现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学上册教案

七年级数学上册教案

时间:2024-07-16 15:54:04 七年级数学教案 我要投稿

七年级数学上册教案共15篇

  作为一位杰出的教职工,很有必要精心设计一份教案,借助教案可以让教学工作更科学化。如何把教案做到重点突出呢?以下是小编为大家收集的七年级数学上册教案,仅供参考,希望能够帮助到大家。

七年级数学上册教案共15篇

七年级数学上册教案1

  学习目标:

  1.了解算术平方根的概念,会用根号表示数的算术平方根;

  2. 会用平方运算求某些非负数的算术平方根;

  3.能运用算术平方根解决一些简单的实际问题.

  学习重点:

  会用平方运算求某些非负数的算术平方根,能运用算术平方根解决一些简单的实际问题.

  学习难点:

  区别平方根与算术平方根

  掌握本章基本概念与运算,能用本章知识解决实际问题.

  【知识与技能】

  【过程与方法】

  通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中.

  【情感态度】

  领悟分类讨论思想,学会类比学习的方法.

  【教学重点】

  本章知识梳理及掌握基本知识点.

  【教学难点】

  应用本章知识解决实际与综合问题.

  一、知识框图,整体把握

  【教学说明】

  1.通过构建框图,帮助学生回忆本节所有基本概念和基本方法.

  2.帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等.

  二、释疑解惑,加深理解

  1.利用平方根的.概念解题

  在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数.

  例1已知某数的平方根是a+3及2a-12,求这个数.

  分析:由题意可知,a+3与2a-12互为相反数,则它们的和为0.解:根据题意可得,a+3+2a-12=0.

  解得a=3.

  ∴a+3=6,2a-12=-6.

  ∴这个数是36.

  【教学说明】

  负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例.

  2.比较实数的大小

  除常用的法则比较实数大小外,有时要根据题目特点选择特别方法.

七年级数学上册教案2

  一、背景知识

  《有理数》选自浙江版《义务教育课程标准实验教科书·数学·七年级上册》第一章《从自然数到有理数》中的第二节,这一章是开启整个初中阶段代数学习的大门。《有理数》是本章的第二节。本节内容让学生在现实的情境中理解负数的引入确实是实际生活的需要,感受到有理数应用的广泛性,是在小学学习自然数和分数之后,数的概念的第一次扩充,是自然数和分数到有理数的衔接与过渡,并且是以后学习数轴、绝对值及有理数运算的基础。

  二、教学目标

  1、知识目标:理解有理数产生的必然性、合理性;会判断一个数是正数还是负数,能灵活运用正、负数表示生活中具有相反意义的量;会将有理数从不同的角度进行分类。

  2、过程与方法:利用学生身边熟悉的事物引入负数、学习有理数;运用有理数表示现实生活问题中的量;让学生经历有理数概念的形成及运用过程,领会分析、总结的方法。

  3、情感与能力目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想。

  三、教学重点、难点

  重点:能应用正、负数表示具有相反意义的.量和对有理数进行合理的分类。

  难点:用有理数表示实际生活中的量。

  四、教学设计

  (一)创设情境 探求新知

  如图表示某一天我国5个城市的最低气温。

  请同学们合作讨论下列问题:

  1、-20℃、-10℃、5℃、0℃、10℃ 这几个量分别表示什么?

  2、你还在哪些地方见到过用带有“-”号的数来表示某一种量,请讲出来。

  把学生讲出的较恰当的量写到黑板上,再引导学生把与之相对的量分别写在后边,如:零下20℃——零上10℃, 降低5米——升高8米, 支出100元——收入500元。指出这样的量就是具有相反意义的量,并从以下方面加以理解。

  (1)具有相反意义的量是:意义相反,与值无关。

  (2)区分“意义相反”与“意义不同”。

  反问学生:以上具有相反意义的量能用我们学过的自然数和分数表示出来吗?

  显然是不能的。为了解决这样的实际问题,我们需要引进一种新的数——负数。

  我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写),;把另一种与之意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,这样的数叫做负数(负号不能省略)。

  如:“+2”读做“正2”、“-3.3”读做“负3.3”等。

  这样我们学过的数中又增加了新的数——负整数和负分数;相应地我们学过的自然数和分数分别称为正整数和正分数。

  (二)运用新知 体验成功

  填空:

  1)规定盈利为正,某公司去年亏损了2.5万元,记做__________万元,今年盈利了3.2万元,记做__________万元;

  2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔__________米;吐鲁番盆地最低处低于海平面155米,记做海拔__________米;

  3)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。汽车向北行驶75km,记做________km(或_______km),汽车向南行驶100km,记做________km;

  4)下降米记做米,则上升米记做__________米;

  5)如果向银行存入50元记为50元,那么-30.50元表示__________;

  6)规定增加的百分比为正,增加25%记做__________,-12%表示__________.

