现在位置:范文先生网>教案大全>数学教案>《反比例》数学教案

《反比例》数学教案

时间:2024-07-20 16:53:43 数学教案 我要投稿

《反比例》数学教案(热)

  作为一名教职工,总归要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。我们该怎么去写教案呢?以下是小编为大家整理的《反比例》数学教案,希望能够帮助到大家。

《反比例》数学教案(热)

《反比例》数学教案1

  1、成正比例的量

  教学内容:成正比例的量

  教学目标:

  1.使学生理解正比例的意义,会正确判断成正比例的量。

  2.使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

  教学重点:正比例的意义。

  教学难点:正确判断两个量是否成正比例的关系。

  教学过程:

  一揭示课题

  1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

  在教师的此导下,学生会举出一些简单的例子,如:

  (1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

  (2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

  (3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

  (4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

  2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的.量

  二探索新知

  1.教学例1

  (1)出示例题情境图。

  问:你看到了什么?

  生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

  (2)出示表格。

  高度/㎝24681012

  体积/㎝350100150200250300

  底面积/㎝2

  问:你有什么发现?

  学生不难发现:杯子的底面积不变,是25㎝2。

  板书:

  教师:体积与高度的比值一定。

  (2)说明正比例的意义。

  ①在这一基础上,教师明确说明正比例的意义。

  因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

  板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

  ②学生读一读,说一说你是怎么理解正比例关系的。

  要求学生把握三个要素:

  第一,两种相关联的量;

  第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

  第三,两个量的比值一定。

  (3)用字母表示。

  如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

  (4)想一想:

  师:生活中还有哪些成正比例的量?

  学生举例说明。如:

  长方形的宽一定,面积和长成正比例。

  每袋牛奶质量一定,牛奶袋数和总质量成正比例。

  衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

  地砖的面积一定,教室地板面积和地砖块数成正比例。

  2.教学例2。

  (1)出示表格(见书)

  (2)依据下表中的数据描点。(见书)

  (3)从图中你发现了什么?

  这些点都在同一条直线上。

  (4)看图回答问题。

  ①如果杯中水的高度是7㎝,那么水的体积是多少?

  生:175㎝3。

  ②体积是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

  ③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

  生:水的体积是350㎝3,相对应的点一定在这条直线上。

  (5)你还能提出什么问题?有什么体会?

  通过交流使学生了解成正比例量的图像特往。

  3.做一做。

  过程要求:

  (1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

  比值表示每小时行驶多少千米。

  (2)表中的路程和时间成正比例吗?为什么?

  成正比例。理由:

  ①路程随着时间的变化而变化;

  ②时间增加,路程也增加,时间减少,路程也随着减少;

  ③种程和时间的比值(速度)一定。

  (3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

  (4)行驶120KM大约要用多少时间?

  (5)你还能提出什么问题?

  4.课堂小结

  说一说成正比例关系的量的变化特征。

  三巩固练习

  完成课文练习七第1~5题。

  2、成反比例的量

  教学内容:成反比例的量

  教学目标:

  1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。

  2.根据反比例的意义,正确判断两种量是否成反比例。

  教学重点:反比例的意义。

  教学难点:正确判断两种量是否成反比例。

  教学过程:

  一导入新课

  1.让学生说一说成正比例的两种量的变化规律。

  回答要点:

  (1)两种相关联的量;

  (2)一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;

  (3)两个量的比值一定。

  2.举例说明。

  如:每袋大米质量相同,大米的袋数与总质量成正比例。

  理由:

  (1)每袋大米质量一定,大米的总质量随着袋数的变化而变化;

  (2)大米的袋数增加,大米的总质量也相应增加,大米的袋数

  减少,大米的总质量也相应减少;

  (3)总质量与袋数的比值一定。

  所以,大米的袋数与总质量成正比例。

  板书:

  3.揭示课题。

  今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?

  板书课题:成反比例的量[ 内 容 结 束 ]

《反比例》数学教案2

  教学目标:

  1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;

  2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;

  3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

  4、体会数学从实践中来又到实际中去的研究、应用过程;

  5、培养学生的观察能力,及数学地发现问题,解决问题的能力.

  教学重点:

  结合图象分析总结出反比例函数的性质;

  教学难点:描点画出反比例函数的图象

  教学用具:直尺

  教学方法:小组合作、探究式

  教学过程:

  1、从实际引出反比例函数的概念

  我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例

  即vt=S(S是常数);

  当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)

  从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

  (S是常数)

  (S是常数)

  一般地,函数 (k是常数, )叫做反比例函数.

