合作进行探究,量一量,算一算,说一说。

三角形种类


每个内角


的度数


三个内


角的和


锐角三角形


65°


46°


68°


179°


钝角三角形


110°


25°


46°


181°


等腰三角形


70°


55°


55°


180°


等边三角形


60°


60°


60°


180°


  通过观察发现:三角形的`内角和都在180°左右。

  (3)听老师讲解,明确三角形的内角和是180°。

  (二)1.把一个三角形的三个内角剪下来,小组内拼合。在拼合过程中要注意:顶点重合,三个角拼合。

  2.发现三角形的三个内角正好拼成了一个平角,也就是180°。

  3.观看课件演示,明确三角形的三个内角拼成了一个平角,所以它的内角和是180°。

  (三)1.动手折一折、拼一拼。

  2.得出结论:三角形的三个内角拼在一起正好是一个平角,所以三角形的内角和是180°。

  3.观看课件演示,再次明确三角形的内角和是180°。

  2.算一算。

  在一个直角三角形中,已知一个锐角是35°,另一个锐角是多少度?

  3.在能组成三角形的三个角的后面画“√”。

  (1)90°;20°;70°。 ( )

  (2)100°;50°;50°。( )

  (3)70°;70°;70°。( )

  (4)80°;70°;30°。( )

  4.猜一猜。

  有一个三角形,其中一个角是20°,它可能是什么三角形?

  5.已知∠1、∠2、∠3是三角形的三个内角,请你计算出每个三角形中∠1的度数。

  (1)∠2=58° ∠3=48°

  (2)∠2=∠3=70°

  (3)∠1=∠2=∠3

  三、巩固练习。(16分钟)

  把正确答案的序号填在括号里。

  1.把两个小三角形合成一个大三角形,这个大三角形的内角和是( )。

  A.90° B.180° C.360°

  2.一个三角形中有两个锐角,则第三个角( )。

  A.也是锐角

  B.一定是直角

  C.一定是钝角

  D.无法确定

  小组合作,选一选,明确答案。

  1.明确任何一个三角形的内角和都是180°,三角形的内角和与三角形的大小无关。

  2.通过讨论,明确任何一个三角形都至少有两个锐角,所以无法确定。

  6.如下图,在直角三角形中,已知∠2=30°,不计算,你知道∠1的度数吗?

  四、课堂总结,拓展延伸。(3分钟)

  1.总结本节课的学习内容。

  2.布置课后作业。

  谈自己本节课的收获。

四年级下册数学《三角形内角和》教案2

  设计说明

  在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去探究、发现新知识的奥妙,从而让学生在动手操作、积极探究的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角板上每个角的度数都比较熟悉,从这里入手,先让学生算出每块三角板上三个内角的和是180°,进而引发学生猜想:其他三角形的内角和也是180°吗?接着引导学生小组合作,任意画出不同类型的三角形,通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差)。再引导学生通过剪拼的方法发现各类三角形的三个内角都可以拼成一个平角。然后利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列的活动潜移默化地向学生渗透了转化的数学思想,为后面的学习奠定了必要的基础。最后安排了三个层次的练习,逐层加深。在练习的过程中,既激发了学生主动解题的积极性,拓展了学生的思维,又兼顾到了智力水平发展较快的学生。

  课前准备

  教师准备 多媒体课件

  学生准备 三角板

  教学过程

  ⊙复习导入

  师:请同学们回忆一下,我们以前学过哪些平面图形?(长方形、正方形、平行四边形、三角形等)

  师:这些是我们早已认识的平面图形,那么你们知道长方形有什么特征吗?(学生汇报:长方形的对边相等,有四个角,且四个角都是直角)

  师:这四个角一共是多少度?(360°)

  师:你是怎么算的?(90°×4=360°)

  师:请看大屏幕。(课件演示三条线段围成三角形的过程)三条线段围成三角形后,在三角形内形成了三个角(课件分别显示出三个角的弧线),我们把三角形里面的这三个角叫做三角形的内角。

  师:通过刚才的回忆,同学们知道长方形四个内角的和是360°,那么三角形的内角和又是多少呢?这节课我们就来探究三角形的内角和。(板书课题)

  设计意图:通过复习学过的平面图形,唤醒学生的认知。借助长方形四个角都是直角的特征,学生通过计算很容易知道长方形的内角和是360°,从而质疑三角形的内角和是多少。这样以问题情境开始,既丰富了学生的感官认识,又激发了学生的探究欲望。