  利用第3)题说明在表示具有相反意义的量时,把哪一种意义的量规定为正,是相对的例如我们可以把向南100米记做+100km,那么向北记做-75km.但习惯上,人们常把上升、运进、零上、增加、收入等规定为正。

  (请同学独立完成,然后同桌同学相互评价。)

  (三) 师生互动,继续探究

  (合作学习)读一读这些数0,880,-20xx,+123,-233,-2.5,+3.2,+918,-155,+75,-100,25%,-12%,请根据你认定的数的特征进行分类,并说出分类的特征。

  让学生四人小组合作讨论完成。

  估计可能出现的正确结论有:

  ;

  ;

  对于较为正确的分类,并能说出特征的都将给予肯定,重视个体差异,体现多元评价的思想,发挥评价的激励作用,保护学生的自尊心,增强学生的自信心.然后教师给出规范的分类:

  正整数、零和负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

  说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,零既不是正数,也不是负数.

  (四) 分层练习,巩固提高

  为了使学生实现从掌握知识到运用知识的转化,使知识教育与能力培养结合起来,设计分层练习。

  例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?

  -8.4, 22, ,0.33, , -9.

  练习1 判断表中各数属于什么数,在相应的空格内打“√” .

  正整数

  整数

  分数

  正数

  负数

  有理数

  20xx

  √

  √

  √

  √

  -4.9

  0

  -12

  探究活动:

  练习2 如图,两个圈内分别表示所有正数组成的正数集合和所有整数组成的整数集合.请写出3个分别满足下列条件的数:

  1)属于正数集合,但不属于整数集合的数;

  2)属于整数集合,但不属于正数集合的数;

  3)既属于正数集合,又属于整数集合的数.

  将它们分别填入图中适当的位置.你能说出这两个圈的重叠部分表示什么数的集合吗?

  通过多角度的练习,并对典型错误进行讨论与矫正,使学生巩固所学内容,同时完成对新知的迁移。

  (五)概括梳理,形成系统

  采取师生互动的形式完成。即:

  学生谈本节课的收获,教师适当的补充、概括,以本节知识目标的要求进行把关,确保基础知识的当堂落实。

  (六)布置作业

  1、课后作业

  2、设计题可根据自己的喜好和学有余利的同学完成。

七年级数学上册教案3

  【学习目标】

  1.回顾、思考本所学的知识及思想方法,并能进行梳理,使所学知识系统化.

  2.丰富对平面图形的认识,能有条理地、清晰地阐述自己的观点.

  【导学提纲】

  梳理本知识:

  1. 基本概念

  2.位置关系 .

  3.相关图形的性质.

  (1)线段和直线的有关性质:

  (2)余角、补角、对顶角的有关性质:

  (3)平行和垂直的有关性质:

  4.基本作图.(尺规作图)

  (1)作一条线段AB等于线段a;

  (2)作 等于 .

  5.分类思想.

  【反馈矫正】

  1.完成本p172页复习题第1、2、3、4、5、7、8题

  2.8°44′24″用度表示为_______,110.32°用度、分、秒表示为_______.

  3.如果 与 互补, 与 互余,则 与 的关系是( )

  A. = B.

  C. D. 与 互余

  4.在1点与2点之间,时钟的时针与分针成直角的时刻是1时______分.

  5.如图,OE是∠AOD的平分线,OF⊥OD,垂足为O,

  ∠EOF=19°,求∠AOD的度数.

  【迁移拓展】

  完成本p172页复习题第9、11、14题

  【堂作业】本p172页复习题第6、10题

  整式

  题2.1 整式时本学期

  第 时日期

  型新授主备人复备人审核人

  学习

  目标(1)了解单 项式 及单项式系数、次数的概念;

  (2)会准确迅速地确定一个单项式的系数和次数。

  重点

  难点重点:单项式及单 项式的'系数、次数的概念;

  准确迅速地确定一个单项式的系数和次数。

  难点:单项式概念的建立

  流程师生活动时 间复备标注

  一、导入新

  回顾:先填空,再请说出你所列式子的运算含义。

  1、边长为x的正方形的周长是 。

  2、一辆汽车的速度是v千米/小时,行驶t小时所走过的路程为 千米。

  3、 如图正方体的表面积为 ,体积为 。

  4、设n表示 一个数,则它的相反数是

  看前图,尝试回答3 个问题

  在小学,我们学过 用字母表示数。我们 可以用这种方法回答上面的问题。在本还会看到,我们不仅可以用字母 或含有字母的式子表示数和数量关 系,而且还可以将这样的式子进行加减运算。这些内容将为下一一元一次方程的学习打下基 础

  二、新授

  1、自学第54--55页,回答下列问题

  完成思考的4个问题

  什么是单项式,单项式的系数,次数?举例说明

  归纳小结:数或字母的积的式子叫做单项式,单项式中数字因数叫做单项 式的系数,一个单项式中,所有字母的指数的和叫做这个单 项式的次数。

  注意:单项式表示数字与字母相乘时,通常数字写在前面 ;系数、指数为1时,常省略不写。

  完成56页练习1

  2、自学第55页例题,回答 下列问题

  独立完成例题,后订正答案

  同一个式子表示的意义是否相同?