  如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.

  在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供

  2、列表、描点画出反比例函数的图象

  例1、画出反比例函数 与 的图象

  解:列表

  说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图

  一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.

  3、观察图象,归纳、总结出反比例函数的性质

  前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.

  显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)

  (1) 的图象在第一、三象限.可以扩展到k 0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.

  的讨论与此类似.

  抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.

  (2)函数 的图象,在每一个象限内,y随x的增大而减小;

  从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数 的图象,在每一个象限内,y随x的增大而减小.

  同样可以推出 的图象的性质.

  (3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的.性质.

  函数 的图象性质的讨论与次类似.

  4、小结:

  本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.

  5、布置作业 习题13.8 1-4

《反比例》数学教案3

  教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

  教学目的:

  1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

  2.使学生进一步认识事物之间的相互联系和发展变化规律。

  3.初步渗透函数思想。

  教具准备:投影仪、投影片、小黑板。

  教学过程():

  一、复习

  1.让学生说说什么是成正比例的量:

  2.用投影片出示下面的题:

  (1)下面各题中哪两种量成正比例?为什么?

  ①笔记本单价一定,数量和总价:

  ⑨汽车行驶速度一定.行驶的路程和时间。

  ②工作效率一定.’工作时间和工作总量。

  ①一袋大米的重量一定.吃了的和剩下的。

  (2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

  二、导入新课

  教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

  三、新课

  1.教学例4。

  出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。

  让学生观察这个表,然后每四人一组讨论下面的问题:

  (1)表中有哪两种量?

  (2)所需的加工时间怎样随着每小时加工的个数变化?

  (3)每两个相对应的数的乘积各是多少?

  学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间

  10 × 60 =600。

  30 × 20 =600。

  40 × 15 =600,

  “这个积600。实际上是什么?”在“加工时间”后面板书:零件总数

  “积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)

  “每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

  学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的.加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。

  2.教学例5。

  用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。

  (1)理解题意,填写装订本数。

  “谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)

  “这40本是怎么计算出来的?”(用600÷15)

  “如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

  (2)观察分析表中两种量的变化规律。

  让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)

  “装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的页数 装订的本数

  15 40

  20 30

  25 24

  一’然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。

  1,单价一定.数量和总价。

  2,路程一定,速度和时间。。

  3,正方形的边长和它的面积。

  1.时间一定,工效和工作总量。

  二、导入新课

  教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断

  两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我

  们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。

  板书课题:正比例和反比例的比较

  三、新课

  1.教学例7。

  出示例7的两个表:

  表1 表2

  让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:

  在表l中: 在表2中:

  相关联的量是路程和时间. 路程随着相关联的量是速度 路程随 时间变化,速度是 和时间,速度随着时间变化

  一定。因此,路程和时间 ,路程是一定的。因此,速

  成正比例关系。 度和时间成反比例关系

  然后提问:

  (1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/

  (2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?

  教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?

  板书:速度×时间=路程

  =速度 =速度

  教师:当速度一·定时,路程和时间成什么比例关系?

  教师:当路程一定时,速度和时间成什么比例关系?

  教师:当时间一定时。路程和速度成什么比例关系?

  2.比较正比例和反比例关系。

  教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:

  四、巩固练习

  1.做教科书第28页“做一做”中的题目。

  让学生自己填,并说一说为什么。

  2.做练习七的第1—2题。

  教师巡视,个别辅导,最后订正。

  五、小结

  教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

《反比例》数学教案4

  教学内容:P56第4—10,复习正、反比例

  教学目的:加深认识正比例关系和反比例关系的意义,进一步掌握判断两种相关联的`量是否成正比例或反比例的方法,进一步掌握正、反比例应用题的解题思路和解题方法,提高解题能力。

  教学过程:

  一、揭示课题。

  二、复习正、反比例的意义。

  1、做复习第4题

  思考:各成什么比例,并说明理由

  2、整理正、反比例的意义。

  说说:正反比例的意义各是什么?它们有什么异同?

  判断:正、反比例的关键是什么?

  3、做复习第5题

  三、复习正、反比例应用题

  1、整理解题思路

  (1)做复习第6题

  说说:各成什么比例的应用题,为什么?

  (2)小结:解答正反比例应用题应怎样想?

  (判断正、反比例=找出对应数值=列出等式解答)

  在解题看法上有什么不同的地方?

