现在位置:范文先生网>教案大全>数学教案>六年级数学教案>小学六年级数学下册教案

小学六年级数学下册教案

时间:2024-07-15 12:36:50 六年级数学教案 我要投稿

小学六年级数学下册教案

  作为一名优秀的教育工作者,常常需要准备教案,借助教案可以让教学工作更科学化。那么教案应该怎么写才合适呢?以下是小编精心整理的小学六年级数学下册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

小学六年级数学下册教案

小学六年级数学下册教案1

  【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第56-58页例4及做一做。

  【教学目标】

  1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。

  2、能按一定的比,将一些简单图形进行放大或缩小。

  【教学重点】图形的放大与缩小。

  【教学难点】按一定的.比把图形放大或缩小。

  【教学准备】多媒体

  【自学内容】见预习作业

  【教学预设】

  一、自学反馈

  1、什么叫做比例尺?

  一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

  2、怎样求比例尺?

  求图上距离和实际距离的最简整数比。

  3、一栋楼房东西方向长40,在图纸上的长度是50c。这幅图纸的比例尺是多少?

  (1)学生尝试独立求比例尺。

  (2)汇报交流

  50c:40=50c:4000c=1:80

  (3)你是怎么想的?

  二、关键点拨

  1、求比例尺。

  (1)怎样求一幅图的比例尺?

  先写出图上距离与实际距离的比,再化成最简整数比。

  (2)比例尺有什么特点?

  比例尺是前项或后项为1的比。

  (3)比例尺可以怎样表示?

  数值比例尺和线段比例尺。(1:500000)或(线段比例尺)

  2、求实际距离。

  (1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?

  (2)学生尝试独立列比例解答。

  (3)汇报交流

  解:设这两地之间的实际距离大约是x厘米。

  =

  =5000000

  5000000c=50

  (4)你觉得在求实际距离时要注意什么问题?

  实际距离一般用千米做单位。

  3、求图上距离

  (1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?

  (2)学生尝试画操场的平面图。

  (3)汇报交流

  你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】

  三、巩固练习

  1、课本第53页练习八第1题求比例尺。

  2、课本第52页做一做第1题。

  3、课本第52页做一做第2题。

  四、分享收获 畅谈感想

  这节课,你有什么收获?听课随想

小学六年级数学下册教案2

  教学目标

  1.使学生理解并掌握比例的意义和基本性质.

  2.认识比例的各部分的名称.

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学过程

  一、复习准备.

  (一)教师提问复习.

  1.什么叫做比?

  2.什么叫做比值?

  (二)求下面各比的比值.

  12∶16 4.5∶2.7 10∶6

  教师提问:上面哪些比的比值相等?

  (三)教师小结

  4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以

  用等号连接.

  教师板书:4.5∶2.7=10∶6

  二、新授教学.

  (一)比例的意义(课件演示:比例的意义)

  例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1.教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  80∶2=200∶5或 .

  3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4.练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  (1)6∶10和9∶15 (2)20∶5和1∶4

  (3) 和 (4)0.6∶0.2和

  5.填空

  (1)如果两个比的比值相等,那么这两个比就( )比例.

  (2)一个比例,等号左边的比和等号右边的比一定是( )的.

  (二)比例的基本性质(课件演示:比例的基本性质)

  1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2.练习:指出下面比例的外项和内项.

  4.5∶2.7=10∶6 6∶10=9∶15

  3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以80∶2=200∶5为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4.学生自己任选两三个比例,计算出它的.外项积和内项积.

  5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

  板书课题:加上“和基本性质”,使课题完整.

  6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7.练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  6∶3和8∶5 0.2∶2.5和4∶50

  三、课堂小结.

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习.

  (一)说一说比和比例有什么区别.

  (二)填空.

  在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )×( )=( )×( ).

  (三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  1.6∶9和9∶12 2.1.4∶2和7∶10

  3.0.5∶0.2和 4. 和7.5∶1

  (四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业.

  根据3×4=2×6写出比例.

  六、板书设计.

  省略

小学六年级数学下册教案3

  教学内容

  圆锥的体积计算公式。

  教学目的

  知道圆锥体积公式的推导过程,理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题,对学生进行辩证物主启蒙教育。

  教学重点

  圆锥体积的计算公式

  教学难点

  圆锥体积公式的推导。

  教具准备

  沙、圆锥教具,圆柱教具若干个,其中要有等底等高圆柱,圆锥各两对。

  教学过程

  一、复习

  1、口答圆柱体积计算公式。

  2、计算下面各圆柱的体积。

  (1)底面积是6.28平方分米,高是5分米。

  (2)底面半径是2分米,高与半径相等。

  (3)底面直径6厘米,高5厘米。

  (4)底面周长6.28分米,高2分米。

  小结学生练习情况。

  二、新授

  1、点明课题:锥体积的计算

  2、全积公式推导

  (1)要研究圆锥的体积,你想提出什么问题?

  ①圆锥的体积与什么有关?有怎样的关系?

  ②为什么有这样的关系呢?

  (2)出示教具让学生观察圆锥体积与底面积,高有关系。

  ①要研究圆锥的体积需转化成已学过的物体积来计算。

  ②实验

  (1)出示底等高的圆锥容器教具观察特征:等底、等高。

  (2)老师示范用空圆锥装满沙往空圆柱里倒,让学生观察看看倒几倒满圆柱。

  (3)得出结论:圆锥体积等于这个圆柱体积的1/3。

  (4)老师再一次实验。

  (5)学生动手实验:先做等底等高的实验,再做不等底不等高的实验,然后提问:圆锥体积都是圆柱体积的1/3吗?为什么?

