七年级数学上册教案优选【15篇】
作为一无名无私奉献的教育工作者,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。那么什么样的教案才是好的呢?以下是小编为大家收集的七年级数学上册教案,仅供参考,大家一起来看看吧。
七年级数学上册教案1
一、目标
1.用它们拼成各种形状不同的四边形,并计算它们的周长。
(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)
2.教师揭示以上这些工作实际上是在进行整式的加减运算
3.回顾以上过程 思考:整式的加减运算要进行哪些工作?
生1:“去括号”
生2:“合并同类项”
师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,
二、揭示如何进行整式的加减运算
1.进行整式的.加减运算时,如果有括号先去括号,再合并同类项。
2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.
(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)
解:(2a2-4a+1)-(-3a2+2a-5)
=2a2-4a+1+3a2-2a+5
=5a2-6a+6
3.拓展练习
(1)求多项式2x -3 +7与6x -5 -2的和.
提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)
(2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)
(4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)
4.教学例3
先化简下式,再求值:
(做此类题目应先与学生一起探讨一般步骤:
(1)去括号。
(2)合并同类项。
(3)代值)
解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3
=15a2b –5ab2+4ab2 -12a2b)
=3a2b –ab2
三、小结
1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2.进行化简求值计算时
(1)去括号。
(2)合并同类项。
(3)代值
3.通过本节课的学习你还有哪些疑问?
四、布置作业
习题4.5 2. (3) ;4. (2);5.。
五、课后反思
省略
七年级数学上册教案2
教学目标
1 知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2 过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3 情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
教学重难点
1 教学重点:
掌握用整十数除的口算方法。
2 教学难点:
理解用整十数除的口算算理。
教学工具
多媒体设备
教学过程
1 复习引入
口算。
20×3= 7×50= 6×3=
20×5= 4×9= 8×60=
24÷6= 8÷2= 12÷3=
42÷6= 90÷3= 3000÷5=
2 新知探究
1、教学例1
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:从中你能获取什么数学信息?
师:怎样解决这个问题?
(2)列式 80÷20
(3)学生独立探索口算的方法
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
A.因为20×4=80,所以80÷20=4 这是想乘算除
B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成
为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
把你喜欢的方法说给同桌听。
(5)检查正误
师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)
(6)用刚学会的方法再次口算,并与同桌交流你的.想法
40÷20 20÷10 60÷30 90÷30
(7)探究估算的方法
出示:83÷20≈ 80÷19≈
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
师:谁想把你的方法跟大家说一说。
预设:83接近于80,80除以20等于 4,所以83除以20约等于4。
19接近于20,80除以20等于 4,所以80除以19约等于4。
2、教学例2
(1)创设情境引出问题
师:谁会解决这个问题?
150÷50
(2)小组讨论口算方法
(3)你是怎么这样快就算出的呢?
A.因为15÷5=3,所以150÷50=3。
B.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30 240÷80 300÷50 540÷90
3、估算
(1)探计估算的方法
师:你能知道题目要求我们做什么吗?
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。
(4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?
3 巩固提升
1、独立口算
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2、算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
3、解决问题
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
240÷40 = 6(包)
答:要捆6包。
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
出示条件:一共有120个小故事,每天看1个故事。
问题:看完这本书大约需要几个月?
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
120÷30 = 4(个)
答:看完这本书大约需要4个月。
课后小结
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
板书
口算除法
有80面彩旗,每班分20面,可以分给几个班?
80÷20=
七年级数学上册教案3
一、教学目标
1、知识与技能
(1)初步了解立体图形和平面图形的概念、
(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体、
2、过程与方法
(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉、
(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体、
3、情感、态度、价值观
(1)、形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣、
二、教学重点、难点:
教学重点:常见几何体的识别
教学难点:从实物中抽象几何图形、
三、教学过程
1、创设情境,导入新课、
(1)同学们,不知你们有没有仔细地观察过我们生活的周围,如果你认真观察的话,你会发现我们生活在一个多姿多彩的图形世界里、引导学生观察08年奥运村模型图,你能从中找到一些你熟悉的图形吗?