  2、综合练习

  (1)做复习第8题

  提问:“药粉和水的比是1:500”你是怎样想的?这两道题成什么比例,为什么?

  这道题还可以怎样做?

  (2)做复习第10题

  要求列出不同解法的式子。

  评讲:说说各是怎样想的。

  四、课堂小结:

  这节课复习了哪些内容:谁来说一说这节课你掌握了哪些知识或方法?

  五、课堂作业

《反比例》数学教案5

  教学目标

  1.使学生理解,能够初步判断两种相关联的量是否成比例,成什么比例.

  2.通过观察、比较、归纳,提高学生综合概括推理的能力.

  3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.

  教学重点

  理解正反比例的意义,掌握正反比例的变化的规律.

  教学难点

  理解正反比例的意义,掌握正反比例的变化的规律.

  教学过程

  一、导入新课

  (一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

  (二)教师提问

  1.你为什么马上能想到还剩多少呢?

  2.是不是因为吃了的和剩下的是两种相关联的量?

  教师板书:两种相关联的量

  (三)教师谈话

  在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

  数量也是两种相关联的量.你还能举出一些例子吗?

  二、新授教学

  (一)成正比例的量

  例1.一列火车行驶的时间和所行的路程如下表:

时间(时)




1




2




3




4




5




6




7




8




……




路程(千米)




90




180




270




360




450




540




630




720




……




  1.写出路程和时间的比并计算比值.

  (1)

  (2) 2表示什么?180呢?比值呢?

  (3) 这个比值表示什么意义?

  (4) 360比5可以吗?为什么?

  2.思考

  (1)180千米对应的时间是多少?4小时对应的路程又是多少?

  (2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

  教师板书:时间、路程、速度

  (3)速度是怎样得到的?

  教师板书:

  (4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

  (5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

  3.小结:有什么规律?

  教师板书:商不变

  (二)成反比例的量

  1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.

工效(个)




10




20




30




40




50




60




……
时间(时)

60




30




20




15




12




10




……




  2.教师提问

  (1)计算工效和时间的乘积.

  (2)这一组题中涉及了几种量?谁与谁是相关联的量?

  (3)请你举例说明谁与谁是相对应的两个数?

  (4)在这一组题中两种相关联的量是如何变化的?(举例说明)

  3.小结:有什么规律?(板书:积不变)

  (三)不成比例的量

  1.出示表格

运走的吨数




10




20




30




40




剩下的吨数




90




80




70




60




总吨数(和不变)




100




100




100




100




  2.教师提问

  (1)总吨数是怎样得到的?

  (2)谁与谁是两种相关联的量?

  (3)它们又是怎样变化的?变化的规律是什么?

  运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变

  (四)结合三组题观察、讨论、总结变化规律.

  讨论题:

  1.这三组题每组题中谁与谁是两种相关联的量?

  2.在变化过程当中,它们的异同点是什么?

  共同点:都有两种相关联的量,一种量变化,另一量也随着变化

  不同点:第一组商不变,第二组积不变,第三组和不变.

  总结:

  3.分别概括

  4.强调第三组题中两种相关联的量叫做不成比例

  5.教师提问

  (1)两种量成正比例必须具备什么条件?

  (2)两种量成反比例必须具备什么条件?

  (五)字母关系式

  三、巩固练习

  判断下面各题是否成比例?成什么比例?

  1.一种圆珠笔

总价(元)




1。2




2。4




3。6




4。8




6




7。2




支数




1




2




3




4




5




6




单价(元)




1




2




4




5




10




支数




100




50




25




20




10




  (1)表中有哪两种相关联的量?

  (2)说出几组这两种量中相对应的两个数的比

  (3)每组等式说明了什么?

  (4)两种相关的量是否成比例?成什么比例?

  2.当速度一定,时间路程成什么比例?

  当时间一定,路程和速度成什么比例?

  当路程一定,速度和时间成什么比例?

  3.长方形的面一定,长和宽

  4.修一条路,已修的米数和剩下的米数.

  四、课堂总结

  今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的.量的变化规律,这是本质.

  五、课后作业

  (一)判断下面每题中的两种量是不是成正比例,并说明理由.

  1.苹果的单价一定,购买苹果的数量和总价.

  2.轮船行驶的速度一定,行驶的路程和时间.

  3.每小时织布米数一定,织布总米数和时间.

  4.长方形的宽一定,它的面积和长.

