(必备)七年级数学上册教案15篇
作为一名教师,有必要进行细致的教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。我们应该怎么写教案呢?下面是小编为大家整理的七年级数学上册教案,欢迎大家借鉴与参考,希望对大家有所帮助。
七年级数学上册教案1
教学目标
知识与技能:
1.会求代数式的值,会利用代数式求值判断代数式所反应的规律;
2.能利用求代数式的值解决较简单的实际问题;
过程与方法:
3.通过求代数式的值,体会代数式实际上是由计算程序反映的一种数量间的关系;
4.将不同的数代入同一代数式,求出相应的值,能够从所得代数式的值来判断代数式所反映的规律,体会抽象的代数式与实际数量关系之间的关系.
情感态度价值观:
5.通过代数式求值,感受数学中的程序化和抽象性,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感.
教学重点
理解代数式的意义,会求代数式的值
教学难点
利用代数式求值推断代数式所反映的规律
教学方法
引导、探究法,即引导学生发现规律,使其在探究过程中掌握知识
教学准备
多媒体,或投影仪,胶片
课时安排
1课时
教学过程
Ⅰ.巧设情景问题,引入课题
[师]我们在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义.
下面我们来看一组数值转换机:(出示投影片§3.3A),大家想一想,做一做.
下面是一组数值转换机,写出图1的输出结果,找出图2的转换步骤:
[生1]图1的输出结果是:6x-3.
图2的转换步骤:-3、×6.
[师]这位同学书写的跟你们的一样吗?
[生齐声]一样.
[师]很好,同学们写得很正确,这两个数值转换机由于转换的步骤不一样,因此输出的代数式也不一样.
我们已经知道,表示数的字母具有任意性和确定性.当给出代数式时,如:6x-3,字母x可以取任何有理数,当给出未知数的值时,如x=5时,求6x-3的值,这时,x只能是5这个确定的数.
今天我们就来研究第三节:代数式求值.
Ⅱ.讲授新课
当我们把一些数输入“数值转换机”时,通过一个算法,相应得就会得到一些数值.下面大家来做一做,填下表.(出示投影片§3.3B)
输入-2-
00.26
4.5
图1输出
图2输出
(学生计算,使他们认识到代数式求值就是转换过程或是某种计算).
[师]大家在运算时一定要注意:要按转换的步骤进行.填出结果了吗?……来同桌间相互检查.××同学说说你的结果.
[生]
[师]同学们做得都不错,很好,下面,我们来比赛一下,看谁做得又对又快.(出示投影片§3.3C)
议一议:
填写下表,并观察下列两个代数式的值的变化情况:
(1)随着n的值逐渐变大,两个代数式的值如何变化?
(2)估计一下,哪个代数式的值先超过100?
(学生积极发言,大多同学填得对)
[生]
[师]很好,大家计算得又对又快,接下来我们分组讨论:(1)、(2)问题,并总结.
[生]随着n的值逐渐变大,两个代数式的值也逐渐变大.
根据值的变化趋势,我估计:n2的值先超过100.
[师]对,代数式的值是由其所含的字母取值所确定的,并随字母取值的变化而变化,字母取不同的值,代数式的值可能不同,也可能相同.求出代数式的值后,根据值的变化趋势还可以进行预测、推断代数式所反映的规律.
下面我们来做练习,进一步体会本节课的`内容:
Ⅲ.课堂练习
(一)课本P99随堂练习
1.人体血液的质量约占人体体重的6%~7.5%.
(1)如果某人体重是a千克,那么他的血液质量大约在什么范围内?
(2)亮亮的体重是35千克,他的血液质量大约在什么范围内?
(3)估计你自己的血液质量?
答案:(1)6%a千克~7.5%a千克
(2)亮亮的血液质量大约在2.1千克到2.625千克之间
(3)让学生估计计算一下
2.物体自由下落的高度h(米)和下落时间t(秒)的关系,在地球上大约是:
h=4.9t2,在月球上大约是:h=0.8t2.
(1)填写下表
(2)物体在哪儿下落得快?