  归纳小结:用字母表示数后,同一个 式子可以表示不同的含义。

  3、完成56页练习2

  三、堂达标练习

  59页习题1

  四、堂小结

  1、单项式、单项式系数、单项式次数的概念

  2、在找单项式系数、次数 时需注意什么 问题?在写单项式时需注意什么问题?

七年级数学上册教案4

  教学目标

  1.进一步掌握有理数的运算法则和运算律;

  2.使学生能够熟练地按有理数运算顺序进行混合运算;

  3.注意培养学生的运算能力.

  教学重点和难点

  重点:有理数的混合运算.

  难点:准确地掌握有理数的运算顺序和运算中的符号问题.

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  1.计算(五分钟练习):

  (5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;

  (13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;

  (17)(-2)4; (18)(-4)2; (19)-32; (20)-23;

  (24)3.4×104÷(-5).

  2.说一说我们学过的.有理数的运算律:

  加法交换律:a+b=b+a;

  加法结合律:(a+b)+c=a+(b+c);

  乘法交换律:ab=ba;

  乘法结合律:(ab)c=a(bc);

  乘法分配律:a(b+c)=ab+ac.

  二、讲授新课

  前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?

  1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.

  审题:(1)运算顺序如何?

  (2)符号如何?

  说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.

七年级数学上册教案5

  教学目标:

  知识目标:有理数的概念,有理数的分类,熟练的写出某集合中的数。

  过程与方法:感受分类的思想,分类的.依据。

  情感态度价值观:感受数的对称美,

  课堂教学过程

  一.情境问题:

  到目前为止,你能举出哪些数,你能把这些数分类吗?你的分类依据是什么?有理数:整数正整数,0,负整数。

  分数正分数,负分数。

  有理数:正有理数

  负有理数。

  二.尝试应用:

  1课本第8页练习。补充:整数集合,负整数集合,分数集合。

  2判断:1.正整数和负整数统称为整数。

  2.小数不是有理数。

  3正数和负数统称为有理数。

  4分数包括正分数和负分数。

  http://baogao.oh100.com 是有理数。

  三.补偿提高:

  将下列的数填在相应的括号中。

  -8.5,6,-21/5,0,-200,+13/5,-2,35,0.01,+86.

  正整数集合:

  负整数集合:

  正分数集合:

  负分数集合:

  正数集合:

  分数集合:

  非正数集合:

  自然数集合:

  思考:既是正数又是整数的数是什么数?既是负数又是分数的数是什么数?

  四.小结与反思:

  本节课用到得思想,重要知识,注意问题,你的疑惑.

  教后反思:

  本节对有理数的分类:按正负来分,按整数和分数来分。明确分类标准。能正确的写出某些数的集合。

  本节需要学生熟练。再有理数的分类的探讨上二班较流畅,但是正负来分为落实好。

七年级数学上册教案6

  单元教学内容

  1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系

  引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念

  2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

  (1)数轴能反映出数形之间的对应关系

  (2)数轴能反映数的性质、

  (3)数轴能解释数的某些概念,如相反数、绝对值、近似数

  (4)数轴可使有理数大小的比较形象化

  3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分

  4、正确理解绝对值的概念是难点

  根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

  (1)任何有理数都有唯一的绝对值

  (2)有理数的绝对值是一个非负数,即最小的绝对值是零

  (3)两个互为相反数的绝对值相等,即│a│=│-a│

  (4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a

  (5)若│a│=│b│,则a=b,或a=-b或a=b=0

  三维目标

  1、知识与技能

  (1)了解正数、负数的实际意义,会判断一个数是正数还是负数

  (2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解

  (3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值

  (4)会利用数轴和绝对值比较有理数的大小

  2、过程与方法

  经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法

  3、情感态度与价值观

  使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言

  重、难点与关键

  1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值

  2、难点:准确理解负数、绝对值等概念

  3、关键:正确理解负数的意义和绝对值的意义

  课时划分

  1、1 正数和负数 2课时

  1、2 有理数 5课时

  1、3 有理数的加减法 4课时

  1、4 有理数的乘除法 5课时

  1、5 有理数的乘方 4课时

  第一章有理数(复习) 2课时

  1、1正数和负数

  第一课时

  三维目标

  一、知识与技能

  能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量

  二、过程与方法

  借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性

  三、情感态度与价值观

  培养学生积极思考,合作交流的意识和能力

  教学重、难点与关键

  1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

  2、难点:正确理解负数的概念。

  3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

  教具准备

  投影仪、

  教学过程

  四、课堂引入

  我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、

  在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、

  五、讲授新课

  (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的'数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号

  (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数

  (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数

  (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

  用正负数表示具有相反意义的量。

  (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。

  (6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。

  (7)、 你能再举一些用正负数表示数量的实际例子吗?