(2)用幻灯片展示一些实物图片并引导学生观察、从城市宏伟的建筑到江南水乡的小桥流水,从高科技产品到日常小玩意,从四通八达的.立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的雕塑,从自然界形态各异的动物到北京的申奥标志……图形的世界是丰富多彩的
2、直观感知,识别图形
(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置、
(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形、观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点、
七年级数学上册教案4
一、教学目标
1。理解一个数平方根和算术平方根的意义;
2。理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3。通过本节的训练,提高学生的逻辑思维能力;
4。通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合。
四、教学手段
多媒体
五、教学过程
(一)提问
1。已知一正方形面积为50平方米,那么它的边长应为多少?
2。已知一个数的平方等于1000,那么这个数是多少?
3。一只容积为0。125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的.值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习:填空
1。()2=9;2。()2 =0。25;
5。()2=0。0081。
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0。5是0。25的平方根;
0的平方根是0;
±0。09是0。0081的平方根。
由此我们看到3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
()2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1。一个正数有两个平方根,它们互为相反数。
2。0有一个平方根,它是0本身。
3。负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到3与—3的平方是9,9的平方根是3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1。用正确的符号表示下列各数的平方根:
①26②247③0。2④3⑤
解:①26的平方根是
②247的平方根是
③0。2的平方根是
④3的平方根是
⑤的平方根是
七年级数学上册教案5
学习目标:
1、引导学生正确区分“线段、射线、直线”,掌握其表示方法,理解并能运用相关性质、公理。
2、了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段。
3、引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力。
重点与难点:了解线段中点的概念,能画一条线段等于已知线段。发展学生有条理的思考,并能正确地表述。
学习过程:
一、课前预习导学
1、如图,点a、b、c、d在直线ab上,则图中能用字母表示的共有条线段,有条射线,有条直线。
2、从a到b地有①、②、③三条路可以走,每条路长分别为:,则第条路最短,另两条路的长短关系是。
第1题
第2题
3、如图,若是中点,是中点,
(1)若,_________;
(2)若,_________。
二、课堂学习1、议一议:
(1)、在平面内画一个点,过这个点画直线,能画多少条?
(2)、要在墙上钉牢一根木条,至少要用几个钉子?为什么?
(3)、如果平面内有两个点,过这两个点画直线,又能画多少条?
总结:“过两点有______,并且____ ”
思考:过平面上三点中的每两点画直线,可画多少条?
2、做一做:已知两点a、b
(1)画线段ab(连接ab)
(2)延长线段ab到点c,使bc=ab
注意:我们把上图中的点b叫做线段ac的。
3、想一想:(1)如果点b是线段ac的中点,那么线段ab、bc、ac之间有怎样的数量关系?与同学交流。
(2)如何用符号语言表述中点的概念?
总结:如果点b是线段ac的中点,那么;
如果,那么b是线段ac的中点。
4、知识运用:
例1、如图,线段ab=8cm,c是ab的中点,点d在cb上,db=1.5cm.求线段cd的长度。
练习:1、如图ab=8cm,点c是ab的中点,
点d是cb的中点,则ad=____cm
2、如图,下列说法,不能判断点c是线段ab的.中点的是( )
a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab
3、已知线段ab=8cm,点c是线段ab上任意一点,点m,n分别是线段ac与线段bc的中点,求线段mn的长。
三、课堂检测1.下列说法中,正确的是()
a.射线oa和射线ao表示同一条射线;b.延长直线ab;
c.经过两点有一条直线,并且只有一条直线;d.如果ac=bc,那么点c是线段ab的中点.
2.如果要在墙上固定一根木条,你认为至少要钉子()
a.1根b.2根c.3根d.4根
3.如图,若是中点,是中点,
(1)若,,_________;(2)若,_________。
4.如图在平面内有a、b、c、d四点,按要求画图。
(1)画直线ab、射线bc、线段bd
(2)连结ac交bd于点o
(3)画射线cd并反向延长射线cd,
(4)连结ad并延长至点e,使ad=de。
四、课后作业
1、下列说法中正确的是()
a、连结两点的线段叫做两点之间的距离b、直线没有端点,射线至少有一个端点
c、经过平面内两点有且只有一条直线d、运动场上的300m赛跑,表示起点和终点之间的距离是300米
2、如图,b是线段ad上一点,c是线段bd的中点,ad=10,bc=3,求线段cd、ab的长度
3、如图,线段ad=8,ab=cd=3,e、f分别是ab、cd的中点,求线段ef的长。
4、已知线段mn=7,点p在直线mn上,且mp=3,则np= 。
5、一条直线上有a,b,c三点,其中ab=4cm,bc=3cm,若o是线段ac的中点,求线段ob的长度。
七年级数学上册教案6
教学目标
1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2,能区分两种不同意义的量,会用符号表示正数和负数;
3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量
教学过程(师生活动)设计理念
设置情境
引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子
仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1。73米,体重58。5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的`数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习教科书第5页练习
小结与作业
课堂小结围绕下面两点,以师生共同交流的方式进行:
1,0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
本课作业教科书第7页习题1。1第1,2,4,5(第3题作为下节课的思考题。
作业可设必做题和选做题,体现要求的层次性,以满足不同学生的需要
本课教育评注(课堂设计理念,实际教学效果及改进设想)
密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的.