(3)当h=20米时,比较物体在地球上和月球上自由下落所需的时间.
答案:(1)
(2)地球
(3)通过表格,估计当h=20米时,t(地球)≈2秒,t(月球)≈5秒
(二)试一试
1.当a=-1,-0.5,0,0.5,1,1.5,2时,a2-a是正数还是负数?当|a|>2时,估计a2-a是正数还是负数?
解:本题可列表进行比较.
通过估计得:当|a|>2时,a2-a>0
2.当a=-4,-3,-2,-1,1,2,3,4时,分别求出代数式a2+的值.你发现了什么?
解:
从计算的结果中发现:当a取互为相反数的值时,a2+的值相等;当|a|>1时,a的绝对值变大,a2+的值也变大.
Ⅳ.课时小结
通过本节课的学习,我们会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值,一般也不同,所以在求代数式的值时,要注意解题步骤:(1)代入.
(2)计算.
Ⅴ.课后作业
(一)看课本P98;P99的读一读.
(二)课本习题3.31、2、3、4.
(三)(1)预习内容:P102~103
(2)预习提纲
1.项的系数和项的概念.
2.进一步理解字母表示数的意义.
Ⅵ.活动与探究
1.下面是两个数值转换机,请你输入五组数据,比较两个输出的结果,发现了什么?
根据上题的启示,你能设计出两个数值转换机来验证:a2-2ab+b2=(a-b)2吗?
过程:让学生根据题意,求代数式的值.然后讨论、总结,最后根据总结的规律与等式a2-2ab+b2=(a-b)2进行比较,设计两个数值转换机.
结果:通过输入数值,进行计算,发现了两个输出的结果相等,即:
a2+b2+2ab=(a+b)2
根据上题的启示,设计出如下的两个数值转换机,使得:a2-2ab+b2=(a-b)2.
2.已知=7,求的值.
过程:让学生审清题,不要盲目计算.从题中知:与正好是互为倒数,整体代入,问题可轻松解决.
结果:因为=7,所以:=.
所以:原式=2×7-×=13.
板书设计
§3.3代数式求值
一、“数值转换机”求值三、课堂练习
二、议一议
四、课时小结
规律五、课后作业
七年级数学上册教案2
教学目标和要求:
1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念.
2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.
3.初步体会类比和逆向思维的数学思想.
教学重点和难点:
重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念.
难点:多项式的次数.
教学过程:
一、复习引入:
观察以上所得出的四个代数式与上节课所学单项式有何区别.
(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力.通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充.)
二、讲授新课:
1.多项式:
由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constantterm).例如,多项式3x2?2x+5有三项,它们是3x2,-2x,5.其中5是常数项.
一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2?2x+5是一个二次三项式.
注意:
(1)多项式的次数不是所有项的次数之和;
(2)多项式的每一项都包括它前面的符号.
(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想.)
2.例题:
例1:判断:
①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;
②多项式3n4-2n2+1的次数为4,常数项为1.
(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中.另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数.)
例2:指出下列多项式的'项和次数:
(1)3x-1+3x2;(2)4x3+2x-2y2.
解:(1)三项,二次;(2)三项,三次.
例3:指出下列多项式是几次几项式.
(1)x3-x+1;(2)x3-2x2y2+3y2.
解:(1)三次三项式;(2)四次三次式.
例4:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件.
解:该多项式中的项次数分别为n、1和常数,又多项式为三次,即n=3;而该多项式至少有两项3xn和1,当m?1≠0时,该多项式即为三项式,与已知不符,所以m=1.
(让学生口答例2、例3,老师在黑板上规范书写格式.讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式(integralexpression).例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.)
三、课堂小结:
①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.
②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统.(让学生小结,师生进行补充.)
教学后记:
从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点.掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性.最后列举几个例子,与学生一起完成.教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成.要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识.
七年级数学上册教案3
一、教材分析
(一)教材的地位和作用
本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.
(二)教材的重难点
本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.