  (二)判断下面每题中的两种量是不是成反比例,并说明理由.

  1.煤的总量一定,每天的烧煤量和能够烧的天数.

  2.种子的总量一定,每公顷的播种量和播种的公顷数.

  3.李叔叔从家到工厂,骑自行车的速度和所需时间.

  4.华容做12道数学题,做完的题和没有做的题.

  六、板书设计

《反比例》数学教案6

  教学目的:

  1、认识反比例关系的意义,理解掌握反比例量的变化规律及其特征,能正确判断或不成反比例关系。

  2.掌握判断成不成反比例关系的方法,培养学生判断、推理能力。

  教学过程:

一、新课导入:

  学具操作:

  按要求拿小棒(共24根):12根、8根、6根、4根、3根、1根各可拿几次:并填表

  每次取小棒根数12864321

  次数234681224

  引导学生研究:两组数量关系中两种有关联之间的关系与我们上一课所学内容相同吗?

  二、新课展开:

  1、出示例4

  根据问题讨论:

  (1)表中有哪两种量?

  (2)这两种量是怎样变化的?

  (3)相对应的每两个数的乘积各是多少?

  (4)求出积后,你发现什么规律?

  回答上述问题并作点评

  提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想这个式子表示什么?

  2、学习例5

  出示P43三个问题让学生研究后回答。

  老师作小结。

  3、概括反比例的意义。

  (1)说明什么是反比例的量,它们之间的.关系叫反比例关系。

  追问:两种量成不成反比例的关键是什么?

  如果用X和Y表示这两种相关联的量,用R表示他们的乘积,那上面的这种关系怎样写呢?

  4、具体认识

  (1)例4时有哪两种相关联的量,它们成反比例关系吗?为什么?

  (2)例5呢?

  (3)P46第4题。

  5、学习例6

  (1)怎样判断成不成反比例?

  (2)学生尝试做例6。

  老师评讲:

  三、巩固练习

  1、判断导入题中的两种理成不成反比例。

  2、P44,练一练,第1、2题

  3、P46第6、7题

  四、课堂小结

  这节课我们学习了什么内容:你懂得了什么?

  五、课堂作业

  六、课后作业

  第5题剩下的题目。

《反比例》数学教案7

  三维目标

  一、知识与技能

  1.能灵活列反比例函数表达式解决一些实际问题.

  2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.

  二、过程与方法

  1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

  2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

  三、情感态度与价值观

  1.积极参与交流,并积极发表意见.

  2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

  教学重点

  掌握从物理问题中建构反比例函数模型.

  教学难点

  从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

  教具准备

  多媒体课件.

  教学过程

  一、创设问题情境,引入新课

  活动1

  问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.

  在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.

  (1)求I与R之间的函数关系式;

  (2)当电流I=0.5时,求电阻R的值.

  设计意图:

  运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.

  师生行为:

  可由学生独立思考,领会反比例函数在物理学中的综合应用.

  教师应给“学困生”一点物理学知识的引导.

  师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.

  生:(1)解:设I=kR ∵R=5,I=2,于是

  2=k5 ,所以k=10,∴I=10R .

  (2) 当I=0.5时,R=10I=100.5 =20(欧姆).

  师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?

  生:这是古希腊科学家阿基米德的名言.

  师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;

  阻力×阻力臂=动力×动力臂(如下图)

  下面我们就来看一例子.

  二、讲授新课

  活动2

  小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.

  (1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

  (2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?

  设计意图:

  物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.

  师生行为:

  先由学生根据“杠杆定律”解决上述问题.

  教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.

  教师在此活动中应重点关注:

  ①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;

  ②学生能否面对困难,认真思考,寻找解题的途径;

  ③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.

  师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.

  生:解:(1)根据“杠杆定律” 有

  Fl=1200×0.5.得F =600l

  当l=1.5时,F=6001.5 =400.

  因此,撬动石头至少需要400牛顿的力.

  (2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有

  Fl=600,

  l=600F .

  当F=400×12 =200时,

  l=600200 =3.

  3-1.5=1.5(米)

  因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.

  生:也可用不等式来解,如下:

  Fl=600,F=600l .

  而F≤400×12 =200时.

  600l ≤200

  l≥3.

  所以l-1.5≥3-1.5=1.5.

  即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.

  生:还可由函数图象,利用反比例函数的性质求出.

  师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:

  用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?

  生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)

  根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.

  师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.

  活动3

  问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?

