八年级数学上册的教案
作为一位杰出的教职工,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。优秀的教案都具备一些什么特点呢?下面是小编整理的八年级数学上册的教案,希望对大家有所帮助。
八年级数学上册的教案1
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>
2。当x
>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的'条件,进一步巩固二次根式的定义。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
八年级数学上册的教案2
[教学目标]
知识与技能:
1.会用多边形公式进行计算。
2.理解多边形外角和公式。
过程与方法:
经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力.
情感态度与价值观:
让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
[教学重点、难点与关键]
教学重点:多边形的内角和.的应用.
教学难点:探索多边形的内角和与外角和公式过程.
教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决.
[教学方法]
本节课采用“探究与互动”的教学方式,并配以真的情境来引题。
[教学过程:]
(一)探索多边形的内角和
活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。
活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?
多边形边数分成三角形的个数图形
内角和计算规律
三角形31180°(3-2)·180°
四边形4
五边形5
六边形6
七边形7
。。。。。。
n边形n
活动3:把一个五边形分成几个三角形,还有其他的分法吗?
总结多边形的内角和公式
一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。
巩固练习:看谁求得又快又准!(抢答)
例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?
(点评:四边形的一组对角互补,另一组对角也互补。)
(二)探索多边形的外角和
活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?
分析:(1)任何一个外角同于他相邻的内角有什系?
(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?
(3)上述总和与五边形的内角和、外角和有什么关系?
解:五边形的外角和=______________-五边形的内角和
活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?
也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。
结论:多边形的外角和=___________。
练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。
练习2:正五边形的'每一个外角等于________,每一个内角等于_______。
练习3.已知一个多边形,它的内角和等于外角和,它是几边形?
(三)小结:本节课你有哪些收获?
(四)作业:
课本P84:习题7.3的2、6题
附知识拓展—平面镶嵌
(五)随堂练习(练一练)
1、n边形的内角和等于__________,九边形的内角和等于___________。
2、一个多边形当边数增加1时,它的内角和增加()。
3、已知多边形的每个内角都等于150°,求这个多边形的边数?
4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()
A:360°B:540°C:720°D:900°
5.已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数?
八年级数学上册的教案3
教学目标:
(1)通过观察操作,认识轴对称图形的特点,掌握轴对称图形的概念。
(2)能准确判断哪些事物是轴对称图形。
(3)能找出并画出轴对称图形的对称轴。
(4)通过实验,培养学生的抽象思维和空间想象能力。
(5)结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。
教学重点:
(1)认识轴对称图形的特点,建立轴对称图形的概念;
(2)准确判断生活中哪些事物是轴对称图形。
教学难点:
根据本班学生学习的实际情况,本节课教学的难点是找轴对称图形的对称轴。
教学过程:
一、认识对称物体
1、出示物体:今天秦老师给大家带来了一些物体,这是我们学校的同学参加数学竞赛获得的奖杯。这时一架轰炸战斗机。这是海狮顶球。
2、请同学们仔细观察这些物体,想一想它们的外形有什么共同的特点。(可能的回答:对称)
(但部分学生这时并不真正理解何为对称)
追问:对称?你是怎样理解对称的呢?
(可能的回答:两边是一样的)
像这样两边形状、大小都完全相同的物体,我们就说它是对称的。(板书:对称)像这样对称的物体,在我们的生活中你看到过吗?谁来说说看?
(可能正确的回答:蝴蝶、蜻蜓……)
(可能错误的回答:剪刀)
若有错误答案则如此处理。追问:剪刀是不是对称的?学生产生分歧,有说是,有说不是。剪刀两边不是完全一样的,所以它不对称。但是沿着轮廓把它画在纸上,是一个对称的。
二、认识对称图形
1、这些对称的物体,我们把它画在纸上,就得到这样一些平面图形。(出示图片)这些图形还是对称的吗?(是对称的)
同学们真聪明,一眼就能看出这些图形都是对称的。那么像这样的图形,我们就把它们叫做——(生齐说:对称图形)
(师在“对称”后接着板书:图形)
2、是不是所有的图形都是对称的?它们又是怎样对称的?我们又怎样证明它们是不是对称图形?这就是我们这节课要研究的问题。为了研究这些问题,老师还带来了一些平面图形,你们看——
(师在黑板上贴出图形)
边贴边说:汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽图形。
这些图形都是对称的吗?(不是)
3、你们能给它们分分类吗?(能)谁愿意上来分一分?