  3、学生讨论实验情况,汇报实验结果。

  4、推导出公式

  5、练习(口答)

  (1)一个圆柱体积是27立方分米,与它等底等高的圆锥体积是多少立方分米?

  (2)一个圆锥体积是150立方厘米,与它等底等市的圆柱体积是多少立方厘米?

  突出强调:“等底等高”这一前提下圆柱与圆锥的体积关系。

  6、运用公式

  (1)出示例1。一个圆锥形的'零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  学生尝试练习,老师讲评。

  (2)出示例2。在打谷场上,有一个近公似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?

  学生读题思考片刻后问:要求小麦重量需先求出什么?要求体积需知道什么?然后学生尝试练习,个别板演,练习后评讲。

  三、巩固练习

  课本第43页的“做一做”第1、2题。练习后评讲。

  四、小结:今天这节课,你学到了什么知识?要求圆锥的体积需要知识哪些条件?

  五、作业

  完成练习九的第3――5题。

小学六年级数学下册教案4

  一、复习内容

  《义务教育教科书数学》(人教版)六年级下册第76、77页例1--例8。

  二、复习目标

  1.通过整理和复习四则运算的意义、计算法则和运算律及利用这些知识解决问题,会根据解决问题的需要,选择合理的方法进行计算,进一步提高四则运算能力。

  2. 在对知识、技能、方法的回顾与梳理中,掌握整理的方法,并使所学内容系统化、网络化,形成完整的认知结构。

  3.感受数学的应用价值,能在数学学习活动中获得成功体验,提升数学素养。

  三、复习重难点

  回顾整理四则运算的意义、计算法则和运算律及利用这些知识解决问题,理清知识间的联系,构建知识网络。

  四、配套资源

  实施资源:《数的运算》名师课件

  五、复习设计

  (一)课前设计

  1.预习任务

  (1)请同学们自主复习课本P76—77内容,试着对这部分的知识进行梳理,并用思维导图表示出来。

  (二)课堂设计

  师:同学们,我们数学课上学过各式各样的数,有整数、分数、小数,还学习了这些数的运算。我们学过的哪些知识是关于数的运算的呢?(根据学生回答随机板书)

  师:我们学过了这么多有关运算的知识,今天我们就来系统地整理一下。(板书课题)

  【设计意图:通过谈话,引起学生对数的运算相关知识的回忆,为分类整理和构建体系做好准备。】

  1.四则运算和运算律的回顾整理

  (1)全班交流,梳理方法

  师:我们学过哪些运算?说明每种运算的含义。

  师:关于数的运算的知识有这么多,在系统整理时,你有什么合理的建议吗?

  预设1:可以用表格整理

  预设2:分类整理。

  预设3:举例说明

  预设4:画图整理。

  师:同学们的建议都有价值,今天我们就分成四则运算、运算定律这两大部分来进行整理。在四则运算中,还要区分出整数、小数、分数这三类,分别来进行整理。

  (2)小组合作,分类整理

  师:小组合作,将四则运算与运算律这两大部分,就以下三个问题分别进行整理,看哪个小组整理的最全面。

  问题一:

  怎样进行整数、小数、分数加减运算?它们的计算方法有什么相同点?

  问题二:

  怎样进行整数、小数、分数乘除运算?

  例:72×43 492÷12 ×

  7.2×4.3 4.92÷12 ÷

  思考:哪些计算法则之间是有联系的?

  问题三:我们学过哪些运算律?字母表达式是怎样的?

  运算律 字母表达式 举例

  (3)小组汇报,全班交流

  汇报一:

  师:哪个小组想先来汇报一下问题一的整理情况。

  预设:学生根据整理情况汇报。

  小组交流过程中,要鼓励其他小组质疑与补充,教师及时点拨。

  提问:在加减法中,它们的计算方法有什么共同之处?(根据回答板书)

  预设1:数位对齐;

  预设2:相同数位上的数才能加减。

  师:看来,不论是哪种数,都需要把相同的计数单位的数相加减。

  汇报二:

  师:哪个小组想先来汇报一下整理情况。

  预设:学生根据整理情况汇报。

  小组交流过程中,要鼓励其他小组质疑与补充,教师及时点拨。

  提问:在乘除法的学习中,其实多次应用了一种数学方法,你发现了吗?

  预设:转化成已经学过的知识。小数乘除法转化成整数乘除法计算,分数除法转化成分数乘法计算。

  师:看来,“转化”这种方法在数学学习中的应用非常广泛,将新知识转化成已经学过的知识,可以帮助我们更好学习和理解知识。(板书)

  师:在四则运算中,如果有0或1参与运算,有哪些特殊情况?

  学生自由回答。

  小结:任何数加0得原数,任何数减0得原数。

  0乘任何数得0,0除以任何数得0,0不能作除数。

  任何数乘1得原数,任何数除以1得原数。

  师:加、减、乘、除四则运算之间不是孤立的,实际上它们是密切联系的。

  师:观察上面这些算式,想一想,四则运算间到底有什么联系?

  预设:减法和加法、乘法和除法、加法和乘法是有联系的。

  师:我们就说减法是加法的逆运算,除法是乘法的逆运算,乘法是加法的简便运算。(板书)

  师:根据四则运算之间的关系,完成下列等式。你能用字母表示这些关系吗?