负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子
或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实
存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例
子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.
这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,
体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见
的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。
七年级数学上册教案7
教学目标
1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。
2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.
重点、难点
重点:探索并理解平移的性质.
难点:对平移的认识和性质的探索.
教学过程
一、引入新课
1.教师打开幻灯机,投放课本图5.4-1的图案.
2.学生观察这些图案、思考并回答问题.
(1)它们有什么共同的特点?
(2)能否根据其中的一部分绘制出整个图案?
3.师生交流.
(1)这引进美丽的图案是由若干个相同的图案组合而成的`,图5.4-1 上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形, 四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝; 下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.
《5.4平移》同步讲义练习和同步练习
1在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置,若平移的距离为2,则图中的阴影部分的面积为 .
2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为 cm2.
3、绐正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为l的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20xx次“移位”后,则他所处顶点的编号是 .
《5.4平移》同步测试卷含答案
1. 将图形平移,下列结论错误的是( )
A.对应线段相等
B.对应角相等
C.对应点所连的线段互相平分
D.对应点所连的线段相等
解析: 根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选C.
12. 国旗上的四个小五角星,通过怎样的移动可以相互得到( )
A.轴对称 B.平移 C.旋转 D.平移和旋转
解析: 国旗上的四个小五角星通过平移和旋转可以相互得到.故选D.
七年级数学上册教案8
一:说教材:
1教材的地位和作用
本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。
3教育目标
(1)、知识与能力
①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。
②培养学生的观察能力、分析能力和运算能力。
(2)、过程与方法
培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。
(3)、情感态度价值观
通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。
4教学重点和难点
重点和难点是如何利用有理数列式解决实际问题及正确而
合理地进行计算。
二:说教法
鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。
三:说学法指导
本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。
四:师生互动活动设计
教师用投影仪出示例题,学生用抢答等多种形式完成最终的`解题。
五:说教学程序
(课本36页)例9:某公司去年1~3月份平均每月亏损1。5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1。7万元,11~12月份平均每月亏损2。3万元,这个公司去年盈亏情况如何?
师生共析:认真审题,观察、分析本题的问题共同回答以下问题:
1全年哪几个月是亏损的?哪几个月是的盈利的?
2各月亏损与盈利情况又如何?
3如果盈利记为“ ”,亏损记为“—”,那么全年亏损多少?
盈利多少?
6你能将亏损情况与盈利情况用算式列出来吗?
(5)通过算式你能说出这个公司去年盈亏情况如何吗?
【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行。)再由学生自主完成运算。
【教法说明】:此题一方面可以复习加法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。
(三):归纳小结
今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。
六:说板书设计
板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。
七年级数学上册教案9
教学目标
知识与技能:
1.会求代数式的值,会利用代数式求值判断代数式所反应的规律;
2.能利用求代数式的值解决较简单的实际问题;
过程与方法:
3.通过求代数式的值,体会代数式实际上是由计算程序反映的一种数量间的关系;
4.将不同的数代入同一代数式,求出相应的值,能够从所得代数式的值来判断代数式所反映的规律,体会抽象的代数式与实际数量关系之间的关系.
情感态度价值观:
5.通过代数式求值,感受数学中的程序化和抽象性,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感.
教学重点
理解代数式的意义,会求代数式的值
教学难点
利用代数式求值推断代数式所反映的规律
教学方法
引导、探究法,即引导学生发现规律,使其在探究过程中掌握知识
教学准备
多媒体,或投影仪,胶片
课时安排
1课时
教学过程
Ⅰ.巧设情景问题,引入课题
[师]我们在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义.
下面我们来看一组数值转换机:(出示投影片§3.3A),大家想一想,做一做.
下面是一组数值转换机,写出图1的输出结果,找出图2的转换步骤:
[生1]图1的输出结果是:6x-3.