你准备怎么分类?(分成两类:一类是对称图形,一类是不对称图形)
问全班同学:你们同意吗?(同意)
你们怎么知道这些图形就是对称图形?有什么办法来证明吗?(对折)
好,我们用这个办法试一下。谁愿意上来折给大家看的?自己上来,选择一个喜欢的图形折给大家看。
4、图形对折后你发现了什么?谁先说?(可能的回答:对折后两边一样或对折后两边重叠)
你们所说的两边一样、两边重叠,也就是说对折后两边重合了。
(师板书:重合)(若有说出完全重合则板书:完全重合)
请将对折后的对称图形贴到黑板上,谢谢。
师指不对称图形。同学们刚才我们通过把这些对称图形对折,发现对折后两边重合了,现在再请几位同学上来折一折不对称图形,看看这次又有什么发现?还是自己上来。
折后你发现了什么?(可能的回答:没有重合、对折后两边不一样)它们有没有重合?一点点重合都没有吗?
(有一点重合)
拿一个对称图形和同学折过的不对称图形比较。这个图形对折后重合了,这个也重合了,那这两种重合有什么不一样吗?
(可能的回答:这个全部重合了,这个没有)
这些对称的图形对折后全部重合了,也就是完全重合了!
(师在“重合”前板书:完全)而不对称图形只是部分重合。
好,谢谢你们,请将图形放这(不对称图形下黑板)
大家的表现非常出色,奖励一下我们自己,来拍拍手吧!
“一——二——停!”我们的两只手掌现在是——
(生齐说:完全重合)
三、认识对称轴,对称轴的画法
同学们都很聪明,课前你们都准备了彩纸、剪刀,如果请你用这些材料创作一个对称图形,行吗?
1、请将你创作的对称图形,慢慢打开,问:你们发现了什么?
(中间有一条折痕)
大家把手中的对称图形举起来,看看是不是每个对称图形中间——都有一条折痕。这些折痕的左右两边——(生齐说:完全重合)。
这条折痕所在的直线,有它独有的名称叫做“对称轴”。
(在“对称图形”前板书:轴)
像这样的图形,我们就把它们叫做“轴对称图形”。
(师手指板书,边说边把“对折——完全重合——轴对称图形”连起来)
现在大家知道了这个图形是——轴对称图形。这个呢?这个呢?他们都是——轴对称图形。接下来请你看着自己创作的图形说说。
谁来说说,怎样的图形是轴对称图形?
可以上来拿一个轴对称图形说。请学生用自己的语言说。
2、师拿一张轴对称图形,随便折两下。
这是一个轴对称图形吗?是的。师随便折两下。
谁来说说这个轴对称图形的对称轴是那条?
(一条都不是。)为什么?
只有对折后两边完全重合的折痕才是对称轴。
请你来折出它的对称轴。通常我们用点划线表示对称轴。
师示范。请你在所创作的轴对称图形上用点划线表示出对称轴。
四、平面图形中的轴对称图形,及它们的对称轴各有几条。
1、对于轴对称图形,其实我们并不陌生,在我们认识的一些平面图形中应该就有一些是轴对称图形。我们先回忆一下学习过的平面图形有哪些?
(可能的回答:正方形、长方形、平行四边形、圆形、梯形、三角形等等)(教师板书,适当布局)
同学们说的是否正确呢?用什么办法来证明?(对折)如果它是轴对称图形,那它有几条对称轴呢?
好,那我们就拿出课前准备的平面图形,用对折的方法来证明,注意如果它有对称轴请你折出来。
结论出来了吗?现在你的判断和刚才还是一样的`吗?