  (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量

  六、巩固练

  课本第3页,练习1、2、3、4题

七年级数学上册教案7

  总课时:1课时

  一、教学目标:

  (一)教学知识点

  1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据.

  2 .近似数和有效数字 并按要求取近似数.

  3.从统计图中获取信息 并用统计图形象地表示数据.

  (二)能力训练要求

  1.体会描述较小 数据的方法 进一步发展数感.

  2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用.

  3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念.

  (三)情感与价值观要求:

  1.培养学生用数学的意识和信心 体会数学的应用价值. 2.发展学生的创新能力和克服困难的勇气.

  二、教学重点:

  1.感受较小的数据.

  2.用科学记数法表示较小的数.

  3.近似数和有效数字 并能按要求取近似数.

  4.读懂统计图 并能形象、有效地用统计图描述数据.

  教学难点:形象、有效地用统计图描述数据.

  教学过程:.创设情景 引入新课

  三.讲授新课:

  请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的'体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。

  1.哪些数据用科学记数法表示比较方便?举例说明.

  2.用科学记数法表示下列各数:

  (1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米.

  (2)生物学家发现一种病毒的长度约为0.000043毫米;

  (3)某种鲸的体重可达136 000 000千克;

  (4)20xx年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的发行量为12 500 000枚.

  四.课时小结:我们这节课回顾了以下知识:

  1.又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据.

  2.在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字.

  3.又一次欣赏了形象的统计图 并从中获取有用的信息.

  (1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象.

  (2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?

  (3)在中国地形图上找出主要河流 你认为河流年径流量与河流所处的地理位置有关系吗?

  制作形象的统计图 首先要处理好数据 即从表格中计算出这几条河流长度的比例 然后选择最大或最小作为基准量 按比例形象画出即可.

  (1)形象统计图(略)只要合理即可.

  (2)从表中的数据看出 河流越长 其流域面积越大.

  (3)河流的年径流量与河流所处的位置有关系.

  五.课后作业:试卷

七年级数学上册教案8

  教学目标:

  1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形

  2、在操作活动中认识棱柱的某些特性;

  3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;

  教学重点:

  通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法

  教学难点:

  根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。

  教学过程:

  一、导入情境

  让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。

  二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的'性质做一做

  活动一:

  1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的形式动手做做看。

  2、操作完后,请学生展示他们制作的模型。

  3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。

  4、教师介绍棱柱的各部分名称。

七年级数学上册教案9

  教学目标:

  知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

  过程与方法:通过本节的.学习,培养学生正确的分类讨论观点和分类能力。

  情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。

  教学重点:

  掌握有理数的两种分类方法

  教学难点:

  给定的数字将被填入它所属的集合中

  教学方法:

  问题导向法

  学习方法:

  自主探究法

  教学过程:

  一、形势归纳

  小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

  1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33

  (1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

  (2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

  称整数和分数为有理数。(指点题,板书)

  二、自学指导

  学生自学课本,根据课本寻找自学的机会

  提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

  三、展示归纳

  1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

  2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

  3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

  四、变式练习

  逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

  五、总结与反思:通过本节课的学习,你有什么收获?

  六、作业:必做题:课本14页:1、9题

七年级数学上册教案10

  一、教学目标

  1、知识与技能:

  (1)在现实中,认识角是一种基本的几何图形,理解角的概念,掌握角的表示方法。

  (2)认识角的度量单位度、分、秒,能根据角的度量比较角的大小,熟练进行角的换算。

  2、能力目标:培养学生的抽象概括能力,增强应用数学的意识。

  3、情感目标:通过丰富的图形世界进一步理解角的有关概念,感受数学与生活的密切联系,积极参与数学学习活动。

  4、过程与方法:提高学生的识图的能力,学会用运动变化的观点看问题。

  二、教学重点、难点关键

  1、教学重点:角的概念、表示方法及角度制的换算

  2、教学难点:角的表示方法、角度制的换算

  3、关键:学会观察图形是正确表示一个角的关键

  三、学情分析

  角是几何初步知识中比较抽象的概念,学生在小学已经初步接触了角的有关知识,对角的概念、比较、度量有了初步的认识。按照教学目标要求,这节课将进一步对角的概念、比较和度量进行规范。培养学生观察、比较、概括能力,借此引导学生在已有的生活经验和知识的基础上学习数学,理解数学,体会数学与生活的关系。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本节课设计的教学方法是采用引导发现法,辅之以讨论法