  ⊙探究新知

  1.探究特殊三角形的内角和。

  师:(课件出示一块三角板)大家熟悉这块三角板吗?请拿出形状与这块一样的三角板,并和同桌互相说一说各个角的度数。(课件出示由三角板抽象出的三角形)

  师:这个三角形三个角的度数和是多少?(180°)你是怎样知道的?(90°+45°+45°=180°)

  明确:把三角形三个内角的度数合起来就叫做三角形的内角和。

  师:(课件出示由另一块三角板抽象出的三角形)这个三角形的内角和是多少度?(90°+60°+30°=180°)

  师:从刚才两个三角形内角和的计算中你发现了什么?(这两个三角形的内角和都是180°,且这两个三角形都是直角三角形)

  2.探究一般三角形的内角和。

  (1)刚才我们探究了直角三角形的内角和是180°,那么其他任意三角形的内角和又是多少度呢?请大家猜一猜。(大多数学生认为也是180°)

  (2)操作、验证一般三角形的内角和是180°。

  师:刚才大多数同学认为三角形的内角和是180°,但也有几个同学不敢肯定,那么我们用什么方法来验证这个猜想是否正确呢?

  ①小组合作,探究验证方法。

  师:请每位同学先独立思考,然后把你的想法在小组内交流,看一看哪个小组想出的方法最多。

  ②交流汇报。

  预设

  组1:我们小组用量角器把三角形的三个内角的`度数分别量出来,再加起来看一看是不是等于180°。

  组2:我们小组猜想三角形的内角和是180°,而平角的度数也是180°,如果三角形的三个内角刚好能拼成一个平角,那么就说明三角形的内角和是180°。所以我们小组把三角形的三个内角剪下来,拼一拼,看一看能不能拼成一个平角。

  ③动手操作,验证猜想。

  师:请同学们选择一种你喜欢的方法来验证我们刚才的猜想,验证完,将你的结论在小组内交流。(出示课堂活动卡,教师巡视,参与各小组的验证活动,并给予适当的指导)

  师小结:大家刚才量出来的结果或拼出来的结果都在180°左右,其实三角形的内角和就是180°,因为在测量或操作的过程中会产生误差,所以数据会有一些偏差。

  3.得出结论。

  师:根据上面的验证,我们可以得出一个怎样的结论?(三角形的内角和是180°,教师板书:三角形的内角和是180°)

  设计意图:学生通过操作、思考、反馈等过程,真正经历了有效的探究活动,先由直角三角形算出其内角和,再用猜想、操作、验证等方法推导出一般三角形的内角和,最后归纳得出所有三角形的内角和都是180°。在这个过程中,学生不仅体会到了数学学习中归纳的思想方法,还感受到了数学与生活的密切联系。

四年级下册数学《三角形内角和》教案3

  教学内容:

  小学数学教材第八册 P145—P146

  教学目的:

  1.通过教学向学生渗透“认识来源于实践,服务于实践”的观点。

  2.使学生通过学习“三角形内角和”能解决一些实际问题。

  3.进一步培养学生动手操作的能力。

  教学重点:

  对三角形内角和知识的实际运用。

  教学难点:通过动手操作验证三角形的内角和是180°

  教 法:实验法,演示法

  教具准备:三种类型的三角形各一个。

  学具准备:三角形纸片若干。

  教学过程:

  一、课前一练

  说说我们学过的有关三角形的知识。

  二、导入

  在新课开始之前,我们先来做一个小游戏,请同学们在练习本上任意画一个三角形,量出它三个角的度数。

  (生画,量)

  现在请你注意报上两角的度数,老师就能迅速的说出第三角的度数,谁想试试?

  (生报,师速答)

  你们想不想知道老师有什么法宝,能这么快说出第三个角的度数?通过这节数学课的学习,你就可以揭开这个奥秘了。(板书“三角形的内角和”)

  看到这个题目,你想知道些什么呢?

  生:三角形的内角和是多少度?

  生:什么叫三角形的内角和?

  生:我们学习三角形的内角和有什么用处?

  通过这节课的学习,我们就要知道,三角形的内角和是多少度以及它在实际生活中的应用。

  三、新授

  我们要学习三角形的内角和,就要首行弄清什么是三角形的内角和。

  生:“内”是里的意思,“内角”就是三角形里面的角。

  生:(边指边说)“内角和”就是将三角形里面的角相加的度数。

  生:我还有补充。三角形的内角和是三个角相加的度数。

  说的真好。我们来看自学提示:

  1.锐角三角形的内角和是多少度?