  设计意图:

  在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的`函数关系式,进而用函数关系式解决一个具体问题.

  师生行为:

  由学生先独立思考,然后小组内讨论完成.

  教师应给予“学困生”以一定的帮助.

  生:解:(1)∵y与x -0.4成反比例,

  ∴设y=kx-0.4 (k≠0).

  把x=0.65,y=0.8代入y=kx-0.4 ,得

  k0.65-0.4 =0.8.

  解得k=0.2,

  ∴y=0.2x-0.4=15x-2

  ∴y与x之间的函数关系为y=15x-2

  (2)根据题意,本年度电力部门的纯收入为

  (0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)

  答:本年度的纯收人为0.6亿元,

  师生共析:

  (1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;

  (2)纯收入=总收入-总成本.

  三、巩固提高

  活动4

  一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值.

  设计意图:

  进一步体现物理和反比例函数的关系.

  师生行为

  由学生独立完成,教师讲评.

  师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系.

  生:V和ρ的反比例函数关系为:V=990ρ .

  生:当ρ=1.1kg/m3根据V=990ρ ,得

  V=990ρ =9901.1 =900(m3).

  所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.

  四、课时小结

  活动5

  你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.

  设计意图:

  这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.

  师生行为:

  学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.

  教师组织学生小结.

  反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.

  板书设计

  17.2 实际问题与反比例函数(三)

  1.

  2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力?

  设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,

  Fl=k 即F=kl (k>0且k为常数).

  由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.

  活动与探究

  学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.

  (1)绿化带面积是多少?你能写出这一函数表达式吗?

  (2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?

  x(m) 10 20 30 40

  y(m)

  过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.

  结果:(1)绿化带面积为10×40=400(m2)

  设该反比例函数的表达式为y=kx ,

  ∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.

  ∴函数表达式为y=400x .

  (2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。

《反比例》数学教案8

  教学过程:

  一、复习铺垫

  1、下面两种量是不是成正比例?为什么?

  购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

  2、成正比例的量有什么特征?

  二、探究新知

  1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。

  2、教学P42例3。

  (1)引导学生观察上表内数据,然后回答下面问题:

  A、表中有哪两种量?这两种量相关联吗?为什么?

  B、水的高度是否随着底面积的变化而变化?怎样变化的?

  C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

  D、这个积表示什么?写出表示它们之间的数量关系式

  (2)从中你发现了什么?这与复习题相比有什么不同?

  A、学生讨论交流。

  B、引导学生回答:

  (3)教师引导学生明确:因为水的体积一定,所以水的.高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

  (4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)

  三、巩固练习

  1、想一想:成反比例的量应具备什么条件?

  2、判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)路程一定,速度和时间。

  (2)小明从家到学校,每分走的速度和所需时间。

  (3)平行四边形面积一定,底和高。

  (4)小林做10道数学题,已做的题和没有做的题。

  (5)小明拿一些钱买铅笔,单价和购买的数量。

  (6)你能举一个反比例的例子吗?

  四、全课小节

  这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

  五、课堂练习

  P45~46练习七第6~11题。

  教学目的:

  1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

  2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

  3、初步渗透函数思想。

  教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。

  教学难点:利用反比例的意义,正确判断两个量是否成反比例。

《反比例》数学教案9

  知识技能目标

  1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

  2、利用反比例函数的图象解决有关问题。

  过程性目标

  1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

  2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

  教学过程

  一、创设情境

  上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

  二、探究归纳

  1、画出函数的图象。

  分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

  解

  1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

  2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

  3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的.另一个分支。这两个分支合起来,就是反比例函数的图象。

  上述图象,通常称为双曲线(hyperbola)。

  提问这两条曲线会与x轴、y轴相交吗?为什么?

  学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

  学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

  1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

  2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

  3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

  反比例函数有下列性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  注

  1、双曲线的两个分支与x轴和y轴没有交点;

  2、双曲线的两个分支关于原点成中心对称。

  以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

  在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

  在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

  三、实践应用

  例1若反比例函数的图象在第二、四象限,求m的值。

  分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。

  解由题意,得解得。

  例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

  分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。

  解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。

  例3已知反比例函数的图象过点(1,—2)。

  (1)求这个函数的解析式,并画出图象;

  (2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

  分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

  (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。

  解(1)设:反比例函数的解析式为:(k≠0)。

  而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

  所以,k=—2。

  即反比例函数的解析式为:。

  (2)点A(—5,m)在反比例函数图象上,所以,

  点A的坐标为。

  点A关于x轴的对称点不在这个图象上;