二、教学目标分析
(一)知识技能目标
1.目标内容
(1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.
(2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.
2.目标分析
(1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.
(2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.
(二)过程目标
1.目标内容
在活动中感受方程思想在数学中的作用,进一步增强应用意识.
2.目标分析
利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.
(三)情感目标
1.目标内容
(1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.
(2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.
2.目标分析
七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.
三、教材处理与教法分析
本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.
四、教学过程分析
(一)教学过程流程图
探究Ⅰ
(二)教学过程Ⅰ
(以探究为主线、形式多样化)
1.问题情境
(1) 多媒体展示有关盈亏的新闻报道,感受生活实际.
(2) 据此生活实例,展示探究Ⅰ,引入新课.
考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.
2.讨论交流
(1) 学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.
(2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)
(3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.
(4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.
让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.
3.建立模型
(1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.
(2) 学生分组,根据找出的`相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价.
(3) 师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况.
(教师及时给出完整的解答过程)
学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.
4.小结
一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.
培养学生科学的学习态度与严谨的学习作风.
探究Ⅱ
(三)教学过程Ⅱ
1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.
恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性.
启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:
2.列代数式
费用=灯的售价+电费
电费=0.5×灯的功率(千瓦)×照明时间(时)
在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.
节能灯的费用(元):60+0.5×0.011t.
白炽灯的费用(元):3+0.5×0.06t.
分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.
3.特值试探
具体感知
学生分组计算:
t=1000、20xx、2500、3000时,这两种灯具的使用费用,填入下表:
时间(小时)
1000
20xx
2500
3000
节能灯的费用(元)
白炽灯的费用(元)
七年级数学上册教案4
教学目标
1.进一步掌握有理数的运算法则和运算律;
2.使学生能够熟练地按有理数运算顺序进行混合运算;
3.注意培养学生的运算能力.
教学重点和难点
重点:有理数的混合运算.
难点:准确地掌握有理数的运算顺序和运算中的符号问题.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.计算(五分钟练习):
(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;