  2.直角三角形的内角和是多少度?

  3.钝角三角形和内角和是多少度?

  4.你从中能得出什么结论?

  下面打开书P145,自学开始。

  汇报自学成果

  生:我通过度量得到P145的第一个三角形的三个角的度数分别为它们的和是180°

  生:我跟他的结果不一样,我量的三角度数分别为56°50° 74° 它们的和是180°

  生:我度量结果是179°

  我们在进行度量的时候,由于工具的误差以及我们视力的限制,经常会出现一些小误差,有没有什么方法可以避免这种误差呢?

  生:老师,我不是通过度量,我是通过折纸的方法得出结论的。(边说边演示)。我拿一个锐角三角形,把上面的角沿虚线横折,使它的点落到底边上,再将剩下的两个角横折过来,使三个角正好拼在一起,这三个角组成了一个平角,所以我得出结论:锐角三角形的内角和是180°

  生:老师,我也是这样折的。

  师:请你到投影上演示一下。大家看他演示,你们同意他的说法吗?

  生:同意。

  师:好。那么我们可以得出结论:锐角三角形的内角和是180°

  (贴三角形,板180°)

  生:自学直角三角形的内角和,我也采用了拼折的方法,我将直角三角形的两个锐角折向直角,三角顶点重合,我发现两个锐角正好组成了一个直角,再加上直角,它的内角和是180°

  (贴三角形,板180°)

  生:我不是像你那样折的。我在拼折的`时候发现两个直角三角形正好可以拼成一个长方形,长方形的四个角都是直角,所心内角和是

  360°。再除以2,就得到直角三角形的内角和是180°

  生:老师,我觉得他们的方法太麻烦了,我将我手中的钝角三角形的三个角撕下来,再把它们的顶点重合,也组成了一个平角,就可以证明钝角三角形的内角和也是180°了。

  师:你真有创新精神,你们得出的结论和他一样吗?

  生:一样。

  师:好。钝角形的内角和也是180°。那么你从中能得出什么结论呢?

  生:三角形的内角和是180°。

  生:我有补充,三角形按角分可以分为三类,钝角三角形,直角三角形呼锐角三角形。我们已经通过各种各样的方法证明了这三种类型的三角形的内角和都是180°,所以可以得出上面的结论。

  师:说的真好,我们给他鼓掌。(板“三角形内角和是180°)根据这个结论,如果知道了三角形中两个角的度数,就可以求出第三个角的度数。看投影。

  在三角形中,∠1=78°,∠2=44°求∠3的度数

  迅速做出答案

  ∠3=180°-∠1-∠2

  =180°-78°-44°

  =58°

  生:老师,现在我也能根据两角度数迅速判断出第三角的度数了。

  师:看来你已经掌握了老师的法宝了,谁来考考他?

  (生考)

  师:你真聪明,我还要再考考你们。

  (投影出示P146“做一做”)

  生:180°-90°-65°=25°。

  生:老师,我可以用一种方法直接求出得数。90°-65°=25°

  师:你真聪明,现在同学们打开书,认真看一下这节课学习的内容,你还有哪些不明白的地方?

  生:老师,三角形既然有内角,那一定也有外角了,什么是三角形的外角?外角和多少呢?

  将三角形的一边延长,就得到了三角形的外角,三角形的外角是多少度呢?有兴趣的同学可以课后继续研究。

  四巩固练习

  下面我们运用这节课学习的内容做几个小练习。(略)

  (生做,一生到投影上量,上下对照)

  2.抢答:

  已知∠1,∠2,∠3是三角形的三个内角。

  (1)∠1=38° ∠2=49°求∠3

  (2)∠2=65° ∠3=73°求∠1

  已知∠1和∠2是直角三角形中的两个锐角

  (1)∠1=50°求∠2

  (2)∠2=48°求∠1

  3.已知等腰三角形的一个底角是70°,它的顶角是多少度?(一生到投影做,其余在本上做)

  4.思考题

  你能根据书中P149的17题推导出多边形的内角和公式吗?