  四、教学准备

  为了提高课堂教学效率,激发学生学习兴趣,培养学生的空间想象力,本节课采用的是直观教学手段,充分利用多媒体演示,便于学生理解和掌握。

  五、教学用具:

  量角器

  六、教学过程

  (一)引入新课

  1多媒体放映一些生活中图形:时钟,教堂,足球射门请生观察。

  2提出问题:

  时钟的分针和时针,教堂的屋顶,足球与门框,都给我们怎样的平面图形的形象?请把它们画出来。

  学生活动:进行独立思考,画出一个角,然后观看教师的演示过程。

  (二)活动探究,建构新知

  活动一

  角的概念

  师:我们如何给角下定义?请大家根据自己的理解给角下一个定义。生:角的两种定义:

  a、角是由两条具有公共端点的射线组成的图形,两条射线的公共端点上一这个角的顶点,这两条射线是这个角的边;

  b、角也可以看成由一条射线绕着它的端点旋转而成的图形。

  (学生小组活动思考讨论,组内统一意见,代表发言,最后比较各答案得出准确定义。学生对角的概念已初步接触过,让学生进一步加深对角的概念的理解,培养学生抽象概括能力以及语言的表达能力。但由于学生的语言表达能力还不是太强,教师可进行适当的纠正、归纳)

  活动二

  角的表示

  师:如何表示一个角?请同学们阅读课本第136面在关内容,归纳角的'表示方法(小组内讨论互助)

  生:角的表示方法有:

  1、角的符号+三个大写字母,如:∠aob

  2、角的符号+一个大写字母,如:∠o

  (顶点处只有一个角时)

  3、角的符号+数字如:∠1

  4、角的符号+希腊字母如∠α

  师:在用这些方法表示角的时候应该注意些什么呢?

  生:用“角的符号+三个大写字母”表示角的时候要用大写字母,顶点的字母应该写在中间;在顶点处只有一个角时,才可以用一个大写的字母表示。

  师:老师再告诉大家一个细节:用数字或希腊字母表示角的时候,要在角上画一个小弧形。另外在角的表示中不能丢了前面角的符号。

  (在课堂教学中,教师应该充分相信学生,让学生在课堂上有充分的活动空间和时间,形成学生自我寻求发展的愿望,充分发挥他们的自主精神。当然,学生在归纳、表述的时候会出现不正确、思维不太严谨的地方,教师可给于适当的引导、纠正)

  尝试应用,反馈矫正

  师:请同学们完成下面的练习

  1、图中共有多少个角?请分别表示出来。

  c

  2、将图中的角用不同方法表示出来并填写下表

  b

  b

  ∠1

  ∠bca∠3∠4abc

  ceda

  获得积极深层次的体验,从而促进学生探究能力的发展)

  活动三

  角的度量与比较

  ab

  师:点a、b、c表示足球比赛中三个不同的射门位置,请同学们:c

  1、先估测图中所示各个角的大小

  2、再用量角器量一量,比较它们的大小,并与同学们交流度量角的方法3、射门角度越大,进球机会越大,请指出在图中哪一点射门最好

  4、对于角的比较大小,你还能有什么好的方法吗?

  生:1、∠b最大

  2、∠a=28°∠b=91°∠c=45°

  量角器的使用方法:“一对中,二合线,三读数”

  1、点b射门最好。

  2、对于角的比较大小,也可以通过叠合的方法来比较。

  (通过学生的探索,让学生明白角的比较方法很多,可以通过估测、度量的方法,也可以通过叠合的方法来比较角的大小)

  (三)、巩固练习,迁移新知

  试一试1、如图打台球的时候,球的反射角总是等于入射角。

  请同学们估测球反弹后会撞击图中的哪一点?

  (问题1以打台球为情景,因为台球是学生喜爱的体育活动,又与角有着密切的关系,可进一步引导学生分析角的三种比较方法)

  2、(1)图中以oa为一边的角有哪几个?请按大小顺序用“﹤”号连接起来;

  (2)∠aoc=∠aob+∠boc,∠aob=∠aod-∠dob。类似地,你还能写

  出哪些有关的角的和与差的关系式?o

  dac

  b

  (问题2具有开放性,教学中要指导学生认真读图,要给学生较为充分的独立思考、相互交流的时间和空间,鼓励学生尽可能多地表述出有关角的和与差的关系式)

  3、已知一条射线oa,若从点o再引两条射线ob、oc,使得∠aob=600,∠boc=300,求∠aoc的度数。

  (问题3的解答中,∠aoc有两种可能,不少同学只得出了一个答案:90°。表现出思维不太严谨,此时教师应该抓住思维训练的契机,培养学生的思维能力)关于角的度量单位,教学时应强调:

  (1)度、分、秒是常用的角的度量单位;

  (2)度、分、秒的进率是60(与时间的单位时、分、秒的换算一样)多媒体出示例题与练习

  (四)、归纳总结,系统知识

  师:本节课学习了哪些知识?