图2的转换步骤:-3、×6.
[师]这位同学书写的跟你们的一样吗?
[生齐声]一样.
[师]很好,同学们写得很正确,这两个数值转换机由于转换的步骤不一样,因此输出的代数式也不一样.
我们已经知道,表示数的字母具有任意性和确定性.当给出代数式时,如:6x-3,字母x可以取任何有理数,当给出未知数的值时,如x=5时,求6x-3的值,这时,x只能是5这个确定的数.
今天我们就来研究第三节:代数式求值.
Ⅱ.讲授新课
当我们把一些数输入“数值转换机”时,通过一个算法,相应得就会得到一些数值.下面大家来做一做,填下表.(出示投影片§3.3B)
输入-2-
00.26
4.5
图1输出
图2输出
(学生计算,使他们认识到代数式求值就是转换过程或是某种计算).
[师]大家在运算时一定要注意:要按转换的步骤进行.填出结果了吗?……来同桌间相互检查.××同学说说你的结果.
[生]
[师]同学们做得都不错,很好,下面,我们来比赛一下,看谁做得又对又快.(出示投影片§3.3C)
议一议:
填写下表,并观察下列两个代数式的值的变化情况:
(1)随着n的值逐渐变大,两个代数式的值如何变化?
(2)估计一下,哪个代数式的值先超过100?
(学生积极发言,大多同学填得对)
[生]
[师]很好,大家计算得又对又快,接下来我们分组讨论:(1)、(2)问题,并总结.
[生]随着n的值逐渐变大,两个代数式的值也逐渐变大.
根据值的变化趋势,我估计:n2的值先超过100.
[师]对,代数式的值是由其所含的字母取值所确定的,并随字母取值的变化而变化,字母取不同的值,代数式的值可能不同,也可能相同.求出代数式的值后,根据值的变化趋势还可以进行预测、推断代数式所反映的规律.
下面我们来做练习,进一步体会本节课的内容:
Ⅲ.课堂练习
(一)课本P99随堂练习
1.人体血液的质量约占人体体重的6%~7.5%.
(1)如果某人体重是a千克,那么他的血液质量大约在什么范围内?
(2)亮亮的体重是35千克,他的血液质量大约在什么范围内?
(3)估计你自己的血液质量?
答案:(1)6%a千克~7.5%a千克
(2)亮亮的血液质量大约在2.1千克到2.625千克之间
(3)让学生估计计算一下
2.物体自由下落的高度h(米)和下落时间t(秒)的关系,在地球上大约是:
h=4.9t2,在月球上大约是:h=0.8t2.
(1)填写下表
(2)物体在哪儿下落得快?
(3)当h=20米时,比较物体在地球上和月球上自由下落所需的时间.
答案:(1)
(2)地球
(3)通过表格,估计当h=20米时,t(地球)≈2秒,t(月球)≈5秒
(二)试一试
1.当a=-1,-0.5,0,0.5,1,1.5,2时,a2-a是正数还是负数?当|a|>2时,估计a2-a是正数还是负数?
解:本题可列表进行比较.
通过估计得:当|a|>2时,a2-a>0
2.当a=-4,-3,-2,-1,1,2,3,4时,分别求出代数式a2+的值.你发现了什么?
解:
从计算的结果中发现:当a取互为相反数的值时,a2+的值相等;当|a|>1时,a的.绝对值变大,a2+的值也变大.
Ⅳ.课时小结
通过本节课的学习,我们会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值,一般也不同,所以在求代数式的值时,要注意解题步骤:(1)代入.
(2)计算.
Ⅴ.课后作业
(一)看课本P98;P99的读一读.
(二)课本习题3.31、2、3、4.
(三)(1)预习内容:P102~103
(2)预习提纲
1.项的系数和项的概念.
2.进一步理解字母表示数的意义.
Ⅵ.活动与探究
1.下面是两个数值转换机,请你输入五组数据,比较两个输出的结果,发现了什么?
根据上题的启示,你能设计出两个数值转换机来验证:a2-2ab+b2=(a-b)2吗?
过程:让学生根据题意,求代数式的值.然后讨论、总结,最后根据总结的规律与等式a2-2ab+b2=(a-b)2进行比较,设计两个数值转换机.
结果:通过输入数值,进行计算,发现了两个输出的结果相等,即:
a2+b2+2ab=(a+b)2
根据上题的启示,设计出如下的两个数值转换机,使得:a2-2ab+b2=(a-b)2.