(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;
(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;
(24)3.4×104÷(-5).
2.说一说我们学过的有理数的运算律:
加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、讲授新课
前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?
1.在只有加减或只有乘除的同一级运算中,按照式子的'顺序从左向右依次进行.
审题:(1)运算顺序如何?
(2)符号如何?
说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.
七年级数学上册教案5
教学目标:
知识与技能:
通过探索七巧板的制作方法及几何图形间的相关联系,掌握基本的识图、作图技能。
通过七巧板的制作、拼摆等活动,丰富对平行、垂直及角等有关内容的认识并熟悉其几何语言的表述。
过程与方法:
在七巧板的制作及图形的性质、变换活动中积累数学活动经验。
在七巧板拼图活动中,对所作图形做出合理的推断或猜测,培养学生的想象能力和创新能力。
能结合自己的图形发现其中的平行线、垂线、直角、锐角、钝角,培养学生的观察、分析、概括的能力。
情感与态度:
认识七巧板是我国人民发明的世界优秀文化,是我国人民对数学发展的重大贡献
在用七巧板拼图的过程中获得成功的体验。
能在自己独立思考的基础上,积极参与小组的讨论,敢于发表自己的观点,并能尊重与理解他人。在交流合作的过程中,培养团队精神和创新精神。
教材分析:
学生生活的空间中存在着丰富的图形,图形的直观性是学生认识和理解自然界及社会的绝妙工具。在这种真切的感知下,经历探究七巧板的制作过程从而体会几何图形间的相互联系,进而在七巧板的制作和拼图活动中,培养学生的实践能力和创新精神,在小组的`合作交流与相互评价中,体会不同图形的奇幻,以及其中所蕴藏的数学知识,丰富和发展学生的数学活动经历和体验。
教学重点:探究七巧板的制作方法并制作一副七巧板。
教学难点:通过拼图时所表现的几何图形,把握已经学过的平行、垂直及角度等有关内容的有机联系和几何语言的表达。
学生状况分析:
我所教的两个班是微机班,从进校摸底考试来看,学生普遍基础较差,有些甚至就是小学二、三年级的水平。五班整体水平好于六班,六班两极分化严重。在与学生接触后,逐渐了解到大多数孩子成长在不完整的家庭中,家长素质又普遍较差,孩子承受了很多家庭带给他们的压力。面对这样的学生,在教学中,更多的是以提高在数学方面的兴趣,调动他们主观的学习积极性,进而让他们感受到学习的乐趣,找回那份自信心,从而愉快的体验生活中的数学模型,用正确的方法指导学习。
教学过程:
(1)课题引入:
活动说明:唤起学生对七巧板的记忆,激起学生的学习兴趣。
(2)七巧板的起源:
活动说明:让学生在丰富的史料中感受七巧板是我国古代智慧的结晶。
(3)七巧板的制作:
活动说明:通过七巧板中所蕴藏的数学知识,加深学生对线段、点、平行线、垂线、锐角、直角、钝角等有关几何概念的认识,强化几何语言的正确表达,丰富学生的数学意识。
(4)七巧板的拼图:
活动说明:培养学生的想象能力及团队合作精神,符合探究性学习和合作学习的要求,同时让学生明白数学知识无处不在。
(5)课后思考
活动说明:引导学生进一步思考组成七巧板的各个几何图形间的相互联系。
(6)课后探索
活动说明:给学生一个表现自己想象力和创造力的空间和时间,使学生各自的个性得到充分的体现。实现人人学有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同的发展的目标。
七年级数学上册教案6
教学目标:
1、认知目标:通过用一个平面去截一个正方体的切截活动过程,掌握空间图形与截面的关系,发展学生的空间观念,发展几何直觉。
2、能力目标:通过学生参与对实物有限次的切截活动和用操作探索型进行的无限次的切截活动的过程,使学生经历观察、猜想、实际操作验证、推理等数学活动过程 ,发展学生的动手操作、自主探究、合作交流和分析归纳能力。
3、情感目标:通过以教师为主导,引导学生观察发现、大胆猜想、动手操作、自主探究、合作交流,使学生获 得成功的体验,增强学习数学的兴趣。
教学重点:
引导学生用一个平面去截一个正方体的切截活动,体会截面和几 何体的关系 ,充分让学生动手操作、自主探索、合作交流。
教学难点:
从切截活动中发现规律,能应用规律来解决问题。
教学过程:
教学过程设计思路
一、情境导入[演示] 演示现实生活中物体的截面图。
[教师活动]:引导学生观察,让学生充分想象并回答是何种物体的截面,并请学生进行实际操作,让全体学生体会截出的面(截面)的含义。
[学生活动]: 学生动手操作,体会截面的含义。
二、活动操作:用一个平面去截一个正方体的切截活动
[教师活动]:提出问题:用一个平面去截一个正方体,所得到的截面可能是什么形状?