3、问:你想汇报什么?学生汇报。教师机动回答,回答语可有:
这位同学既能给出判断结果,又能说出判断的理由,非常好。
看来,仅靠经验、观察得出的结论有时并不准确,还需要动手实验进行验证。
能抓住轴对称图形的特征进行分析,不错!
也许一般的平行四边形不是轴对称图形,但有些特殊的平行四边形却是比如:长方形和正方形。以此类推……
圆有无数条对称轴。所有的圆都是轴对称图形。
讨论平行四边形、梯形、三角形时,我们既要考虑一般的图形,又要考虑特殊的图形。但是关于圆形,我们却无需考虑这么多,正如你所说的,所有的圆都是轴对称图形,不存在什么特殊的情况。看来,数学学习中,具体的问题还得具体对待。
(一般三角形、一般梯形、直角梯形、一般平行四边形不是轴对称图形,等腰三角形、等腰梯形、正三角形、长方形、正方形和圆都是轴对称图形)等腰梯形(1条),正五边形(5条),圆(无数条)
4、用测量的方法找对称轴。
刚才,大家都用对折的方法找出了他们的对称轴,但是如果老师请你在黑板面上找出对称轴呢?
大家都有一张长方形纸,假设它就是不能对折的黑板面,怎么画出它的对称轴?(我们可以用测量的方法,来找出对边的中点,连结中点。用同样的方法,我们可以画出另一条对称轴。
现在请同学们打开书本,画出书上长方形的对称轴。(小组内交流检查)
五、练习
1、学习了什么是轴对称图形,现在请在你身边的物体上找出三个轴对称图形。(瓷砖面、电视机柜、衣服、国旗?、凳面、桌面)
问:国旗是轴对称图形吗?
产生冲突。说明:不但要观察外形,还要观察里面的图案。
2、判断国旗是否是轴对称图形。
3、找阿拉伯数字中的轴对称图形
4、领略窗花的美丽,再从中找到创作的灵感,创作轴对称图形。教师可出示一些指导性图片。
选择一些贴到黑板上,最后出示“美”字。
总结:轴对称图形非常美丽,因此被广泛的运用于服装、家具、交通、商标等方面的设计中,希望大家能够运用今天的知识,把我们的教室、把你的家以后把我们的祖国装扮得更漂亮。
八年级数学上册的教案4
教学目标:
1.了解轴对称图形和两个图形关于某直线对称的概念.
2.能识别简单的轴对称图形及其对称轴(直线),能找出两个图形关于某直线对称的对称点.
3.了解轴对称图形与两个图形关于某直线对称的区别和联系.
教学重点:
1、轴对称图形和两个图形成轴对称的概念;
2、探索轴对称的性质。
教学难点:
1、能够识别轴对称图形并找出它的对称轴;
2、能运用其性质解答简单的几何问题。
教学方法启发诱导法
教具准备多媒体课件,剪刀,彩色纸
教学过程
一、情境导入
同学们,自古以来,对称图形被认为是和谐、美丽的.不论在自然界里还是在建筑中,不论在艺术中还是在科学中,甚至最普通的日常生活用品中,对称图形随处可见,对称给我们带来了美的感受!而轴对称是对称中很重要的一种,今天就让我们一起走进轴对称世界,探索它的秘密吧!
我们先来看一下这节课的学习目标
1.了解轴对称图形和两个图形关于某直线对称的概念.
2.能识别简单的轴对称图形及其对称轴,能找出两个图形关于某直线对称的`对称点.
3.了解轴对称图形与两个图形关于某直线对称的区别和联系.
二、自主探究
【探究一】
(一)我们先来看几幅图片,观察它们都有些什么共同特征.
1、它们都是对称的.
2、它们沿着某条直线折叠后,直线两旁的部分能完全重合。
(二)动画展示蝴蝶的折叠过程
(三)做一做
1.准备一张纸;
2.对折纸;
3.用铅笔在纸上画出你喜欢的图案;
4.剪下你画的图案;
5.把纸打开铺平,观察所得的图案,位于折痕两侧的部分有什么关系?