2.已知=7,求的值.
过程:让学生审清题,不要盲目计算.从题中知:与正好是互为倒数,整体代入,问题可轻松解决.
结果:因为=7,所以:=.
所以:原式=2×7-×=13.
板书设计
§3.3代数式求值
一、“数值转换机”求值三、课堂练习
二、议一议
四、课时小结
规律五、课后作业
七年级数学上册教案10
教学目标:
1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形
2、在操作活动中认识棱柱的某些特性;
3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;
教学重点:
通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法
教学难点:
根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。
教学过程:
一、导入情境
让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。
二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做
活动一:
1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的'形式动手做做看。
2、操作完后,请学生展示他们制作的模型。
3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。
4、教师介绍棱柱的各部分名称。
七年级数学上册教案11
教学内容:
第89页例3、例4,90页课堂活动,练习二十二第5、6、7、8题。
教学目标:
1.在熟悉的生活情境中,进一步理解负数的意义,会用正负数表示相反意义的量。
2.感受负数在生活中的广泛应用,会解释生活中的一些负数的实际意义。
教学重点:
会用正、负数表示相反意义的量。
教学难点:
会用正、负数解决生活中的实际问题。
教具准备:
多媒体课件
教学方法:
合作交流、师生互动
教学过程:
一、游戏激趣
教师:我们来玩个游戏轻松一下,游戏名叫《我反,我反,我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。谁先试一试?
向上看 向前走200米 电梯上升15层 我在银行存入了500元
二、复习旧知
我们已经学习了负数,你能举几个负数的例子吗?
通过前面内容的学习,你还知道哪些知识?
三、学习新知
1.教学例3。
出示例3的情境:小明向东走200米,小军向西走200米。
教师问:你准备怎样来表示这两个不同意思的量?
学生1:向东走200米记作+200米,向西走200米就记作-200米。
学生2:向西走200米记作+200米,向东走200米就记作-200米。
教师对这两种记法都应给予肯定。
学生独立试一试
(1)如果汽车向正北方向行驶50m记作+50m,那么汽车向正南方向行驶100m该怎样记?
(2)如果体重减少2kg记作-2kg,那么+5kg表示什么?
学生完成后,集体订正并小结:由此可见,我们可以用正数、负数来表示相反意义的量。
(3)练习:课堂活动第2题:说出表中正数、负数表示的意义。
项目 父母工资 电话费 父母奖金 水、电、气费 伙食费
收支情况(元) 4500 -130 1000 -280 -1750
2.教学例4。
教师:其实,正、负数在生活中有着广泛的应用。如某农用物资商场把下半年的.盈亏情况做了一个表:(出示例4)
月份 7月 8月 9月 10月 11月 12月
盈亏情况(元) +6500 -2700 0 -750 +9500 +16700
教师:表中的正数,负数各表示什么意思?(正数表示盈利,负数表示亏损。)
教师:从表中你获得了哪些信息?
学生小组内交流,然后全班汇报。
教师:盈和亏也是两个相反意义的量,我们用正数、负数来表示,简洁而准确。
3.讨论生活中的负数。
教师出示存折和电梯图上的负数,让学生讲讲表示的是什么意思。
教师:存折上的-800表示什么意思?
学生:取出800元记作-800;存入了1200元记作1200元,还可以记作+1200元
电梯里的1和-1表示什么意思?(以地面为界线,地面以上一层我们用1或+1来表示,-1就表示地下一层)
老师现在要到33层应该按几啊?要到地下3层呢?
四、课堂练习
1.下图每段表示1m,小丽刚开始的位置在0处。
(1)小丽从0处向东行5m表示+5m,那么她从0点向西行4m表示为( )
(2)如果小丽的位置是+8m,说明她是从0点向( )行了( )m。
(3)如果小丽的位置是-6,说明她是从0点向( )行了( )m。
(4)如果小丽先向西行6m,再向东行9m,这时小丽的位置表示为( )m。
(5)如果小丽先向东行3m,再向西行7m,这时小丽的位置表示为( )m。
2.如果顺时针方向旋转90°记作+90°,那么逆时针方向旋转90°记作( )。
3.如果-20分表示比平均分低20分,那么+15表示( )
4.如果比规定任务多做5个记作+5个,那么-5表示( )
5.2.如果在银行存入10000元记作+10000,那么-5000表示( )。
五、自学“你知道吗?”