  生:学习了角的概念、角的表示、角的比较与度量,角的换算。

  师:通过本节课的实践、探索、交流与讨论,你有哪些收获?

  生:学会了角的表示方法,角的大小比较方法,并能熟练地进行角度的换算等

  (五)、布置作业:课本p3081、2、3同时出示思考题“用一副三角板,你可以作出哪些特殊的角”作为本节课的延伸。

七年级数学上册教案11

  七年级上2.5有理数的减法(一)教案

  教学目标:

  1、经历探索有理数减法法则的过程。

  2、理解并初步掌握有理数减法法则,会做有理数减法运算。

  3、能根据具体问题,培养抽象概括能力和口头表达能力。

  教学重点运用有理数减法法则做有理数减法运算。

  教学难点有理数减法法则的得出。

  教具学具多媒体、教材、计算器

  教学方法研讨法、讲练结合

  教学过程一、引入新课:

  师:下面列出的是连续四周的最高和最低气温:

  第1周第二周第三周第四周

  最高气温+6℃0℃+4℃-2℃

  最低气温+2℃-5℃-2℃-5℃

  周温差

  求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。

  生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

  列式为;

  (+6)-(+2)=4

  0-(-5)=5

  (+4)-(-2)=6

  (-2)-(-5)=3

  教学过程二、有理数减法法则的`推倒:

  师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

  2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?

  3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。

  举例:(-5)+()=-2

  得出(-5)+(+3)=-2

  所以得到(-2)-(-5)=+3

  而(-2)+(+5)=+3

  有理数减法法则:减去一个数,等于加上这个数的相反数。

  教学过程三、法则的应用:

  例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

  教学过程

  解:(1)原式=-34+(-56)+(+28)

  =-90+(+28)

  =-62

  (2)原式=+25+(+293)+(-472)

  =+25+(-836)

  = 676

  注意:强调计算过程不能跳步,体现有理数减法法则的运用。

  检测题

  教学过程四、练习反馈:

  师:巡视个别指导,订正答案。

  教学过程五、小结:

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  有理数减法法则:

  减去一个数,等于加上

  这个数的相反数。例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

七年级数学上册教案12

  学习目标:

  1、引导学生正确区分“线段、射线、直线”,掌握其表示方法,理解并能运用相关性质、公理。

  2、了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段。

  3、引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力。

  重点与难点:了解线段中点的概念,能画一条线段等于已知线段。发展学生有条理的思考,并能正确地表述。

  学习过程:

  一、课前预习导学

  1、如图,点a、b、c、d在直线ab上,则图中能用字母表示的共有条线段,有条射线,有条直线。

  2、从a到b地有①、②、③三条路可以走,每条路长分别为:,则第条路最短,另两条路的长短关系是。

  第1题

  第2题

  3、如图,若是中点,是中点,

  (1)若,_________;

  (2)若,_________。

  二、课堂学习1、议一议:

  (1)、在平面内画一个点,过这个点画直线,能画多少条?

  (2)、要在墙上钉牢一根木条,至少要用几个钉子?为什么?

  (3)、如果平面内有两个点,过这两个点画直线,又能画多少条?

  总结:“过两点有______,并且____ ”

  思考:过平面上三点中的每两点画直线,可画多少条?

  2、做一做:已知两点a、b

  (1)画线段ab(连接ab)

  (2)延长线段ab到点c,使bc=ab

  注意:我们把上图中的点b叫做线段ac的。

  3、想一想:(1)如果点b是线段ac的中点,那么线段ab、bc、ac之间有怎样的`数量关系?与同学交流。

  (2)如何用符号语言表述中点的概念?

  总结:如果点b是线段ac的中点,那么;

  如果,那么b是线段ac的中点。

  4、知识运用:

  例1、如图,线段ab=8cm,c是ab的中点,点d在cb上,db=1.5cm.求线段cd的长度。

  练习:1、如图ab=8cm,点c是ab的中点,

  点d是cb的中点,则ad=____cm

  2、如图,下列说法,不能判断点c是线段ab的中点的是( )

  a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab

  3、已知线段ab=8cm,点c是线段ab上任意一点,点m,n分别是线段ac与线段bc的中点,求线段mn的长。

  三、课堂检测1.下列说法中,正确的是()

  a.射线oa和射线ao表示同一条射线;b.延长直线ab;

  c.经过两点有一条直线,并且只有一条直线;d.如果ac=bc,那么点c是线段ab的中点.