  练一练:

  课本第76页的做一做。

  师:四则运算的顺序是什么呢?

  小结:四则运算的又分为同级和两级运算,计算时注意正确的顺序。

  汇报三:

  师:哪个小组想先来汇报一下整理情况。

  预设:学生根据整理情况汇报。

  提问:你能快速解决这些问题吗?

  89+56+44 6.75+8.8+3.25

  26×11+89×26 0.7×4.5-0.7×0.5

  师:这里既有整数、又有小数、还有分数的计算,大家为什么算的又对又快呢?

  预设1:应用运算律可以使计算简便。

  预设2:运算律在整数、小数、分数范围内同样适用。

  师:我们在计算时,要自觉运用这些运算律,使计算简便。

  练一练:

  课本第77页的做一做。

  【设计意图:通过练习,培养学生简算的'自觉性,养成简算的习惯。】

  (4)讨论交流,深化提升

  师:计算是数学学习中重要的一环,“图形与几何”“统计与可能性”等知识的学习是不是也要用到计算?谈谈你的看法。

  预设1:求图形的周长、面积、体积、表面积、容积要用到计算。

  预设2:统计中,求平均数、可能性、扇形统计图求部分的数量等都要用到计算。

  师:计算这么重要,那么在计算时,怎样才能提高我们的正确率?

  预设:认真审题,要注意运算顺序,认真计算,认真检查验算。

  师:看来,计算在数学学习中非常重要的,要想提高正确率,就要认真审题、认真计算、认真检查验算。

  【设计意图:通过学生的举例,引导学生通过讨论交流,充分认识到计算在小学数学学习中的重要地位,渗透学习习惯的培养。】

  2.估算

  练一练:

  (1)妈妈带100元去书店买书,她买了两本文学书,每本20.6元;又花了39.6元买了一本汉语词典;之后,妈妈还想买一本家庭菜谱,有两本菜谱可供选择:薄本的13.7元,厚本的23.5元。请帮妈妈想一想,这时她的钱够买哪一本?应找回多少元?

  师:从情境中,你知道了哪些数学信息?提出什么数学问题?

  预设:学生找出已知条件和问题。

  师:想一想,怎样解决这个问题?

  预设:学生列出算式。

  师:根据解决问题的需要,怎样选择合理的计算方法?

  预设1:列竖式。

  预设2:用计算器计算

  预设3:可以估算。

  师:你觉得哪种方法最合理?为什么?

  预设:估算方法。这个问题不要求求出精确值,求出近似值就可以,用估算方法适合。

  师:求“应找回多少元?”选择哪种计算方法比较合理?

  预设:需要准确计算。

  师:在解决问题过程中,可以选择多种算法解决问题,根据需要,可以选择最合理的算法来解决问题。

  (2)六年级有5个班,1至5班的人数依次为:43、40、41、44、42,学校小礼堂有200个座位,如果召开六年级毕业典礼,需要加椅子吗?

  (3)7.99×9.99与80比,哪个大?

  (4) 比1大吗?

  师:通过上面三道题目的练习,你知道哪些估算的策略吗?

  结合题目学生自由发言。

  【设计意图:先对复习的方法进行指导,引导学生利用图、表等形式,对数的运算进行分类整理,通过自主梳理、合作交流、教师引领,构建知识体系,培养学生的学习能力和学习习惯。】

  2.完善思维导图,沟通知识间的联系

  师:这节课我们一起回顾了小学阶段数的运算的知识,课前已经请你们利用思维导图对对这些知识进行了梳理,结合刚才我们一起回忆的知识点,对照你的思维导图,查漏补缺。

  教师引导学生完善思维导图,沟通各知识点之间的联系。(课件出示)

  【设计意图:给学生一个舞台,让学生通过合作,运用所复习的知识和丰富的想象力,创作属于自己的思维导图,体会合作的乐趣和成功的喜悦。】

  3.典型题目练习,综合应用知识

  (1)估一估,在○里填上“>”、“<”或“=”。

  59×9.9○60 32÷1.2○32 57×0.8○57 10.1×37○370

  8+○9 3.7-○2.7 ×○3 ÷○1

  【答案】略。

  【解析】本题是运用各种估算技能进行估计、比较,复习一些具体的估算策略,考察了学生对知识的灵活应用。

  (2) ,女装销售了1600件。男装销售了多少件?

  ①商场12月份的女装数量比男装多

  ②商场12月份的男装数量比女装多25%

  ③商场12月份的女装销售的数量与男装数量的比是5:4。

  【答案】略。

  【解析】本题主要让学生感知计算的多样性、重要性。

小学六年级数学下册教案5

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。

  2、过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。

  3、情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。

  重点难点:

  负数与负数的比较。

  教学过程:

  一、复习

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 -20xx六年级数学下册教案01-02 +20xx六年级数学下册教案01-02 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 ____ 摄氏度

  二、新授

  (一)教学例3

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的.点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到。5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明-8在-6的左边,所以-8〈-6

  5、再通过让另一学生比较8 〉6,但是-8〈 -6,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  四、全课总结

  1、在数轴上,从左到右的顺序就是数从小到大的顺序。

  2、负数比0小,正数比0大,负数比正数小。

  五、布置作业

  《家庭作业》第2页的练习。

小学六年级数学下册教案6

  教学目标:

  1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

  2. 通过操作发展学生的推理能力,形成比较抽象的数学思维。

  教学重点:

  经历“鸽巢问题”的.探究过程,初步了解“鸽巢问题”。

  教学难点:

  运用 “鸽巢问题”,解决一些简单的实际问题。

  教具准备:

  每组都有相应数量的杯子、小球、扑克牌、多媒体课件。

  教学过程:

  一、游戏引入:

  师:我们今天来做个游戏,游戏要求,把全班分成若干小组,每小组的组长手中有3个小球和2个杯子,要求把所有小球全都放进杯子里。同学们看看老师猜的对不对。

  请三位小组长上台来猜另外三小组同学小球是怎么放的。生讲师板书。

  师小结:一定有一个杯子里至少有两个小球。

  同学们你们想不想知道为什么老师会知道呢?板书课题:鸽巢问题

  二、探究原理:

  1、动手摆一摆,感受原理。

  (1)探究物体个数比抽屉多1的情况。

  例1、现在要把4支铅笔放进3个文具盒里,会有几种不同的放法?请大家摆一摆,边摆边记录。

  全班分小组摆一摆。

  各组长边摆边记录。教师板书,全班同学报数,一起记录。

  联系小球放进杯子的游戏,引导学生讲出:不管怎么放,总有一个杯子至少放有2根小棒。

  师:总有一个杯子至少有……

  师:A、总有是什么意思?

  师:B、“至少”又是什么意思? “至少’的意思是2根或2根以上。

  师:如此往下想,7根小棒放在6个杯子里,

  10根木棒放进9个杯子里

  100根木棒放进99个杯子里会有怎么样的结论?

  要证明这个结论能想出一种简便的方法来吗?大家讨论讨论。

  学生讨论。

  师:想出什么办法?谁来说说。

  刚才这样分是怎样分?为什么要用平均分,才能证明这个结论?

  (边摆边说。如果用算式怎样表示?板书(4÷3=1……1)

  学生得出:只要小棒数量比杯子数量多1都有这样的结论。

  2、探究商不是1的情况。

  讨论7本书放进3个抽屉里,想知道结论吗?还要摆吗?

  那8本书进3个抽屉里。

  10本书放进3个抽屉里又是怎样?你发现了什么?

  我发现 7÷3=2……1

  8÷3=2……2

  10÷3=3……1

  板书:至少数=商+1。

  小结:我们今天探究的原理就是数学中有名的鸽巢原理。

  三、本课总结:

  鸽子÷鸽巢 = 商…… 余数

  至少数 = 商+1

  四、用今天知识来解决生活中的一些实际问题。

  1、做一做

  2、玩扑克的游戏。

  五、板书:略

小学六年级数学下册教案7

  教学目标:

  1、系统地理解加、减、乘、除四则运算的意义和计算方法。

  2、通过复习培养概括能力与计算能力。

  3、能综合运用所学的知识和技能解决问题,发展应用意识。

  教学重点:

  掌握四则运算的意义和计算方法。

  教学难点:

  利用所学的知识和技能解决有关数学问题。

  学习过程:

  一、四则运算的意义。

  1、阅读以下信息: A、我们折了36颗红星,还折了28颗蓝星。

  B、我们买了40瓶矿泉水,每瓶0.9元。

  C、我们有24m彩带,用 做蝴蝶结,用做中国结。

  (1)你能提出哪些用计算解决的.问题?

  ______________________________________________________________________

  ______________________________________________________________________

  (2)结合算式说明每一种运算的含义。

  2、口答

  ①什么叫做加法?小数加法、分数加法的意义相同吗?

  ②什么叫做减法?小数减法,分数减法意义相同吗?

  ③整数乘法的意义是什么?小数、分数乘法的意义同整数乘法的意义相同吗?

  ④什么叫做除法?小数除法、分数除法的意义相同吗?

  ☆友情小提示:整数、小数、分数的加法意义、减法意义与除法意义都分别相同。只有小数、分数乘法(第二个因数小于1时)是求一个数的几分之几是多少。

  二、四则运算的方法

  1、整数、小数加减法的计算方法各是什么?

  2、分数的加减法计算方法是什么?

  3、有什么相同点?

  ☆友情小提示:

  ①整数加减时,数位对齐;

  ②小数加减时,小数点对齐;计数单位相同才能相加减。

  ③分数加减时,分数单位相同。(也就是通分。)

  4、分数、小数乘法的计算方法是什么?有什么相同之处,有什么不同之处?

  ☆友情小提示:小数乘法,先按照整数乘法的计算方法算出积,再看乘数中有几位小数,然后在积中点上小数点。

小学六年级数学下册教案8

  课前准备

  教师准备 多媒体课件

  学生准备 搜集生活中用字母表示数的例子

  教学过程

  ⊙谈话导入

  师:请同学们把收集来的用字母表示数的例子在小组中分享一下,说一说它们表示的意义。

  (生自由交流)

  师:你知道下面的字母符号分别表示什么意义吗?

  SOS EMS m2

  (SOS:求助;EMS:邮政快递;m2:平方米)

  导入:字母在生活中随处可见,说明它很重要,所以今天我们要进一步复习和巩固用字母表示数的'知识。

  ⊙回顾与整理

  1.用字母表示数的作用和意义。

  用字母可以简明地表示数、数量关系、计算公式和运算律,为研究和解决问题带来很多方便。

  2.课件出示教材80页“回顾与交流”1题(1),提问:你能用含有字母的式子表示第n个图案用多少个圆片吗?

  (引导学生找出规律,指名汇报)

  课件出示教材80页“回顾与交流”1题(2),提问:生活中还有哪些规律能利用这个式子表示?