引导学生大胆猜想,让他们想象所得的截面可能的形状。让学生采取分组讨论、合作交流的形式。鼓励学生积极发言,回答问题。
[学生活动]:学生大胆猜想、积极在小组内讨论、积极回答问题,得出用一个平面去截一个正方体所得截面有可能的形状:三角形、正方形、长方形……
[教师活动]:教师引导学生 进行实际操作,分小组切截正方体的萝卜,鼓励学生从切截活动中去验证自己的猜想。
[学生活动]:学生分小组操作,在操作中去验证自己的猜想,并通过小组讨论,合作 交流积极发现在猜想中没想到的截面图形。
[教师活动]:教师在学生操作活动中巡视学生,参与学生的讨论与交流,鼓励学生在小组活动中大胆发表自己的见解。
[教师活动]:全班实物切截活动结束,教师鼓励切截活动的各个小组请代表发言,积极鼓励他们说出能截到多少个不同的截面,选取一些小组让他们进行演示说明。并积极肯定他们的做法。
[学生活动]:学生活动小组代表大胆发言,并进行一定的演示说明。
[教师活动]:提出,刚才的实物操作中没能找出所有不同的截面形状,还可以通过计算机辅助教学的操作,对一个正方体进行无限次的切截活动。鼓励学生利用“几何画板”制作的实验操作型对一个正方体进行动态的 切截活动,鼓励他们在操作中积极观察截面的产生和变化的过程,并从中去发现一定的规律。
[学生活动]:学生利用对正方体进行无限次的动态的切截,并从中去观察截面产生和变化的过程,学生利用中的动画功能,身临其境的体会截面产生和变化的过程,通过自主操作、小组讨论、合作交流发现截面的各种形状,得出截面产生的规律。(一个平面去截一个正方 体,所得截面是由于这个平面与正方体的若干个平面相交的结果。若与三个面相交得三条边,则截面是三角形,若与四个面相交,则截面是四边形……依此类推。)
分别拖动A、B、C点可移动平面,双击动画按扭可使图形旋转,单击鼠标左键停止旋转。拖动点P可使图形旋转。
[教师活动]:教师积极鼓励各小组请代表发言,说出他们利用实验操作型所观察到的截面的各种形状产生、变化的过程,用自己的语言说明为什么会产生不同的截面的原因。积极肯定同学们的正确推理。
[学生活动]:学生积极思考发言,大胆提出自己的观点,说出他们得到的不同的截面形状,特别是找出五边形、六边形等等。以及为什么产生不同截面的原因。
[教师活动]:小结同学们的发言。肯定学生的正确说法
三、知识应用
[教师活动] [演示]:鼓励学生完成所给出的其他立体图形的截面问题(能说出截面是什么形状)
[教师活动]:教师提出截一个几何体的知识在实际生活当中作用很大。
[演示]播放医学上发明CT的'视频文件,让学生体会数学知识在现实生活当中的应用。
[教师活动]:提问学生,谈观看录像的体会,谈数学知识和现实生活的联系,让学生畅所欲言,激发学生学习数学的热情。
四、知识延伸
[教师活动]:提出让学生课后试一试,用一个平面截一个正方体能不能得到一个七边形。(这个问题通过学生对截面的产生规律的认识来解)从生活中物体的截面图出发,体现数学知识于生活。
利用电脑演示色彩丰富的图片,激发学生的求知欲。
引导学生大胆猜想,使学生体会探索数学问题是从猜想开始的。
培养学生体会“想—做——想”的数学活动过程,
让学生动手操作、自主探索、合作交流。发展学生的动手操作、自主探究、合作交流和推理能力,提高学生分析问题和解决问题的能力。
从活动中去体会空间几何体与截面的关系。
利用实物来进行切截活动,学生会在有限次的切截中得到一定的截面图形, 但无法体会截面的产生和变化的整个过程,很难从实物切截活动中寻找出规律。
因此有针对性地设计了网络环境下的切截活动,在网络中让学生利用教师 制作的实验操作型对正方体进行无限次的切截,让学生在无限次切截的过程中体会截面产生和变化的整个过程,发现截面产生和变化的规律。学生通过计算机自主操作、合作交流,更诱发学生的探求欲。在设计中利用空间图形的动画,方便学生从各个角度观察切截结果,这样能更好地引导学生积极地展开思维,自我挖掘各图形间的内在联系。这是 一个实验操作型的,通过人机互动,使不同的学生在各自的操作中都有不同的发现,更适应不同层次的学生的发展。
让学生自己发现截面产生的规律,为学生继续探讨能否截出七边形作铺垫。
利用演示,更生动地介绍了医学中CT的产生过程, 更生动地说明了数学知识在实际生活当中的广泛应用。
给学生留下广阔的思维空间,不断激发学生的探索精神。
学生通过操作,完成所给的练习(说出截面是什么形状),并积极发言,全班交流。
学生观看视频文件,体会本节课的知识在现实生活当中的作用。
七年级数学上册教案7
一、教学目标
1.使学生认识平行线的特征,能灵活地利用平行线的三个特征解决问题.
2.继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述平行线的特征,并能用初步的数学语言进行简单的逻辑推理.