  2.如果要在墙上固定一根木条,你认为至少要钉子()

  a.1根b.2根c.3根d.4根

  3.如图,若是中点,是中点,

  (1)若,,_________;(2)若,_________。

  4.如图在平面内有a、b、c、d四点,按要求画图。

  (1)画直线ab、射线bc、线段bd

  (2)连结ac交bd于点o

  (3)画射线cd并反向延长射线cd,

  (4)连结ad并延长至点e,使ad=de。

  四、课后作业

  1、下列说法中正确的是()

  a、连结两点的线段叫做两点之间的距离b、直线没有端点,射线至少有一个端点

  c、经过平面内两点有且只有一条直线d、运动场上的300m赛跑,表示起点和终点之间的距离是300米

  2、如图,b是线段ad上一点,c是线段bd的中点,ad=10,bc=3,求线段cd、ab的长度

  3、如图,线段ad=8,ab=cd=3,e、f分别是ab、cd的中点,求线段ef的长。

  4、已知线段mn=7,点p在直线mn上,且mp=3,则np= 。

  5、一条直线上有a,b,c三点,其中ab=4cm,bc=3cm,若o是线段ac的中点,求线段ob的长度。

七年级数学上册教案13

  学习目标

  1.掌握多项式、多项式的项及其次数,常数项的概念。

  2.确定一个多项式的项、项数和次数。

  3.由单项式与多项式归纳出整式概念。

  4.在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。

  重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

  难点:多项式的次数。

  学法指导

  从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。

  《2.1.3多项式》同步四维训练含答案

  新学期,两摞规格相同准备发放的.数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:

  (1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的整式表示);

  (2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的高度.

  《2.1.2多项式》课时练习含答案

  1.下列说法中正确的是( )

  A.多项式ax2+bx+c是二次多项式

  B.四次多项式是指多项式中各项均为四次单项式

  C.-ab2,-x都是单项式,也都是整式

  D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项

  2.如果一个多项式是五次多项式,那么它任何一项的次数( )

  A.都小于5 B.都等于5

  C.都不小于5 D.都不大于5

  3.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是( )

  A.a10+b19 B.a10-b19

  C.a10-b17 D.a10-b21

  4.若xn-2+x3+1是五次多项式,则n的值是( )

  A.3 B.5 C.7 D.0

  5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有.(填序号)

  6.一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.

  7.多项式的二次项系数是.

  8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的话还没有说完,甲同学抢着说:“这个多项式最多只有六项.”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式.”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?

  9.如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值.

  10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.

  (1)请把游戏最后丁所报出的答案用整式的形式描述出来;

  (2)若甲取的数为19,则丁报出的答案是多少?

七年级数学上册教案14

  6.2普查和抽样调查

  1.了解普查、抽样调查的概念并能区分普查和抽样调查.

  2.了解总体、个体、样本的概念及简单的抽样调查的方法.

  一、情境导入

  小号同学为了估计全市七年级学生人数,他对自己所在镇的人口和全镇七年级学生人数做了调查:全镇人口约3万,七年级学生人数为200.全市人口约60万,由此推断全市七年级学生人数约为4000,但市教育局提供的全市七年级学生人数为6000,与估计有很大偏差,这是怎么回事呢?

  二、合作探究

  探究点一:调查方式的选择

  (内江中考)下列调查中,①调査本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是()

  A.①B.②C.③D.④

  解析:①中,由于考察对象数量较少,可以采用普查方式;②中,考察对象具有破坏性,宜采用抽样调查;③中,要保证“神州9号”的成功发射,必须做到万无一失,所以要对其零部件进行普查;④中,为了保证每个旅客的安全,必须对所有乘客进行安检,即普查.故选B.

  方法总结:普查和抽样调查是两种方式,各有自己的特点,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身需要,又要考虑实现的可能性.

  下列调查,适合用普查方式的是()

  A.了解一批炮弹的杀伤半径

  B.了解扬州电视台《关注》栏目的收视率

  C.了解长江中鱼的种类

  D.了解某班学生对“扬州精神”的知晓率

  解析:A中了解一批炮弹的杀伤半径,如果普查,所有炮弹都报废,这样就失去了实际意义,故此选项错误;B中了解扬州电视台《关注》栏目的收视率的调查因为普查工作量大,适合抽样调查,故此选项错误;C中了解长江中鱼的`种类的调查,因为数量众多,无法进行普查,适合抽样调查,故此选项错误;D中了解某班学生对“扬州精神”的知晓率的调查,适用于普查,人数确定,普查准确,故此选项正确.

  方法总结:此题主要考查了普查和抽样调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用.一般来说,对于具有破坏性的调查无法进行普查,普查的意义或价值不大时,应选择抽样调查,对于精确要求较高的调查,事关重大的调查往往选用普查.

  探究点二:总体、个体、样本

  (巴中中考)今年我市有4万名考生参加中考,为了了解这些考生的数学成绩,从中抽取20xx名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③20xx名考生是总体的一个样本;④样本容量是20xx,其中说法正确的有()

  A.4个B.3个C.2个D.1个

  解析:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;20xx名考生的中考数学成绩是总体的一个样本,样本容量是20xx.故正确的是①④.故选C.