【答】能互相重合一模一样是对称的
从而得出轴对称图形的概念:
如果一个图形沿着一条直线折叠,只限两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们说这个图形关于这条直线对称。
八年级数学上册的教案5
一、内容和内容解析
1、内容
正比例函数的概念。
2、内容解析
一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。
对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。
本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。
基于以上分析,确定本节课的教学重点:正比例函数的概念。
二、目标和目标解析
1、目标
(1)经历正比例函数概念的形成过程,理解正比例函数的概念;
(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。
2、目标解析
达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。
达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。
三、教学问题诊断分析
正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的`认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。
因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。
八年级数学上册的教案6
一.教学目标:
1.了解方差的定义和计算公式。
2.理解方差概念的产生和形成的过程。
3.会用方差计算公式来比较两组数据的波动大小。
二.重点、难点和难点的突破方法:
1.重点:方差产生的必要性和应用方差公式解决实际问题。
2.难点:理解方差公式
3.难点的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。
(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。
(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。
(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的`波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
三.例习题的意图分析:
1.教材P125的讨论问题的意图:
(1).创设问题情境,引起学生的学习兴趣和好奇心。
(2).为引入方差概念和方差计算公式作铺垫。
(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。
(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。
2.教材P154例1的设计意图:
(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。
(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。
四.课堂引入:
除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。
五.例题的分析:
教材P154例1在分析过程中应抓住以下几点:
1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。
3.方差怎样去体现波动大小?
这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
六.随堂练习:
1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?
测试次数1 2 3 4 5
段巍13 14 13 12 13
金志强10 13 16 14 12
参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐
2.段巍的成绩比金志强的成绩要稳定。
七.课后练习:
1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。
2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛。
3.甲、乙两台机床生产同种零件,10天出的次品分别是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?
4.小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根据这几次成绩选拔一人参加比赛,你会选谁呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
选择小兵参加比赛。
八年级数学上册的教案7
【教学目标】
知识与技能
会推导平方差公式,并且懂得运用平方差公式进行简单计算。
过程与方法
经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。
情感、态度与价值观
通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。
【教学重难点】
重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。
难点:平方差公式的应用。
关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。
【教学过程】
一、创设情境,故事引入
【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事
【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。
【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?
【学生回答】多项式乘以多项式。
【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。
【问题牵引】计算:
(1)(x+2)(x—2);(2)(1+3a)(1—3a);
(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。
【学生活动】分四人小组,合作学习,获得以下结果:
(1)(x+2)(x—2)=x2—4;
(2)(1+3a)(1—3a)=1—9a2;
(3)(x+5y)(x—5y)=x2—25y2;
(4)(y+3z)(y—3z)=y2—9z2。
【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。
【学生活动】讨论
【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?
【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。
【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。
二、范例学习,应用所学
【教师讲述】
平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。
例1:运用平方差公式计算:
(1)(2x+3)(2x—3);
(2)(b+3a)(3a—b);
(3)(—m+n)(—m—n)。
《乘法公式》同步练习
二、填空题
5、幂的乘方,底数______,指数______,用字母表示这个性质是______。
6、若32×83=2n,则n=______。
《乘法公式》同步测试题
25、利用正方形的面积公式和梯形的面积公式即可求解;
根据所得的两个式子相等即可得到。
此题考查了平方差公式的几何背景,根据正方形的`面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。
26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;
等式左边减数的底数与序号相同,由此得出第n个式子;
八年级数学上册的教案8
【教学目标】
知识与技能
能确定多项式各项的公因式,会用提公因式法把多项式分解因式.
过程与方法
使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.
情感、态度与价值观
培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.
【教学重难点】
重点:掌握用提公因式法把多项式分解因式.
难点:正确地确定多项式的最大公因式.
关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的'最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.
【教学过程】
一、回顾交流,导入新知
【复习交流】
下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2);
(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;
(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
问题:
1.多项式mn+mb中各项含有相同因式吗?