  点A关于y轴的对称点不在这个图象上;

  点A关于原点的对称点在这个图象上;

  例4已知函数为反比例函数。

  (1)求m的值;

  (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

  (3)当—3≤x≤时,求此函数的最大值和最小值。

  解(1)由反比例函数的定义可知:解得,m=—2。

  (2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。

  (3)因为在第个象限内,y随x的增大而增大,

  所以当x=时,y最大值=;

  当x=—3时,y最小值=。

  所以当—3≤x≤时,此函数的最大值为8,最小值为。

  例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

  (1)写出用高表示长的函数关系式;

  (2)写出自变量x的取值范围;

  (3)画出函数的图象。

  解(1)因为100=5xy,所以。

  (2)x>0。

  (3)图象如下:

  说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

  四、交流反思

  本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

  1、反比例函数的图象是双曲线(hyperbola)。

  2、反比例函数有如下性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  五、检测反馈

  1、在同一直角坐标系中画出下列函数的图象:

  (1);(2)。

  2、已知y是x的反比例函数,且当x=3时,y=8,求:

  (1)y和x的函数关系式;

  (2)当时,y的值;

  (3)当x取何值时,?

  3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

  4、已知反比例函数经过点A(2,—m)和B(n,2n),求:

  (1)m和n的值;

  (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0

《反比例》数学教案10

  教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。

  教学过程:

  一、引入

  教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?

  二、课堂练习

  1.分析、研究第3题。

  让学生先说出长方形的.长、宽、面积三个量中.其中一个量与另外两个量的关系,教师板书出来:长宽=面积

  = 长 =宽

  提问:

  当面积一定时,长和宽成什么比例关系?

  当长一定时,面积和宽成什么比例关系?

  当宽一定时,面积和长成什么比例关系?

  教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,。

  2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:

  每次运货吨数运货次数=运货的总吨数(一定) 每次运货吨数 与运货次数 =运货次数(一定) 成反比例关 系。

  运货的总吨 =每次运货吨数(一定) 数与运货次 数成正比例 关系

  3.第5题,让学生独立做,教师巡视,注意个别辅导。

  4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)小题成正比例,第(3)、(5)小题不成比例。

  5.第7题,学生独立解答后,选一题说说是怎样解的。

  6.学有余力的学生做第8题。

《反比例》数学教案11

  教学目标

  1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.

  2.通过观察、比较、归纳,提高学生综合概括推理的能力.

  3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.

  教学重难点

  理解正反比例的意义,掌握正反比例的变化的规律.

  教学过程

  一、导入新课

  (一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

  (二)教师提问

  1.你为什么马上能想到还剩多少呢?

  2.是不是因为吃了的和剩下的是两种相关联的量?

  教师板书:两种相关联的量

  (三)教师谈话

  在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

  数量也是两种相关联的`量.你还能举出一些例子吗?

  二、新授教学

  (一)成正比例的量

  例1.一列火车行驶的时间和所行的路程如下表:

  时间(时):路程(千米)

  1 :90

  2 :180

  3 :270

  4 :360

  5 :450

  6 :540

  7 :630

  8 :720

  1.写出路程和时间的比并计算比值.

  (1) 2表示什么?180呢?比值呢?

  (2) 这个比值表示什么意义?

  (3) 360比5可以吗?为什么?

  2.思考

  (1)180千米对应的时间是多少?4小时对应的路程又是多少?

  (2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

  教师板书:时间、路程、速度

  (3)速度是怎样得到的?

  教师板书:

  (4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

  (5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

  3.小结:有什么规律?

《反比例》数学教案12

  教学内容:教材第115页正、反比例的意义和正、反比例应用题、“练一练”,练习二十二第1、2题。

  教学要求:

  1、使学生更清楚地认识正比例和反比例关系的特征,能正确判断成正比例关系或反比例关系的量。

  2、使学生进一步掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题,进一步培养学生分析、推理和判断等思维能力。

  教学过程:

 一、揭示课题

  这节课,复习正、反比例关系和正、反比例应用题。通过复习,要进一步认识正、反比例的意义,掌握正、反比例应用题的数量关系、解题思路和解题方法,能更正确地判断成正、反比例关系的量,正确地解答正、反比例应用题。

  二、复习正、反比例的意义。

  1、复习正、反比例的意义。

  提问:如果用x和y表示成比例关系的两种相关联的量,那么,什么情况下成正比例关系,什么情况下成反比例关系?

