现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学的教案

七年级数学的教案

时间:2024-07-17 07:45:35 七年级数学教案 我要投稿

七年级数学的教案

  作为一名教学工作者,可能需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。那要怎么写好教案呢?以下是小编整理的七年级数学的教案,欢迎阅读,希望大家能够喜欢。

七年级数学的教案

七年级数学的教案1

  【知识讲解】

  一、本讲主要学习内容

  1、代数式的意义

  2、列代数式的注意点

  3、代数式值的意义

  其中列代数式是重点,也是难点。

  下面讲述一下这三点知识的主要内容。

  1、代数式的意义

  用基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及表示数的字母连接而成的式子叫代数式。单个的数字或字母也叫代数式。如:5,a,4x,ab,x+2y,,a2等

  2.列代数式的注意点

  ⑴在代数式中出现的乘号“×”,通常写作“·”或者省略不写。如3×a可写作3·a或3a,2×(x+y)可以写作2·(x+y)或2(x+y)。

  ⑵数字与数字相乘时乘号,仍然用“×”,不宜用“·”,更不能省略不写。

  ⑶数字写在字母的前面。

  ⑷在代数式中出现除法运算时,一般按照分数的写法来写,如s÷t写作。

  ⑸代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如应写作。

  (6)两个代数式相乘,应该用分数形式表示。

  3.代数式值的意义

  用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。

  二、典型例题

  例1填空

  ①棱长是acm的正方体的体积是___cm3。

  ②温度由t°c下降2°c后是___°c。

  ③产量由m千克增长10%,就达到___千克。

  ④a和b的'倒数和是___。

  ⑤a和b的和的倒数是___。

  解:①a3②(t-2)③(1+10%)m④⑤

  说明:⑴列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。

  ⑵像a3,(1+10%)m这样的式子后在可直接写单位,像t-2这样的式子,需写单位时,要将整个式子用括号括起来。

  例2、用代数式表示

  ⑴被4整除得m的数

  ⑵被2除商为a余1的数

  ⑶两数的平均数

  ⑷a和b两数的平方差与这两数平方和的商

  ⑸一项工程,甲独做需x天,乙独做需y天完成,甲乙两人合做完成的天数。⑹某人先用v1千米/时速度行完全路程的一半,又用v2千米/时的速度行完另一半,若全路程长为a千米,用代数式表示此人行完全路程的平均速度。

  ⑺个位数字是8,十位数字是b的两位数。

  解:⑴4m⑵2a+1⑶设这两个数分别为a、b、则平均数为。

  ⑷⑸⑹⑺10b+8

  分析说明:

  ⑴数a除以数b,除得的商正好是整数,而没有余数,我们称a能被b整除。

  ⑵能被2整除的数叫偶数,不能被2整除的数叫奇数。两个连续奇数,若较小的是n,则较大的是n+2。

  ⑶对于题⑶中两数没有给出,为说明其一般性。可先设这两个数为a,b;用字母表示数时,在同一个问题中,不同的数要用不同的字母表示。

  ⑷题⑷中的a,b两数的平方是a2-b2,不能颠倒,也不能写成(a-b)2。

  ⑸题⑸中甲乙两人的工作效率分别是和,所以甲乙两人合作完成的时间是即。

  ⑹平均速度=

  所以平均速度为解答本题容易错写成,这主要是概念不清造成的。

  题⑺中主要应清楚自然数的十进制表示方法:n=an×10n+an-1×10n-1+……+a1×10+a0即一个自然数总可以用它各个数位上的数字来表示。

  例3说出下列代数式的意义。

七年级数学的教案2

  ●教学目标

  1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

  2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

  3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

  ●教学重点与难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。

  ●教学准备

  多媒体课件

  ●教学过程

  一、创设问题情境

  1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作-__________,B处记作__________。

  以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

  (用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。

  2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。

  3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?