学生阅读教科书92页内容,说说有什么收获?
六、课堂小结
通过今天的学习,你有什么收获?
七、课堂作业
练习二十二第6、7题。
家庭作业:90页课堂活动第3题,练习二十二第5、8题
板书设计:
认识具有相反意义的量及其简单应用
向东走200米记作+200米,向西走200米就记作-200米
正数、负数来表示相反意义的量。
七年级数学上册教案12
教学目标
【知识与能力目标】
1、巩固理解有理数的概念;
2、掌握数轴的意义及构成特点,明确其在实际中的应用;
3、会用数轴上的点表示有理数。
【过程与方法目标】
【情感态度价值观目标】
通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点
【教学重点】
数轴的意义及作用。
【教学难点】
数轴上的点与有理数的直观对应关系。
课前准备
《数学》人教版七年级上册,自制课件
教学过程
一、探索新知(投影展示)
问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:
1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?
2、举例说明生活中类似的事例;
3、什么叫数轴?它有哪几个要素组成?
4、数轴的用处是什么?
5、你会画数轴吗并应用它吗?
“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;
结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:
共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;
不同点:温度计是竖直的,方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)
(1)数轴的构成三要素:原点、方向、单位长度;
(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;
5、归纳
(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的'距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。
二、例题分析
例1.先画出数轴,然后在数轴上表示下列各数:
-1、5,0,-2,2,-10/3
例2、数轴上与原点距离4个长度单位的点表示的数是。
三、巩固训练
课本p10练习
自我检测
(1)数轴的三要素是;
(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;
(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;
(4)如图,a、b为有理数,则a0,b0,ab
课堂小结
(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。
(2)数轴的三要素:原点、正方向、单位长度。
(3)数学思想:数形结合的思想。
五、作业
1、课本14页习题1、2
2、完成“自我检测”
3、个性补充
⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。
⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。
⑶在数轴上标出到原点的距离小于3的整数。
⑷在数轴上标出-5和+5之间的所有整数。
七年级数学上册教案13
单元教学内容
1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念
2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
(1)数轴能反映出数形之间的对应关系
(2)数轴能反映数的性质、
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数
(4)数轴可使有理数大小的比较形象化
3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分
4、正确理解绝对值的概念是难点
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:
(1)任何有理数都有唯一的绝对值
(2)有理数的绝对值是一个非负数,即最小的绝对值是零
(3)两个互为相反数的绝对值相等,即│a│=│-a│
(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a
(5)若│a│=│b│,则a=b,或a=-b或a=b=0
三维目标
1、知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数
(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解
(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值
(4)会利用数轴和绝对值比较有理数的大小
2、过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法
3、情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言
重、难点与关键
1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值
2、难点:准确理解负数、绝对值等概念
3、关键:正确理解负数的意义和绝对值的意义
课时划分
1、1 正数和负数 2课时
1、2 有理数 5课时
1、3 有理数的加减法 4课时
1、4 有理数的乘除法 5课时
1、5 有理数的乘方 4课时
第一章有理数(复习) 2课时
1、1正数和负数
第一课时
三维目标
一、知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量
二、过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性
三、情感态度与价值观
培养学生积极思考,合作交流的意识和能力
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教具准备
投影仪、
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、
在生活、生产、科研中经常遇到数的表示与数的运算的'问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量。
(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。
(7)、 你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量
六、巩固练
课本第3页,练习1、2、3、4题
七年级数学上册教案14
教学目标
1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点
两个负数大小的比较
知识重点
绝对值的概念
教学过程(师生活动)
设计理念
设置情境
引入课题
星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升。
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20|-10|=10显然|0|=0
这个例子中,第一问是相反意义的量,用正负
数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体
验数学知识与生活实际的联系.
因为绝对值概念的几何意义是数形转化的典型
模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.
合作交流
探究规律
例1求下列各数的绝对值,并归纳求有理数a的绝对
有什么规律。、
-3,5,0,+58,0.6
要求小组讨论,合作学习.
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).
巩固练习:教科书第15页练习.
其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别.
求一个数的绝时值的法则,可看做是绝对值概
念的一个应用,所以安排此例.
学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.
结合实际发现新知
引导学生看教科书第16页的图,并回答相关问题:
把14个气温从低到高排列;
把这14个数用数轴上的点表示出来;
应怎样比较两个数的大小呢。
学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:
在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的`数.