  想一想,成正比例关系和成反比例关系的两种量有什么相同点和不同点?

  指出:正比例关系和反比例关系的相同点是:都有相关联的两种量,一种量随着另一种量的`变化而变化。不同点是:成正比例关系的两种量中相对应数值的比值一定,成反比例关系的两种量中相对应数值的积一定。

  2、判断正、反比例关系。

  (1)做“练一练”第1题。

  指名学生口答。

  提问:判断是不是成比例和成什么比例的根据是什么?

  (2)做练习二十二第1题。

  指名学生口答。

  3、判断x和y这两种量成什么关系,为什么?

  指出:我们根据正、反比例关系的特点,可以判断两种相关联的量成什么比例。如果一道题里两种量成正比例或反比例关系,我们就可以应用比例的知识,根据比值相等或者积相等的数量关系来解答。

  三、复习正、反比例应用题。

  1、做“练一练”第2题第1题。

  让学生读题,判断两种量成什么比例。

  提问:这道题成正比例关系,要根据什么相等来列式解答?

  指名一人板演,其余学生做在练习本上。

  集体订正,突出列式的等量关系是比值一定。

  2、做“练一练”第2题第(2)题。

  指名一人板演,其余学生做在练习本上。

  集体订正。

  提问:这道题是怎样想的?成反比例关系的应用题,要根据什么来列式解答?

  3、启发学生思考:

  你认为正比例应用题实际上是我们过去学过的哪一类应用题?反比例应用题是哪一类应用题?

  怎样解答正、反比例应用题?

  指出:用比例知识解答应用题,要先判断两种相关联的量成什么比例。如果成正比例,根据比值相等列等式解答;如果成反比例,根据积相等列等式解答。

  四、课堂作业

  练习二十二第2题

《反比例》数学教案13

  教学任务分析

  教学目标

  知识技能

  通过对“杠杆原理”等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题

  数学思考

  通过对实际问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念

  解决问题

  分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步运用函数的图像、性质挖掘杠杆原理中蕴涵的道理

  情感态度

  利用函数探索古希腊科学家阿基米德发现的“杠杆定律”,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣

  重点

  运用反比例函数解释生活中的一些规律、解决一些实际问题

  难点

  把实际问题利用反比例函数转化为数学问题加以解决

  教学流程安排

  活动流程图

  活动内容和目的

  活动1创设情境,引出问题

  活动2分析解决问题

  活动3从函数的观点进一步分析规律

  活动4巩固练习

  活动5课堂小结、布置作业

  教师提出生活中遇到的难题,请学生帮助解决,激发学生的兴趣

  与学生共同分析实际问题中的变量关系,引导学生利用反比例函数解决问题

  引导学生追寻杠杆原理中蕴涵的规律,从反比例函数的图象、性质等角度挖掘

  通过课堂练习,提高学生运用反比例函数解决实际问题的能力

  归纳、总结所学,体会利用函数的观点解决实际问题

  教学过程设计

  问题与情境

  师生行为

  设计意图

  活动1

  如何打开这个未开封的奶粉桶呢?—

  教师提出实际生活中的问题,学生提出解决办法,教师引出利用杠杆原理解决问题。

  能否从数学角度探索杠杆原理中蕴涵的变量关系呢?

  让学生了解到日常生活中存在着许多两个量之间具有反比例关系的例子,自然引入课题

  活动2

  展示问题1:

  几位同学玩撬石头的游戏,已知阻力和阻力臂不变,分别是1200牛顿和0.5米,设动力为F,动力臂为。回答下列问题:

  (1)动力F与动力臂有怎样的'函数关系?

  (2)小刚、小强、小健、小明分别选取了动力臂为为1米、1.5米、2米、3米的撬棍,你能得出他们各自撬动石头至少需要多大的力吗?从上述的运算中我们观察出什么规律?

  不妨列表描点画出图象

  (图象在第三象限会有吗?)