2.多项式4x2-x和xy2-yz-y呢?
请将上述多项式分别写成两个因式的乘积的形式,并说明理由.
【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.
二、小组合作,探究方法
教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.
三、范例学习,应用所学
例1:把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
例2:分解因式:3a2(x-y)3-4b2(y-x)2
【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2·3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2·3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
例3:用简便的方法计算:
0.84×12+12×0.6-0.44×12.
【教师活动】引导学生观察并分析怎样计算更为简便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?
四、随堂练习,巩固深化
课本115页练习第1、2、3题.
【探研时空】
利用提公因式法计算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、课堂总结,发展潜能
1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.
2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.
六、布置作业,专题突破
课本119页习题14.3第1、4(1)、6题.
八年级数学上册的教案9
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的.轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0 0<≤ 6 20 30 40 50 (1)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1).15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2.5 2 1.5 1.5 1.2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约2.95万元2.约29岁3.60.54分贝 一、教学目标 (一)、知识与技能: (1)使学生了解因式分解的意义,理解因式分解的概念。 (2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。 (二)、过程与方法: (1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。 (2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。 (3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。 (三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。 二、教学重点和难点 重点:因式分解的概念及提公因式法。 难点:正确找出多项式各项的`公因式及分解因式与整式乘法的区别和联系。 三、教学过程 教学环节: 活动1:复习引入 看谁算得快:用简便方法计算: (1)7/9 ×13-7/9 ×6+7/9 ×2= ; (2)-2.67×132+25×2.67+7×2.67= ; (3)992–1= 。 设计意图: 如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶. 注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。 活动2:导入课题 P165的探究(略); 2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的? 设计意图: 引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。 活动3:探究新知 看谁算得准: 计算下列式子: (1)3x(x-1)= ; (2)(a+b+c)= ; (3)(+4)(-4)= ; (4)(-3)2= ; (5)a(a+1)(a-1)= ; 根据上面的算式填空: (1)a+b+c= ; (2)3x2-3x= ; (3)2-16= ; (4)a3-a= ; (5)2-6+9= 。 在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。 活动4:归纳、得出新知 比较以下两种运算的联系与区别: a(a+1)(a-1)= a3-a a3-a= a(a+1)(a-1) 在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗? 【教学目标】 1.了解分式概念. 2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 【教学重难点】 重点:理解分式有意义的条件,分式的值为零的条件. 难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 【教学过程】 一、课堂导入 1.让学生填写[思考],学生自己依次填出:,,,. 2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 设江水的流速为x千米/时. 轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=. 3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母. [思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的'分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义. 二、例题讲解 例1:当x为何值时,分式有意义. 【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围. (补充)例2:当m为何值时,分式的值为0? (1);(2);(3). 【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解. 三、随堂练习 1.判断下列各式哪些是整式,哪些是分式? 9x+4,,,,, 2.当x取何值时,下列分式有意义? 3.当x为何值时,分式的值为0? 四、小结 谈谈你的收获. 五、布置作业 课本128~129页练习. 一、内容和内容解析 1.内容 三角形高线、中线及角平分线的概念、几何语言表达及它们的画法. 2.内容解析 本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。 理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备. 本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系. 