  方法总结:(1)总体、个体、样本三者之间的关系是:所有的个体构成了总体,样本取自于总体,因此,样本是总体的一部分,没有个体就没有总体;(2)在总体、个体、样本中所提到的考察对象都是问题中的数量指标,是“量”而不是“物”.

  为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()

  A.某市八年级学生的肺活量

  B.从中抽取的500名学生的肺活量

  C.从中抽取的500学生

  D.500

  解析:本项调查中的考察对象是“某市八年级学生的肺活量”,因此样本是“从中抽取的500名学生的肺活量”.故选B项.

  方法总结:在分析总体、个体和样本时,一定要认真体会“考察对象”的含义,否则容易出现误选C的错误.

  探究点三:样本的选取

  为了了解学校大门出口处每天在学校放学时段的车流量,以帮助学生安全离校,有下面几个样本来统计大门出口处在学校放学时段的车流量,样本选取合适的是()

  A.抽取两天作为一个样本

  B.以全年每一天为样本

  C.选取每周星期日为样本

  D.春、夏、秋、冬每个季节各选两周作为样本

  解析:选项A样本容量太小,不具有广泛性;选项B抽取样本难度过大,没有必要性;选项C样本不具有代表性;选项D对个体进行分类按比例随机抽取样本.样本具有代表性,符合简单随机抽样的要求.故选D.

  方法总结:开展调查前,首先要仔细检查总体中的每个个体是否都有可能成为调查对象,样本要避免遗漏某一个群体,使样本在总体中具有广泛性和代表性,其次样本容量应足够多.

  判断下面抽样调查选取样本的方法是否合适:

  (1)检查某啤酒厂即将出厂的啤酒质量情况,先随机抽取若干箱(捆),再在抽取的每箱(捆)中,随机抽取1~2瓶检查;

  (2)通过网上问卷调查方式,了解百姓对央视春节晚会的评价;

  (3)调查某市中小学生学习负担的状况,在该市每所小学的每个班级选取一名学生,进行问卷调查;

  (4)教育部为了调查中小学乱收费情况,调查了某市所有中小学生.

  解析:本题应看样本是否为简单随机样本,是否具有代表性.

  解:

  (1)合适,这是一种随机抽样的方法,样本为简单随机样本.

  (2)不合适,我国农村人口众多,多数农民是不上网的,所以调查的对象在总体中不具有代表性.

  (3)不合适,选取的样本中个体太少.

  (4)不合适,样本虽然足够大,但遗漏了其他城市里的这些群体,应在全国范围内分层选取样本,除了上述原因外,每班的学生全部作为样本是没有必要的

  方法总结:判断选取样本的方法是否合适,一般应从以下几个方面判断:

  (1)选取的样本是否具有代表性;

  (2)选取的样本各层都要有,各层是否有遗漏;

  (3)用整体随机抽样的,要看所选群体能否代表总体.

  三、板书设计

  普查与抽样调查样本应具有代表性和广泛性(样本的概念)

  教学过程中,强调学生自主探索与合作交流,经历收集、加工、整理等思维过程,培养学生的探索精神和分析问题、处理问题的能力.

七年级数学上册教案15

  教学目标:

  1.了解正数与负数是实际生活的需要.

  2.会判断一个数是正数还是负数.

  3.会用正负数表示互为相反意义的量.

  教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.

  教学难点:负数的引入.

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.

  (二)合作交流,解读探究

  举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.

  想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

  为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).

  活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.

  讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.

  总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.

  (三)应用迁移,巩固提高

  【例1】举出几对具有相反意义的量,并分别用正、负数表示.

  【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.

  【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?

  【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()

  A.3B.-3C.-2.5D.-7.45

  【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.

  (四)总结反思,拓展升华

  为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的`数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.

  1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

  星期日一二三四五六

  (元)+16+5.0-1.2-2.1-0.9+10-2.6

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  (2)储蓄罐中的钱与原来相比是多了还是少了?

  (3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.

  2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.

  (1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

  (2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.

  (五)课堂跟踪反馈

  夯实基础

  1.填空题:

  (1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.

  (2)如果4年后记作+4年,那么8年前记作年.

  (3)如果运出货物7吨记作-7吨,那么+100吨表示.

  (4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.

  2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.

  (1)用正数或负数记录下午1时和下午5时的水位;

  (2)下午5时的水位比中午12时水位高多少?

  提升能力

  3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.

  (六)课时小结

  1.与以前相比,0的意义又多了哪些内容?

  2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

【七年级数学上册教案】相关文章:

数学七年级上册教案04-16

湘教版数学七年级上册教案01-09

[优]数学七年级上册教案06-13

七年级数学上册教案01-11

七年级数学上册教案[精选]06-16

七年级数学上册教案(精选)06-14

七年级上册数学教案01-19

七年级上册数学教学教案06-01

七年级上册数学教案12-16

数学新七年级上册教案模板01-24