  (小组讨论)

  五、小结

  本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。

四年级下册数学《三角形内角和》教案4

  设计理念:

  本教学活动通过创设情境,让学生从情境中出发经历猜测、验证、交流等数学活动,培养学生动手实践、自主探究与合作交流的能力。同时,让学生充分感受到:数学源于生活,生活离不开数学,数学就在我们身边。遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一,并在这一系列教学活动中潜移默化地向学生渗透了“转化”数学思想,为后续学习奠定必要的基础。

  教学内容:

  《义务教育课程标准实验教科书·数学》(人教版)四年级下册第85页例5及相应练习。

  学情与教材分析:

  该内容是本册教材第五单元关于三角形内角和的教学。它安排在三角形的分类之后,组织学生对不同形状和不同大小三角形度量内角的度数。通过度量,各种三角形内角和之和都接近180°,引发学生对三角形内角和探究的欲望,应用折叠、拼凑等方法验证。教材重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生进行自主探索和交流的.空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  教学目标:

  1、通过量、剪、拼等方法,探索和发现三角形内角和是180°。

  2、在操作活动中,培养学生的合作能力、动手操作能力,发展学生的空间观念,并应用新知识解决问题。

  3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

  教学重点:

引导学生发现三角形内角和是180°。

  教学难点:

用不同方法验证三角形的内角和是180°。

  教学用具:

三种不同类型三角形,多媒体课件。

  教学过程:

  一、创设情境,揭示课题。

  与学生交流。(同学们,星期天你们喜欢玩什么? )

  小明打破一块三角形玻璃的情景。(课件出示)

  (学生猜一猜,他会带哪一块到玻璃店配玻璃)

  ③介绍三角形内角及三角形内角和的含义。

  ④设疑揭题。

  从刚才的情境中,我们知道,破掉的三角形玻璃,只要知道其中的两内角,就能配出和原来一样的玻璃。究竟有什么奥妙?这节课我们就一起来研究有关三角形内角和的知识。

  【设计意图:以小明打破玻璃为载体,引入本课的学习,增强了学生的好奇心与探究欲,使学生全身心地投入到学习活动中来。拉近了数学课堂与现实生活的距离,激起学生浓厚的学习兴趣。】

  二、自主探索、验证猜想。

  1、猜一猜。

  猜一猜,它们的内角和到底是谁的大呢?(板贴三种不同类型三角形)

  2、量一量。

  用量角器来量一量,算一算。

  合作要求:

  三种三角形和一张表格,四人小组合作,你们觉得怎样分工度量的速度会最快?

  温馨提示:

  测量的同学:量出每个角的度数,把它写在三角形里面。三个角的度数都量好后,再汇报给记录的同学登记。

  记录的同学:监督小组其他同学量得是不是很准确、真实。不能改掉小组成员度量出来的数据。(开始)

  量一量、算一算不同类型三角形内角和各是多少度?

  ⑵小组合作探究

  ⑶汇报交流

  【学生汇报中可能会出现答案不是唯一的情况,如:180°、179°、181°等。】

  (4)说一说。

  师:观察这些测量结果你能发现什么(三角形内角和大约是180°左右)?

  3、验证。

  (1)剪拼、撕拼

  用度量的方法验证,得到的结果不统一。有没有比度量更精确的验证方法?也就是不用度量你能用别的方法验证吗?

  【学情预设:生:把三角形的三个角剪下来,再拼成一个角。】

  (2)折拼

  用剪拼的方法是比较精确,美中不足就是把三角形给剪了或是撕了。有没有更好验证方法?(用折的方法—课件演示)

  (3)观察小结。

  现在大家知道这几个三角形的内角和是多少度吗?

  任何三角形的内角和都是180°。

  4、揭疑解惑。

  小明为什么带只剩两个角的三角形玻璃到玻璃店配玻璃?

  【设计意图:探索是数学的生命线。本环节以学生探索活动为主,让学生在“量一量”、“折一折、拼一拼”中充分的探索活动中发现问题、提出问题、举例验证、建立模型,让学生在“做数学”过程中理解和掌握新知识,为学生建立良好的学习空间。】

  四、巩固深化。

  师:学会了知识,我们就要懂得去运用。下面,我们就根据三角形的内角和的知识来解决一些相关数学问题。

  1、选一选。哪三个角能组成一个三角形的三个内角?(课件出示)

  2、算一算。求出三角形三个角的度数。(课件出示)

  猜一猜。三角形中有一个角是60°,猜一猜它是什么三角形。

  【设计意图:练习设计力求形式多样,循序渐进,既巩固新知,又促进学生发散思维能力。】

  五、回顾实践、全课总结

  同学们通过这堂课的活动学习,说说你感受最深的是什么?让老师和同学们分享你的收获!