  3.明确:用字母不仅可以表示数和数量关系,还可以表示计算公式和运算律。

  提问1:用字母可以表示哪些常用的数量关系?

  预设

  生1:路程用s表示,速度用v表示,时间用t表示,三者之间的关系是s=vt,v=,t=。

  生2:总价用a表示,单价用b表示,数量用c表示,三者之间的关系是a=bc,b=,c=。

  提问2:用字母可以表示哪些常用的计算公式?

  预设

  生1:长方形的长用a表示,宽用b表示,周长用C表示,面积用S表示。

  C=2×(a+b)

  S=ab

  生2:正方形的边长用a表示,周长用C表示,面积用S表示。

  C=4a

  S=a2

  生3:平行四边形的底用a表示,高用h表示,面积用S表示。

  S=ah

  生4:三角形的底用a表示,高用h表示,面积用S表示。

  S=

  生5:梯形的上底用a表示,下底用b表示,高用h表示,面积用S表示。

  S=

  生6:圆的半径用r表示,直径用d表示,周长用C表示,面积用S表示。

  C=πd=2πr

  S=πr2=π=π(c÷π÷2)2

  提问3:用字母可以表示哪些运算律?

小学六年级数学下册教案9

  课前准备

  PPT课件

  教学过程

  ⊙谈话揭题

  上节课我们复习了小数,那么小数与分数之间、分数与百分数之间又有怎样的区别和联系呢?希望通过本节课对分数、百分数的相关知识的复习,你们能找到正确的答案。[板书课题:分数(百分数)的认识]

  ⊙回顾与整理

  1.分数的意义、分数单位及分数与除法的关系。

  (1)师:什么是分数?什么是分数单位?

  明确:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数,其中的一份叫做分数单位。

  (2)师:分数与除法有着怎样的关系?

  预设

  生1:除法中的被除数相当于分数中的分子,除数相当于分母,除号相当于分数线。

  生2:因为0不能作除数,所以分数的分母不能为0。

  2.真分数、假分数的特点。

  (1)真分数的分子比分母小,真分数的分数值小于1。

  (2)假分数的分子大于或等于分母,假分数的.分数值大于或等于1。

  3.分数的基本性质、约分和通分。

  (1)师:什么是分数的基本性质?

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

  (2)师:什么是约分和通分?

  预设

  生1:把一个分数化成同它相等,但是分子、分母都比较小的分数,叫做约分。

  生2:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

  (3)师:什么是最简分数?

  分子和分母是互质的分数,叫做最简分数。

  4.小数、分数、百分数的互化。

  (1)小数、分数、百分数的互化。

  ①小数化成分数。

  原来有几位小数,就在1的后面写几个0作分母,把原来的小数去掉小数点作分子,能约分的要约分。

  例如:0.7= 1.25==

  ②分数化成小数。

  用分子除以分母,能除尽的就化成有限小数;有的不能除尽,不能化成有限小数,一般保留三位小数。

  例如:=3÷4=0.75 =3÷25=0.12

  =3÷7≈0.429 =4÷9≈0.444

  ③小数化成百分数。

  只要把小数点向右移动两位,同时在末尾添上百分号即可。

  例如:0.23=23% 1.7=170%

  ④百分数化成小数。

  只要把百分号去掉,同时把小数点向左移动两位即可。

  例如:120%=1.2 85%=0.85

  ⑤分数化成百分数。

  通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

  例如:≈0.143=14.3%

  ⑥百分数化成分数。

  把百分数改写成分数,能约分的要约成最简分数。

  例如:85%==

  (2)师:谁能举例说一说什么样的分数能化成有限小数?

  预设

  生1:一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。

  例如:=0.65,分母中只含有质因数2和5。

  =0.8125,分母中只含有质因数2。

  生2:如果一个最简分数的分母中含有除2和5以外的其他质因数,这个分数就不能化成有限小数。

  例如:≈0.056

  分母中除质因数2以外,还有质因数3。

小学六年级数学下册教案10

  复习目标:

  1、通过复习使学生能熟练掌握长度、面积、体积的计量单位,质量单位,时间单位等。能正确使用学过的计量单位解决实际问题。

  2、熟练掌握有关计量单位之间的进率关系。

  教学重点:

  1、学生小组整理计量单位和进率。

  2、熟练进行名数的改写。

  教学难点:

  使学生在头脑中建立计量单位的具体表象。

  复习过程:

  一、情境导入。

  师:今天老师给大家带来了一篇由“小马虎”同学写的数学日记。(请一名同学读日记)

  今天是20xx年4月29日,早上从睡梦中醒来已经7:30了,我立刻从床上爬起来,马上穿衣、洗脸、刷牙,不知不觉中已经过了20小时。该吃饭了,我端起一杯300L的牛奶一饮而尽,又吃了200千克面包和一个煎鸡蛋。吃过早餐,我便冲出家门,步行500千米到达学校!进校门的时候铃声刚刚响起!

  师:你们笑什么?