在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则
想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.
要求学生在头脑中有清晰的图形.
让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。
课堂练习
例2,比较下列各数的大小(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式
练习:第18页练习
小结与作业
课堂小结
怎样求一个数的绝对值,怎样比较有理数的大小。
本课作业
1,必做题:教产书第19页习题1,2,第4,5,6,10
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在
这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学
习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意
义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理
数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.
2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3,有理数大小的比较法则是大小规定的直接归纳,其中第
(2)条学生较难理解,教学
中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到
大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.
4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教
学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
七年级数学上册教案15
复习目标
1、 经历猜测、试验、收集与分析试验结果等活动过程。
2、 初步体验有些事件的发生是确定的,有些则是不确定的,能区分确定事件与不确定事件。
3、 知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性作出描述,能列举出简单试验所有可能发生的结果,并和同伴交换想法。
复习内容
一、基础知识填空
1.在一定条件下,肯定会发生的事情称为 必然事件 ;在一定条件下,一定不会发生的事情称为 不可能事件 ;必然 事件与 不可能 事件都是确定 的;在一定条件下,可能会发生,也可能不会发生的事件称为 不确定 事件。
2.在“转盘游戏”中,哪个区域的面积大,则指针落到该区域的 可能性 大。
二、典型例题
例题1:下列事件中,哪些是必然事件?哪些是不可能事件,哪些是不确定事件?
(1)一年有12个月; (2)掷一枚一元硬币,停止后国徽朝上;
(3)明天要下雪; (4)1/4周角=1直角;
(5)任意买一张电影票座位号是奇数;(6)小明的'生日是2月30日;
(7)一条鱼在白云中飞翔。
分析与解:(1)、(4)是必然事件;(6)、(7)是不可能事件;
(2)、(3)、(5)是不确定事件。因为(6)中2月只有28天,不可能有30日,所以是不可能事件。
注意:在判别事件是确定还是不确定,关键是根据一定的条件弄清它是一定会发生或一定不会发生,还是无法肯定它会不会发生。
例题2:医院的护士给病人注射青霉素类药水时,要先做皮试。但根据有关数据显示,只有大约千分之一的人对青霉素过敏,但护士为什么每次都这样做呢?这样做是不是多此一举?
分析与解:青霉素过敏的可能性只有千分之一,但它总是有可能发生的,我们不能确定每一个注射的病人都不会过敏,因此“青霉素过敏”这一事件是可能事件。为了每位病人的生命安全,一定要先做皮试,此种做法不是多此 一举。
注意:“不太可能事件”虽然可能性很小,但它仍有可能发生。
例题3:一只蚂蚁在如图所示的一块地板上爬行,这块地板由黑白两种不同颜色外其它完全相同的地砖铺成,爬行一段时间后,蚂蚁停在哪种颜色地砖上的可能性大,为什么?
分析与解:
因为白色的块数是10,黑色的块数是6,白色区域的面积大,所以蚂蚁停在白颜色地砖上的可能性大。
注意:有关可能性问题,有时可通过比较各种区域所占面积的大小来确定。
例题4:袋中有4只红球、2只白球、1只黄球,这些球除了颜色以外完全相同,小华认为袋中共有三种不同颜色的球,所以从袋中任意摸出一球,摸到红球、 白球、黄球的可能性一样大,小强认为三种球的数量不同,摸到红球、白球、黄球的可能性肯定也不同,你认为谁说的正确,并说明理由。
分析与解:
注意:此题中摸到各种颜色球的可能性大小只与该球的颜色有关,与该球的大小、形状等其它因素无关。
三、课时
1、能举例说明生活中的不确定事件,并能用“不可能”、“有可能”、“几乎不可能” 等词语描述它们发生的可能性大小。
2、了解事件发生的可能性是有大小的,并初步学会求不确定事件的可能性大小。
3、能养成独立思考的习惯,学会与同伴充分交流的良好学习方式。
四、课外作业
【七年级数学上册教案】相关文章:
数学七年级上册教案04-16
湘教版数学七年级上册教案01-09
[优]数学七年级上册教案06-13
七年级数学上册教案01-11
七年级数学上册教案[精选]06-16
七年级数学上册教案(精选)06-14
七年级上册数学教案01-19
七年级上册数学教学教案06-01
七年级上册数学教案12-16
数学新七年级上册教案模板01-24