  六、课后思考、拓展延伸。

  一个三角形,剪掉一个角,剩下图形的内角和是多少?

  (图略,等腰三角形,剪掉一个底角)

四年级下册数学《三角形内角和》教案5

  教学目标:

  1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点:

  探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

  教学难点:

  对不同探究方法的指导和学生对规律的灵活应用。

  教学准备:

  多媒体课件、学具。

  教学过程

  一、创设情境,激趣引入。

  认识三角形内角

  1、提问:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

  2、请看屏幕(课件演示三条线段围成三角形的过程)。三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的`这三个角分别叫做三角形的内角。三个内角的度数和就是三角形的内角和。

  (设计意图:让学生整体感知三角形内角和的知识,有效地避免了新知识的横空出现。)

  二、动手操作,探究新知。

  1、猜想

  先后出示两个直角三角形,让学生说出各个内角的度数,并求出这两个直角三角形的内角和。

  提问:从刚才的计算结果中,你想说些什么呢?

  (引出猜想:三角形的内角和是180°)

  (设计意图:引导学生提出合理猜测:三角形的内角和是180°。)

  2、验证

  这只是我们的猜想,事实上是不是这样的呢?还需要我们进行验证。想想,你有什么办法验证三角形的内角和是不是180°呢?

  (引导学生说出量一量、拼一拼、画一画等方法)

  提问:现实中的三角形有千千万万,是不是我们都要对其进行一一验证呢?

  引导学生回答出只要在锐角三角形、钝角三角形和直角三角形三种三角形分别进行验证就行。

  组织学生以小组为单位进行动手操作验证。(每个小组都有三种三角形,让学生选择一种三角形,用自己喜欢的方法进行验证,把验证的过程和结果在小组里进行讨论交流。最后,小组派代表进行汇报)

  (设计意图:让学生带着问题动手、动口、动脑,调动多种感官参与数学学习活动,通过操作、剪拼、验证,让学生去探索、去实验、去发现,从而让学生在动手操作积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力。)

  3、总结

  通过验证,你们得出了什么结论呢?(板书:结论:三角形的内角和是180°)

  三、应用延伸,解决问题。

  1、求三角形中一个未知角的度数。

  (1)在三角形中,已知∠1=70°,∠2=50°,求∠3。

  (2)在三角形中,已知∠1=78°,∠2=44°,求∠3。

  (3)选算式:(1)∠A=180°-55°(2)∠A=180°-90°-55°(3)∠A=90°-55°

  (分别请同学们板演,并说出解题思路。)

  2、判断

  (1) 一个三角形的三个内角度数是:80° 、75° 、 24° 。 ( )

  (2)三角形越大,它的内角和就越大。 ( )

  (3)一个三角形至少有两个角是锐角。 ( )

  (4)钝角三角形的两个锐角和大于90°。 ( )

  (请同学回答,并说出判断的依据)

  3、解决生活实际问题。

  爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角呢?

  (让学生结合题意画图,再说出答题的思路)

  4、拓展练习。

  利用三角形内角和是180°,求出下面四边形、六边形的内角和?

  图 形

  名 称 三角形 四边形 五边形 六边形

  有几个三角形

  内角和

  (设计意图:习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。)

  四、全课总结,梳理反思。

  今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

  (设计意图:引导学生回顾与反思学习过程,进一步梳理知识,优化认知,感悟学习方法,从学会走向会学,带着收获的喜悦结束本节课的学习。)

  五、板书设计:

  三角形的内角和

  猜想:三角形的内角和是180°。

  验证:量一量、拼一拼、画一画

  直角三角形

  锐角三角形

  钝角三角形

  结论:三角形的内角和是180°。

四年级下册数学《三角形内角和》教案6

  教学内容:

  p.28、29

  教材简析:

  本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。

  教学目标:

  1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。

  2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。

  3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

  教学准备:

  三角板,量角器、点子图、自制的三种三角形纸片等。

  教学过程:

  一、提出猜想

  老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180

  看了这2个算式你有什么猜想?