3.使学生理解平移的思想,知道图形经过平移以后的位置,并能画出平移后的图形.
4.通过利用“几何画板”所做的数学实验的演示等,培养学生的观察能力,即在图形的运动变化中抓住图形的本质特征,发展学生逻辑思维能力,通过实际问题的解决培养学生分析问题和解决问题的`能力.
5.通过课堂设疑,培养学生勇于发现、探索新知识的精神.
6.通过创设问题情境,让学生亲身体验、直观感知并操作确认,激发学生自主学习的欲望,使之爱学、会学、学会、会用.
二、教学重点
平行线的三个特征.
三、教学难点
灵活地利用平行线的三个特征解决问题.
四、教学过程
老师:同学们,如图所示,是我们大连的马栏河,河上有两座桥:新华桥和光明桥.河的两岸是两条平行的公路:黄河路与高尔基路,某测量员在A点测得.如果你不通过测量,能否猜出的度数是多少?
王亮:.
老师:他到底猜得对不对呢?下面我们要先做一个实验,拿出尺子,画两条平行的直线a、b,第三条直线l和这两条直线相交,标出所得到的角,用量角器量出各个角的度数,观察当两直线平行时,各种角有什么关系.
学生动手按要求做实验.
老师:将你发现的规律与组内同学进行交流.
学生以小组为单位进行交流与研究.
老师:请每组派一名代表将你们得到的规律写到黑板上,并结合你画的图讲解你们组的结论.
第1组学生代表:如果两直线平行,同位角就相等。
七年级数学上册教案8
教学内容:
人教版小学数学教材六年级下册第107~108页例2及相关练习。
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1.教师:你知道等于多少吗?(学生:)
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示“1”,先取它的'一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。
想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。
(2)继续演示,谁知道除了通分,还可以怎么算?
根据学生回答,板书。
(3)演示:那么计算就可以得到?()。
3.看到这儿,你发现什么规律了吗?
4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?
6.尝试练习
【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现
1.感受极限。
(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?
(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)
(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?
(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)
2.利用线段图直观感受相加之和等于“1”。
(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。
【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。
3.课堂小结。
对于这种借用图形来帮助我们解决问题的方法,你有什么感受?
教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。
4.举一反三。
其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)
【设计意图】让学生体会“数形结合”是数学学习中常用的方法。
三、练习巩固
1.基础练习。
(1)学生独立计算。
(2)全班交流反馈。
【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。
2.小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?
解决问题
(1)全班读题,学生独立思考。
(2)指名回答。
(3)根据学生回答情况,连线(课件演示)。
(4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。
【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。
四、课堂总结
快下课了,请你来说说这节课有什么收获?
课后反思:
图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近 1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。
七年级数学上册教案9
教学目标
1.知识与技能
会利用绝对值比较两个负数的大小.
2.过程与方法
利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.
3.情感、态度与价值观
敢于面对数学活动中的困难,有学好数学的`自信心.
教学重点难点
重点:利用绝对值比较两个负数的大小.
难点:利用绝对值比较两个异分母负分数的大小.
教与学互动设计
(一)创设情境,导入新课
投影 你能比较下列各组数的大小吗?
(1)│-3│与│-8│ (2)4与-5 (3)0与3
(4)-7和0 (5)0.9和1.2
(二)合作交流,解读探究
讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.
思考 若任取两个负数,该如何比较它的大小呢?
点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?
【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大.
注意 ①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.
②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值.
③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.
七年级数学上册教案10
垂线
[教学目标]
1。理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2。掌握点到直线的距离的概念,并会度量点到直线的距离。
3。掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]
1。教学重点:垂线的定义及性质。
2。教学难点:垂线的画法。
[教学过程设计]
一。复习提问:
1、叙述邻补角及对顶角的定义。
2、对顶角有怎样的性质。
二。新课:
引言:
前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
(一)垂线的定义
当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线AB、CD互相垂直,记作,垂足为O。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:
1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图)
反之,
(二)垂线的画法
探究:
1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?
2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?