  小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念-———绝对值。

  二、建立数学模型

  1、绝对值的概念

  (借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

  绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记-5=5;5的绝对值是5,记做5=5。

  注意:①与原点的关系②是个距离的概念

  2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]

  (通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

  三、应用深化知识

  1、例题求解

  例1、求下列各数的绝对值

  -1.6,,0,-10,+10

  2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

  特点:1、一个正数的绝对值是它本身

  2、一个负数的绝对值是它的相反数

  3、零的绝对值是零

  4、互为相反数的两个数的绝对值相等

  3.出示题目

  (1)-3的符号是_______,绝对值是______;

  (2)+3的符号是_______,绝对值是______;

  (3)-6.5的符号是_______,绝对值是______;

  (4)+6.5的符号是_______,绝对值是______;

  学生口答。

  师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的`两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?

  5、练习3:回答下列问题

  ①一个数的绝对值是它本身,这个数是什么数?

  ②一个数的绝对值是它的相反数,这个数是什么数?

  ③一个数的绝对值一定是正数吗?

  ④一个数的绝对值不可能是负数,对吗?

  ⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?

  (由学生口答完成,进一步巩固绝对值的概念)

  6、例2.求绝对值等于4的数

  (让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

  分析:

  ①从数字上分析

  ∵+4=4,-4=4∴绝对值等于4的数是+4和-4画一个数轴(如下图)

  ②从几何意义上分析,画一个数轴(如下图)

  因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

  所以绝对值等于4的数是+4和-4.

  6、练习:做书上12页课内练习1、2两题。

  四、归纳小结

  1、本节课我们学习了什么知识?

  2、你觉得本节课有什么收获?

  3、由学生自行总结在自主探究,合作学习中的体会。

  五、课后作业

  1、让学生去寻找一些生活中只考虑绝对值的实际例子。

  2、课本15页的作业题。

七年级数学的教案3

  7.3.1多边形

  [教学目标]

  1.了解多边形及有关概念,理解正多边形及其有关概念.

  2.区别凸多边形与凹多边形.

  [教学重点、难点]

  1.重点:

  (1)了解多边形及其有关概念,理解正多边形及其有关概念.

  (2)区别凸多边形和凹多边形.

  2.难点:

  多边形定义的准确理解.

  [教学过程]

  一、新课讲授

  投影:图形见课本P84图7.3一l.

  你能从投影里找出几个由一些线段围成的图形吗?

  上面三图中让同学边看、边议.

  在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

  (1)它们在同一平面内.

  (2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的

  这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

  提问:三角形的定义.

  你能仿照三角形的定义给多边形定义吗?

  1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.

  如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

  2.多边形的边、顶点、内角和外角.

  多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.

  3.多边形的对角线

  连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.

  让学生画出五边形的所有对角线.

  4.凸多边形与凹多边形

  看投影:图形见课本P85.7.3—6.

  在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的'同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.

  5.正多边形

  由正方形的特征出发,得出正多边形的概念.

  各个角都相等,各条边都相等的多边形叫做正多边形.

  二、课堂练习

  课本P86练习1.2.

  三、课堂小结

  引导学生总结本节课的相关概念.

  四、课后作业

  课本P90第1题.

  备用题:

  一、判断题.

  1.由四条线段首尾顺次相接组成的图形叫四边形.()

  2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()

  3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()

  4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()

  二、填空题.

  1.连接多边形的线段,叫做多边形的对角线.

  2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.

  3.各个角,各条边的多边形,叫正多边形.

  三、解答题.

  1.画出图(1)中的六边形ABCDEF的所有对角线.

  2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系?

  3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?

  4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?

【七年级数学的教案】相关文章:

七年级下册教案数学教案06-29

数学七年级上册教案04-16

七年级数学教案08-23

七年级数学湘教版教案12-27

七年级数学下册教案01-01

七年级人教版数学教案11-03

七年级数学教学教案01-08

湘教版数学七年级上册教案01-09

七年级数学《数轴》教案03-19