  生:他用的单位不恰当。

  师:同学们观察还真是仔细,我们学习就应该细心、认真、一丝不苟。其实在我们日常生产、生活和科学研究中,经常要接触到各种量,并且进行各种量的计量。今天我们就一起来复习小学里面学习的一些常见的量和它们的计量单位。(板书课题:量的计量)

  师:那请同学们找找这则日记中有哪些常见的量呢?(时间、长度、质量、体积)

  二、分类整理。

  师:我们还学过哪些量?它们各有哪些计量单位?请同学们以小组为单位对我们所学过的量和计量单位进行分类整理。

  过程要求:

  1、由小组同学共同分类整理。

  2、教师引导学生列表整理,并巡视课堂进行个别指导。

  三、汇报交流。

  各小组派代表上台充当小老师,讲解计量单位的进率和意义。并适当板书,老师作点拨处理,强调各单位间的`进率和意义,并鼓励学生对发言同学提出建议或者意见。(每个小组汇报一种量)

  1、长度。

  (1)什么是长度?长度:两点之间的距离。

  (2)我们学过哪些长度单位?用字母如何表示?(千米、米、分米、厘米、毫米)

  (3)1厘米有多长?1分米有多长?1米呢?(用手比划比划)

  (4)它们之间的进率是什么?(1米=10分米1分米=10厘米1米=100厘米)

  2、面积。

  (1)什么是面积。面积:物体表面(图形)的大小。

  (2)我们学过哪些面积单位?(平方千米、公顷、平方米、平方分米、平方厘米、平方毫米)

  (3)我们的教室面积大约是多少?用什么单位最合适?

  (4)它们之间的进率。(1平方千米=100公顷1公顷=10000平方米

  1平方米=100平方分米1平方分米=100平方厘米))

  3、体积/容积。

  (1)体积:物体所占空间的大小。容积:容器所能容纳的物体的体积。

  (2)体积计量单位:立方米、立方分米、立方厘米、升、毫升

  (3)1立方厘米有多大?1立方分米有多大?1立方米呢?

  (4)进率。(1立方米=1000立方分米1立方分米=1000立方厘米1升=1立方分米1立方厘米=1毫升1升=1000毫升)

  4、质量。

  (1)常见单位:克(g)千克(kg)吨(t)

  (2)进率:1吨=1000千克1千克=1000克

  5、时间单位。

  (1)常见单位:世纪、年、月、日、时、分、秒。

  (2)进率:1世纪=100年1年=12个月1年=365天(闰年366天)

  有31日的月份是:1,3,5,7,8,10,12。

  有30天的月份是:4,6,9,11。

  平年的二月有28日。闰年的二月有29日

  怎样判断某一年是闰年还是平年?

  (年份能被4整除的是闰年,不能被4整除的是平年,整百数年份能被400整除的才是闰年,如1900年虽能被4整除,但不是闰年。)

  1日=24时1时=60分1分=60秒

  (补充时和小时的概念区分。时是时间点,小时是时间段。)

  教师补充:季度、旬、星期。每月分三旬:上旬(1至10日);中旬(11至20日);下旬(21日至月底)。

  四、作业。

  请同学们课后修改一下“小马虎”同学的日记。

小学六年级数学下册教案11

  教学内容:

  成正比例的量

  教学目标:

  1、使学生理解正比例的意义,会正确判断成正比例的量。

  2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

  教学重点:

  正比例的意义。

  教学难点:

  正确判断两个量是否成正比例的关系。

  教具准备:

  媒体课件

  教学过程:

  一、揭示课题

  1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你能举出一些这样的例子吗?

  在教师的指导下,学生会举出一些简单的例子,如

  (1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

  (2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

  (3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

  (4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

  2、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

  二、探索新知

  1、教学例1

  (1)出示例题情境图。

  问:你看到了什么?生

  杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

  (2)出示表格。

  高度/㎝ 2 4 6 8 10 12

  体积/㎝3 50 100 150 200 250 300

  底面积/㎝2

  问:你有什么发现?

  学生不难发现:杯子的底面积不变,是25㎝2。

  板书

  教师:体积与高度的比值一定。

  (2)说明正比例的意义。

  ①在这一基础上,教师明确说明正比例的意义。

  因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

  像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  ②学生读一读,说一说你是怎么理解正比例关系的。

  要求学生把握三个要素

  第一,两种相关联的量;

  第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

  第三,两个量的比值一定。

  (三要素可再省略:1.相关联;2.同时变化;3.比值一定)

  (3)用字母表示。

  如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:Y/X=K(一定)

  (4)想一想

  师:生活中还有哪些成正比例的量?

  学生举例说明。如

  长方形的宽一定,面积和长成正比例。

  每袋牛奶质量一定,牛奶袋数和总质量成正比例。

  衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

  地砖的面积一定,教室地板面积和地砖块数成正比例。

  2、教学例2。

  (1)出示表格(见书)

  (2)依据下表中的数据描点。(见书)

  (3)从图中你发现了什么?

  这些点都在同一条直线上。

  (4)看图回答问题。

  ①如果杯中水的高度是7㎝,那么水的体积是多少?

  生:175㎝3。

  ②体积是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

  ③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

  生:水的体积是350㎝3,相对应的点一定在这条直线上。

  (5)你还能提出什么问题?有什么体会?

  通过交流使学生了解成正比例量的图像特征。

  3、做一做。

  过程要求

  (1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

  比值表示每小时行驶多少千米。(速度)

  (2)表中的路程和时间成正比例吗?为什么?

  成正比例。理由

  ①路程随着时间的变化而变化;

  ②时间增加,路程也增加,时间减少,路程也随着减少;

  ③种程和时间的.比值(速度)一定。

  (3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

  (4)行驶120KM大约要用多少时间?指导学生估算的方法

  (5)你还能提出什么问题?