3、经过直线l外一点B画l的.垂线,这样的垂线能画出几条?
画法:
让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
性质1过一点有且只有一条直线与已知直线垂直。
练习:教材第7页
探究:
如图,连接直线l外一点P与直线l上各点O,
A,B,C,……,其中(我们称PO为点P到直线
l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?
性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(四)点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
如上图,PO的长度叫做点P到直线l的距离。
例1
(1)AB与AC互相垂直;
(2)AD与AC互相垂直;
(3)点C到AB的垂线段是线段AB;
(4)点A到BC的距离是线段AD;
(5)线段AB的长度是点B到AC的距离;
(6)线段AB是点B到AC的距离。
其中正确的有()
A。 1个B。 2个
C。 3个D。 4个
解:A
例2如图,直线AB,CD相交于点O,
解:略
例3如图,一辆汽车在直线形公路AB上由A
向B行驶,M,N分别是位于公路两侧的村庄,
设汽车行驶到点P位置时,距离村庄M最近,
行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。
练习:
1。
2。教材第9页3、4
教材第10页9、10、11、12
小结:
1。要掌握好垂线、垂线段、点到直线的距离这几个概念;
2。要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;
3。垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。
七年级数学上册教案11
知识目标
使学会解比例的方法,进一步理解和掌握比例的基本性质。
能力目标
联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。
情感目标
利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。
重点
使学会解比例的方法,进一步理解和掌握比例的基本性质。
难点
体现解比例在生产生活中的广泛应用。
教学过程
教学预设个性修改
目标导学,复习激趣,自主合作,汇报交流,变式训练
创境激疑一、旧知铺垫
1、什么叫做比例?
2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?
3、比例有几种表示形式?
合作探究二、探索新知
1、出示埃菲尔铁挂图
2、出示例题
(1)、读题。
(2)、从这道题里,你们获得了哪些信息?
(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的'高度比是1:10)
(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)
(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)
(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)
(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。
(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)
(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?
(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)
(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做? (指名板演)
(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)
(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)
(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。
(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验? (把结果代入题目中看看对应的比的比值是不是能成比例.)
(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。
2、教学例3
过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?
(1)、出示例3,问:这题与刚刚那个比例有哪些不同?
(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)
(3)、在这个比例里,哪些是外项?哪些是内项?
(4)、解答(提问:你们是怎么解答的?)、检验。
(5)、 =
拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?
总结这节课主要学习了什么内容?
作业布置教材43页5题
板书设计解比例
例3、解比例=
解:2.4 =1.5×6
=( )×( )
( )
教学札记
七年级数学上册教案12
一:说教材:
1教材的地位和作用
本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的`应用。
3教育目标
(1)、知识与能力
①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。
②培养学生的观察能力、分析能力和运算能力。
(2)、过程与方法
培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。
(3)、情感态度价值观
通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。
4教学重点和难点
重点和难点是如何利用有理数列式解决实际问题及正确而
合理地进行计算。
二:说教法
鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。
三:说学法指导
本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。
四:师生互动活动设计
教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。
五:说教学程序
(课本36页)例9:某公司去年1~3月份平均每月亏损1。5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1。7万元,11~12月份平均每月亏损2。3万元,这个公司去年盈亏情况如何?
师生共析:认真审题,观察、分析本题的问题共同回答以下问题:
1全年哪几个月是亏损的?哪几个月是的盈利的?
2各月亏损与盈利情况又如何?
3如果盈利记为“ ”,亏损记为“—”,那么全年亏损多少?
盈利多少?
6你能将亏损情况与盈利情况用算式列出来吗?
(5)通过算式你能说出这个公司去年盈亏情况如何吗?