二、目标和目标解析 1.教学目标 (1)理解三角形的高、中线与角平分线等概念; (2)会用工具画三角形的高、中线与角平分线; 2.教学目标解析 (1)经历画图实践过程,理解三角形的高、中线与角平分线等概念. (2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质. (3)掌握三角形的高、中线与角平分线的画法. (4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点. 三、教学问题诊断分析 三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上. 三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的'对边中点. 三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别. 教学设计 1、知识技能: (1)会进行简单的二次根式的除法运算。 (2)使学生能利用商的算术平方根的性质进行二次根式的化简与运算。 2、数学思考:在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则。 3、 解决问题:引导学生从特殊到一般总结归纳的方法以及类比的方法,解决数学问题。 4、情感态度:通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的 同步练习含答案解析 【考点】最简二次根式。 【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的.因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是。 【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误; B、符合最简二次根式的条件;故本选项正确; B、,被开方数里含有能开得尽方的因式x2;故本选项错误; C、被开方数里含有分母;故本选项错误。 D、被开方数里含有能开得尽方的因式a2;故本选项错误; 故选;B。 【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件: (1)被开方数不含分母; (2)被开方数不含能开得尽方的因数或因式。 课时练习含答案 解答:选项A是二次根式乘法的运算,选项C不符合二次根式的运算条件,选项D中被开方数不能为负,故A、C、D都是错误的,唯有B符合二次根式除法运算法则,故选B。 分析:正确运用二次根式除法运算法则进行计算,并能辨析运算的正误,是本节的教学难点,学生可以通过比较分析或正确计算加以判断。 单元(章)主题第三章 直棱柱任课教师与班级 本课(节)课题3.1 认识直棱柱第 1 课时 / 共 课时 教学目标(含重点、难点)及 设置依据教学目标 1、了解多面体、直棱柱的有关概念. 2、会认直棱柱的侧棱、侧面、底面. 3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征. 教学重点与难点 教学重点:直棱柱的有关概念. 教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力. 教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型 教 学 过 程 内容与环节预设、简明设计意图二度备课(即时反思与纠正) 一、创设情景,引入新课 师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢? 析:学生很容易回答出更多的答案。 师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。 二、合作交流,探求新知 1.多面体、棱、顶点概念: 师:(出示长方体,立方体模型)这是我们熟悉的立体图形,它们是有几个平面围成的?都有什么相同特点? 析:一个同学回答,然后小结概念:由若干个平面围成的几何体,叫做多面体。多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的`顶点 2.合作交流 师:以学习小组为单位,拿出事先准备好的几何体。 学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描 述其特征。) 师:同学们再讨论一下,能否把自己的语言转化为数学语言。 学生活动:分小组讨论。 说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。 师:请大家找出与长方体,立方体类似的物体或模型。 析:举出实例。(找出区别) 师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征: 有上、下两个底面,底面是平面图形中的多边形,而且彼此全等; 侧面都是长方形含正方形。 长方体和正方体都是直四棱柱。 3.反馈巩固 完成“做一做” 析:由第(3)小题可以得到: 直棱柱的相邻两条侧棱互相平行且相等。 4.学以致用 出示例题。(先请学生单独考虑,再作讲解) 析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯) 最后完成例题中的“想一想” 5.巩固练习(学生练习) 完成“课内练习” 三、小结回顾,反思提高 师:我们这节课的重点是什么?哪些地方比较难学呢? 合作交流后得到:重点直棱柱的有关概念。 直棱柱有以下特征: 有上、下两个底面,底面是平面图形中的多边形,而且彼此全等; 侧面都是长方形含正方形。 例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。 板书设计 作业布置或设计作业本及课时特训 教材分析 平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的`化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。 学情分析 学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。 教学目标 1、知识与技能:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行运算. 2、过程与方法:在探索平方差公式的过程中,发展学生的符号感和归纳能力、推理能力.在计算的过程中发现规律,掌握平方差公式的结构特征,并能用符号表达,从而体会数学语言的简洁美. 3、情感、态度与价值观:激发学习数学的兴趣.鼓励学生自己探索,有意识地培养学生的合作意识与创新能力. 教学重点和难点 重点:平方差公式的推导和应用. 难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题. 【八年级数学上册的教案】相关文章: 八年级上册人教版数学教案02-27 八年级上册数学教案11-09 八年级上册数学教案12-11 八年级数学上册教案06-08 数学上册教案01-15 [推荐]八年级上册数学教案05-23 [精华]八年级上册数学教案06-08 [优选]八年级上册数学教案06-09 八年级上册数学教案[热门]07-03 人教版八年级数学上册教案01-26八年级数学上册的教案10
八年级数学上册的教案11
八年级数学上册的教案12
八年级数学上册的教案13
八年级数学上册的教案14
八年级数学上册的教案15