  4、课堂小结

  说一说成正比例关系的量的变化特征。

  学生回答成正比例的理由时,语言表述不清楚,要注意引导学生按照正比例中的三要素来回答

  三、巩固练习

  完成课文练习七第1~5题。

  练习补充,可以从中挑选有关正比例的练习,其它可等学习反比例后再做。

  板书设计:

  成正比例的量

  相关联;同时变化;比值一定

  x×y=k(定值)

  教学反思:

  反思的第(1)个问题是:什么样的两种量叫做相关联的量,资料上解释:一种量变化,另一种量也随着变化,那么一个人的身高和体重算不算两种相关联的量?第(2)个问题是:类型过于多,到底怎么帮助学生整理方法。一节课的学习孩子们基本上理解了正比例的意义,但是对于判断两个量是否成正比例孩子们还是感到困难,在这个环节的教学上我处理的不够好。我要再去请教其他老师,吃透这个知识。帮助孩子们更好的理解。

小学六年级数学下册教案12

  教学目标:

  1、知识与技能

  理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、过程与方法

  通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

  3、情感态度与价值观

  渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

  教学重点:

  掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

  教学难点:

  理解圆锥体积公式的推导过程。

  教具学具:

  不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

  教学流程:

  一、创设情境,提出问题

  师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

  生:我选择底面的;

  生:我选择高是的;

  生:我选择介于二者之间的。

  师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

  生:只要求出冰淇淋的体积就可以了。

  师:冰淇淋是个什么形状?(圆锥体)

  生:你会求吗?

  师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

  二、设疑激趣,探求新知

  师:那么你能想办法求出圆锥的体积吗?

  (学生猜想求圆锥体积的方法。)

  生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

  师:如果这样,你觉得行吗?

  教师根据学生的回答做出最后的评价;

  生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

  师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

  小组中大家商量。

  生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

  师:此种方法是否可行?

  学生进行评价。

  师:哪个小组还有更好的办法?

  生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

  师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

  1、各小组进行观察讨论。

  2、各小组进行交流,教师做适当的板书。

  通过学生的交流出现以下几种情况:

  一是圆柱与圆锥等底不等高;

  二是圆柱与圆锥等高不等底;

  三是圆柱与圆锥不等底不等高;

  四是圆柱与圆锥等底等高。

  3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

  4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

  师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?

  师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

  生:大约是圆柱的一半。

  生:……

  师:到底谁的意见正确呢?

  师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

  要求:

  实验材料,任选沙、米、水中的'一种。

  实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

  (生进行实验操作、小组交流)

  师:

  谁来汇报一下,你们组是怎样做实验的?

  通过做实验,你们发现它们有什么关系?

  生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。

  生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

  师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

  师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

  齐读结论:

  师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

  (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh

  师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

  (噢!三种冰淇淋的体积原来一样大)

  联系生活,拓展运用:

  本练习共有三个层次:

  1、基本练习

  (1)判断对错,并说明理由。

  圆柱的体积相当于圆锥体积的3倍。()

  一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是()

  一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。()

  (2)计算下面圆锥的体积。(单位:厘米)

  s=25、12 h=2、5

  r=4,h=6

  2、变形练习

  出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米

  (1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

  (2)、找一找这些计算方法有什么共同的特点?V锥=1/3Sh

  (3)、准备把这堆沙填在一个长3米,宽1.5米的沙坑里,请同学们算一算能填多深?

  3、拓展练习

  一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

  整理归纳,回顾体验

  (通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

小学六年级数学下册教案13

  【教学目标】

  1、使学生理解求圆锥体积的计算公式.

  2、会运用公式计算圆锥的体积.

  【教学重点】

  圆锥体体积计算公式的推导过程.

  【教学难点】

  正确理解圆锥体积计算公式.

  【教学步骤】

  一、铺垫孕伏

  1、提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

  2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的计算公式.

  1、教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2、学生分组实验

  3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

  4、引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

  5、推导圆锥的体积公式:

  圆锥的体积是和它等底等高圆柱体积的.1/3

  V=1/3Sh

  6、思考:要求圆锥的体积,必须知道哪两个条件?

  7、反馈练习

  圆锥的底面积是5,高是3,体积是()

  圆锥的底面积是10,高是9,体积是()

  (二)教学例1

  1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

  学生独立计算,集体订正.

  2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

  3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

  (1)已知圆锥的底面半径和高,求体积.

  (2)已知圆锥的底面直径和高,求体积.

  (3)已知圆锥的底面周长和高,求体积.

  4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

  四、随堂练习

  1、求下面各圆锥的体积.

  (1)底面面积是7.8平方米,高是1.8米.

  (2)底面半径是4厘米,高是21厘米.

  (3)底面直径是6分米,高是6分米.

  【板书设计】

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

小学六年级数学下册教案14

  教学内容:正比例的意义。

  教学目的:使学生理解正比例的意义,会正确判断成正比例的量,培养学生的判断能力。

  教学重点:正比例的意义。

  教学难点:正比例的判断。

  教具准备:小黑板、投景影片

  教学过程:

  一、 复习

  根据下面各题,先口答列式及得数,后说数量关系式。

  1、 一列火车2 小时行驶250千米,平均每小时行驶多少千米?

  2、 一种布,买3米共要27元,平均每米布多少元?

  3、 某印刷厂5天生产2.5万本练习册,平均每天生产多少万本练习册?