【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行。)再由学生自主完成运算。
【教法说明】:此题一方面可以复习加法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。
(三):归纳小结
今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。
六:说板书设计
板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。
七年级数学上册教案13
教学目标:
1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形
2、在操作活动中认识棱柱的某些特性;
3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;
教学重点:
通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法
教学难点:
根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。
教学过程:
一、导入情境
让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。
二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做
活动一:
1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的.形式动手做做看。
2、操作完后,请学生展示他们制作的模型。
3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。
4、教师介绍棱柱的各部分名称。
七年级数学上册教案14
教学目标
1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点
两个负数大小的比较
知识重点
绝对值的概念
教学过程(师生活动)
设计理念
设置情境
引入课题
星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升。
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20|-10|=10显然|0|=0
这个例子中,第一问是相反意义的量,用正负
数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体
验数学知识与生活实际的联系.
因为绝对值概念的几何意义是数形转化的典型
模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.
合作交流
探究规律
例1求下列各数的绝对值,并归纳求有理数a的绝对
有什么规律。、
-3,5,0,+58,0.6
要求小组讨论,合作学习.
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).
巩固练习:教科书第15页练习.
其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的.区别.
求一个数的绝时值的法则,可看做是绝对值概
念的一个应用,所以安排此例.
学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.
结合实际发现新知
引导学生看教科书第16页的图,并回答相关问题:
把14个气温从低到高排列;
把这14个数用数轴上的点表示出来;
应怎样比较两个数的大小呢。
学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:
在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.
在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则
想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.
要求学生在头脑中有清晰的图形.
让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。
课堂练习
例2,比较下列各数的大小(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式
练习:第18页练习
小结与作业
课堂小结
怎样求一个数的绝对值,怎样比较有理数的大小。
本课作业
1,必做题:教产书第19页习题1,2,第4,5,6,10
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在
这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学
习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意
义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理
数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.
2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3,有理数大小的比较法则是大小规定的直接归纳,其中第
(2)条学生较难理解,教学
中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到
大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.
4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教
学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
七年级数学上册教案15
一、教学目标:
通过观察生活中的大量物体,认识基本的几何体,数学教案-北师大版数学(七年级上)新教材教案 生活中的图形(一)。
经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。
二、教学过程:
1、引入:
(1)幻灯投影P2的彩图,利用现实生活的背景让学生说出熟悉的几何体(如球体、长方体、正方体等)
(2)展出圆柱、圆锥、正方体、棱柱、球的模型,让学生分别说出这几种几何体的名称。
2、过程:
(1)组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。
(2)组织学生分组讨论棱柱、圆锥的共同点与异同点,老师巡场指导。
(3)学生回答问题。老师鼓励学生大胆说出自己的答案,并对每一种答案再交由学生共同讨论它的正确性。
(4)幻灯演示,棱柱的两种类型:直棱柱与斜棱柱,一般棱柱仅指直棱柱。
(5)组织学生讨论
如何对以上几何体进行分类:
1)按底面
2)按侧面
学生上台动手将这几种几何体进行分类,老师让学生试着说明归类的理由是什么?无论学生说什么老师都应用鼓励的目光让学生说出自己的答案。
3、议一议:
投影P3的图片让学生感知这是现实生活中的一角,可能是书房的一角可能是教室的一角,让学生分组讨论:
(1)、上图中哪些物体的形状与长方体、正方体类似?
(学生在回答桌面时老师应指出桌面是指整个层面)
(2)上图中哪些物体的形状与圆柱、圆锥类似?挂篮球的.网袋是否类似于圆锥?为什么?
(3)请找出上图中与笔筒形状类似的物体?
(4)请找出上图中与地球形状类似的物体?
4、想一想:
生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。
5、小结:
与学生总结本节课所学的内容,通过感知不同的物体体验现实生活中原来有如此多的几何体,几何体在我们的生活中无处不在。我们也学会简单地区别不同的物体。
6、作业:
P4习题
【七年级数学上册教案】相关文章:
数学七年级上册教案04-16
湘教版数学七年级上册教案01-09
[优]数学七年级上册教案06-13
七年级数学上册教案01-11
七年级数学上册教案[精选]06-16
七年级数学上册教案(精选)06-14
七年级上册数学教案01-19
七年级上册数学教学教案06-01
七年级上册数学教案12-16
数学新七年级上册教案模板01-24