  (三角形的三个角加起来等于180度)

  二、验证猜想

  1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

  老师注意巡视和指导。交流各自加得的结果,说说你的发现。

  2、折、拼:学生用自己事先剪好的图形,折一折。

  指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

  继续用该方法折钝角三角形,得到同样的结果。

  直角三角形的折法有不同吗?

  通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的.度数和也是180度。

  3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

  在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。

  小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。

  4、试一试

  三角形中,角1=75,角2=39,角3=( )

  算一算,量一量,结果相同吗?

  三、完成想想做做

  1、算出下面每个三角形中未知角的度数。

  在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

  指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

  2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

  可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?

  然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。

  3、用一张正方形纸折一折,填一填。

  4、说理:一个直角三角形中最多有几个直角?为什么?

  一个钝角三角形中最多有几个直角?为什么?

  四、布置作业

  第4、5题

四年级下册数学《三角形内角和》教案7

  教学内容

  探索与发现:三角形内角和(教材24~26页)。

  教学目标

  1.知识目标:让学生通过“测量、撕拼、折叠、猜想、验证”等方法,探索并发现“三角形内角和等于180°”。

  2.技能目标:能运用三角形内角和的性质解决一些简单的问题。

  3.情感目标:在活动中,让学生体验主动探究数学规律的乐趣,激发学生学习数学的热情。

  重点难点

  教学重点:探索并发现三角形内角和等于180°。

  教学难点:掌握探究方法,学会运用三角形内角和的性质。

  学具准备

  各种 三 角形、剪刀、量角 器、课件。

  教学 过程

  一、创设情境,揭示课题。

  1.播放课件,提问: 这些三角形在争论什么?

  教师:是在争论关于自己内角和的大小。

  2.教师:什么是三角形的内角和?( 板书:内角和)

  讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

  二、自主探究,合作交流。

  (一)提出问题。

  1.你认为谁说得对?你是怎么想的?

  2.你有什么办法可以比较一下这些三角形的内角和呢?

  学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

  (二)探索与发现。

  1.初步探索。

  (1)量一量。

  了解活动要求:

  A.在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确。)

  B.把测量结果记录在表 格中,并计算三角形内角和。

  C.讨论:从刚才的测量和计算结果中,你发现了什么?(引导学生发现每个三角形 的三个内角和都在180°左右。)

  (2)提出猜想。

  刚才我们通过测量和计算发现了三角形内角和都在180°度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?

  2.动手操作,验证猜想。

  教师:这个猜想是否成立呢?我们要想办法来验证一下。

  教师引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

  (1)小组合作,讨论验证方法。

  (2)分组汇报,讨论质疑。

  学生可能会出现的方法:

  ①撕拼的方法。

  把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°。

  教师:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

  ②折一折的方法。

  把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与

  角1的顶点互相重合,证明了各种三角形内角和都等于180°。

  3.课件演示,归纳总结,得出结论。

  (1)引导学生得出结论。

  孩子们,三角形内角和到底等于多少度呢?“

  学生一定会高兴地喊:“180°!”

  (2)总结方法,齐读结论。

  教 师:我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的.得到了这个结论,让我们为自己的成功鼓掌!

  (3)解释测量误差。

  教师:为什么我们刚才通过测量,计算出来的三角形内角和不是正好180°呢?

  那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一的误差。实际上,三角形内角和就等于180°。

  三、探究结果汇报。

  教师:现在你知道这些三角形谁说得对了吗?(都不对!)

  学生:因为三角形内角和等于1 80°。 (齐读)

  教师小结:三角形的形状和大小虽然不同,但 是三角形的内角和都是180度。

  四、课堂应用,巩固加深。

  1.试一试。

  数学课本25页。

  2.练一练。

  (1)数学书25页第一题。(生独立解决。)

  (2)数学书25页第二题。(动手量一量。)

  拼成的四边形的内角和是( )。

  拼成的三角形的内角和是( )。

  五、课堂作业设计。

  教材26页4、5、6题。

【四年级下册数学《三角形内角和》教案】相关文章:

四年级下册数学《三角形内角和》教案11-18

《三角形内角和》数学教案06-13

数学教案-三角形的内角和08-16

《三角形内角和》数学教案02-15

小学数学《三角形的内角和》教案03-08

《三角形内角和》数学教案【合集】06-16

《三角形内角和》数学教案【优秀】06-16

《三角形内角和》数学教案12篇03-26

四年级下册数学《三角形内角和》教案7篇(精)07-10