  师据学生回答板书如下:

  路程/时间=速度 总价/数量=单价 工作总量/工作时间=工作效率

  二、引新

  我们已经学过一些常见的数量关系,如上面这些速度、时间和路程的关系,单价、数量和总价的关系,工作效率、工作时间和工作总量的关系等。现在我们进一步来研究这些数量关系中的一些特征。如速度一定,路程和时间有什么关系?或者时间一定,路程和速度之间有什么关系?这节课我们先来学习这方面的知识。正比例的意义。(板书)

  三、新授

  1、 教学例1。一列火车行驶的时间和所行的.路程如下表。

  时间(时) 1 2 3 4 5 6 7 8

  路程(千米) 90 180 270 360 450 540 630 720

  (1) 引导学生观察上表内数据。

  (2) 边观察边思考下面问题:

  (1) 表中有哪几种量?这两促量有没有关系?

  (2) 这两种量是怎样设化的?(路程是随着时间的变化页变化。时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。)

  (3) 引导学生分析这两种相关联的量的变化有什么规律?

  (1)从表内找出几组相对应的两个数,求出比值,再比较比值的大小。指名口答,师板书:

  90/1=90 360/4=90 540/6=90

  (2)从下面的比式中,你能不能找出变化规律?这个90实际上就是这列火车的什么?(速度)

  (3)师:它们之间的关系可以用式子表示

  路程/时间=速度(一定)

  (4) 小结。

  时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。

  2、 教学例2

  (1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。

  数量(米) 1 2 34 5 6 7

  总价(元) 8.2 16.4 24.6 32.8 41.0 49.2 57.4

  (2)引导学生观察上表内的数据。

  (3) 回答下面风个问题:

  表中有哪两种量?这两种量有关系吗?为什么?

  这两种量是怎样变化的?

  它们的变化有什么规律?

  相对应的总价和米数的比各是多少?比值是多少?比较这些比值的大小,相等吗?这个比值实际上就是花布的什么?

  (4) 小结。

  花布的米和总价也是两种相关联的量,总价是随着米数的变化而变化的。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是一定的。

  3、 概括正比例的意义及关系式。

  (1) 比较上面的例1和例2,它们有什么共同点?

  (2) 判断成正比例量的方法:是什么?

  (3) 师:例1中路随着时间的变化而变化,它们的比的比值,也就是速度保持一定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

  (4) 概括关系式:

  Y/X=K(一定)

  4、 教学例3。

  出示例3

  师:大家能不能根据上面的判断成正比例量的方法说说?指名口述、师帮助纠正。关系式是:总重量/袋数=每袋面粉重量(一定)

  5、 小结。

  判断两种相关联的量是否成正比例,关键是看这两种相关联的量中相对应的两个数的比值是否一定,如果比值一定,那么这两种量就是成正比例的量。

  四、巩固练习

  第13页做一做

  五、 总结。

  1、 什么叫成正比例的量?

  2、 怎样判断两种量是成正比例的量?

  六、 作业: 完成练习六第1-3题。

小学六年级数学下册教案15

  教学内容:

  北师大版六年级数学下册93页95页的内容。

  教学目标:

  1.进一步理解周长、面积、体积等以及相应的单位;

  2.沟通几种基本图形面积公式及其推导过程的内在联系,体积计算公式之间的联系,数学知识方法的内在联系,体会转化、类比等数学思想方法,发展初步的推理能力;

  3.能正确计算常见平面图形的周长和面积,常见立体图形的.表面积和体积,并解决一些简单的实际问题;

  4.能综合运用所学过的数学知识和方法解释生活中的现象,解决简单的实际问题。

  教学重点:

  能正确计算常见平面图形的周长和面积,常见立体图形的表面积和体积

  教学难点:

  能综合运用所学过的数学知识和方法解释生活中的现象,解决简单的实际问题。

  教学过程:

  一、提出问题

  平面图形和立体图形在生活中应用得非常广泛,有时我们要计算它们的面积,体积等,这就需要我们了解一些数据,运用到关于测量的知识,这节课我们就一起来复习图形与测量。(板书课题)

  二、回顾整理,建构网络

  1.长度、面积和体积的认识

  (1)我们学校的综合楼准备粉刷和装修,工人叔叔正准备做一些数据的测量,我们也参与到他们中间去,好吗?

  (2)大家先想一想,测量哪些地方,会用到什么单位?

  问:什么是长度?什么是面积?什么是体积?

  2.测量单位及进率

  (1)我们知道测量除了数据之外还需要什么呢?现在请同学们回忆一下长度、面积和体积各自的单位,并说出它们之间的进率。

  (2)说一说

  请大家说一说1米、1分米、1厘米分别有多长,1平方米、1平方分米、1平方厘米、1立方米、1升、1毫升分别有多大?

  3.前面我们已经分类复习了平面图形的周长与面积,立体图形的表面积与体积,你最感兴趣的是哪一部分,把它整理出来。

  4.汇报交流。交流时要说出每类知识点要注意的问题。

  三、重点复习,强化提高

  你认为最容易出错的是哪部分内容?有什么好办法避免出错?

【小学六年级数学下册教案】相关文章:

数学下册教案03-16

小学六年级下册数学教案02-13

小学六年级下册数学教案07-09

小学数学六年级下册《圆柱的体积》教案【精选】06-16

小学数学六年级下册《圆柱的体积》教案06-14

数学六年级下册教案07-02

数学六年级下册教案06-14

[优选]小学数学六年级下册《圆柱的体积》教案06-16

小学数学六年级下册反比例教案08-26

苏教版小学六年级下册数学教案12-04