  分析问题中变量间的关系

  分析动力F与动力臂的关系,将撬石头的实际问题转化为反比例函数问题。由抽象到具体,验证几个具体的数值通过验证几个数值,进行列表描点,作出图象观察规律,,进一步从图象的变化趋势上解释规律

  在数学课上引用一个物理力学的实际问题,一下子抓住了学生的猎奇心理,激发了他们的学习兴趣;最后落实到运用数学来解决,学生可以体会到数学的基础性和重要性,激发学生求知的热情

  教师按照学生的认知规律有层次、有步骤地引导学生分析解决问题

  活动3

  从函数的观点进一步分析规律

  (3)用反比例函数的性质解释:开启桶盖时用长的改锥还是短的改锥?在我们使用撬棍时,为什么动力臂越长就越省力?问题

  (4)受条件限制,无法得知撬石头时的阻力,小刚选择了动力臂为1.2米的撬棍,用了500牛顿的力刚好撬动;小明身体瘦小,只有300牛顿的力量,他该选择动力臂为多少的撬棍才能撬动这块大石头呢?

  (5)地球重量的近似值为(即为阻力),假设阿基米德有500牛顿的力量,阻力臂为20xx千米,请你帮助阿基米德设计该用动力臂为多长的杠杆才能把地球撬动?利用反比例函数的变化规律解释实际生活中一些问题深入挖掘动力臂与动力F又有怎样的函数关系呢?待定系数法解决函数问题公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:

  阻力阻力臂=动力动力臂,他形象地说,“给我一个支点我可以把地球撬动”

  从函数的角度深层次挖掘变量间的关系,在这一过程中学生逐渐建立运用运动变化的观点解释一些现象,实现从静到动的转变举一反三,函数模型未变,但两个量的角色发生变化,深入探究,体会其中的变与不变的函数思想激发学生学习兴趣,培养科学探索精神

  活动4

  展示练习

  市政府计划建设一项水利工程,工程需要运送的土石方总量为米,某运输公司承办了该项工程运送土方的任务。

  (1)运输公司平均每天的工作量(单位:米3/天)与完成运送任务所需的时间(单位:天)之间具有怎样的函数关系?

  (2)这个运输公司有100辆卡车,每天一共可运送土石方立方米,则公司完成全部运输任务需要多长时间?

  (3)当公司以问题(2)中的速度工作了40天后,由于工程进度的需要,剩下的所有运输任务必须在50天内完成,公司至少需要再增加多少辆卡车才能按时完成任务?教师展示练习,学生认真审题、思考学生认真审题后自主探究学生建立了反比例函数关系后求值学生相互讨论,协作解决问题(3),请学生代表汇报他们讨论的结果,教师作适时、适当的引导和指导

  提醒学生:应把较复杂的问题分解,将难点逐一击破,从不同的角度利用不同的方法解决问题

  通过巩固练习,让学生进一步加深对反比例函数的运用和理解,更深层次体会建立反比例模型解决实际问题的思想,巩固和提高所学知识

  给学生足够的时间和空间,给他们创造展示他们能力和所学知识的机会可从不同角度入手,培养学生从多角度审视、解决问题的能力

  活动6

  归纳、总结

  作业:教科书习题17.2第6题

  教师引导学生回忆、总结,教师予以补充

  通过小结,使学生把所学知识进一步内化、系统化

《反比例》数学教案14

  教学目标

  1.理解反比例的意义。

  2.能根据反比例的意义,正确判断两种量是否成反比例。

  3.培养学生的抽象概括能力和判断推理能力。

  教学重点

  引导学生理解反比例的意义。

  教学难点

  利用反比例的意义,正确判断两种量是否成反比例。

  教学过程

  一、复习准备(演示课件:成反比例的量)

  1.下表中的两种量是不是成正比例?为什么?

  购买练习的本数(本)

  1

  2

  4

  6

  9

  总价(元)

  0.80

  1.60

  3.20

  4.80

  7.20

  2.回忆:成正比例的量有什么特征?

  二、新授教学

  (一)引入新课

  我们已经学习了常见数量关系中成正比例关系的量的特征。这节课我们继续研究常见的数量关系中的另外一种特征成反比例的量。

  教师板书:成反比例的量

  (二)教学例4(演示课件:成反比例的量)

  1.出示例4,提出观察思考要求:

  从表中你发现了什么?这个表同复习的表相比,有什么不同?

  (1)表中的两种量是每小时加工的数量和所需的加工时间。

  教师板书:每小时加工数和加工时间

  (2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。

  教师追问:这是两种相关联的量吗?为什么?

  (3)每两个相对应的数的乘积都是600.

  2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?

  教师板书:零件总数

  每小时加工数加工时间=零件总数

  3.小结

  通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。

  (三)教学例5(演示课件:成反比例的量)

  1.出示例5,根据题意,学生口述填表。

  2.教师提问:

  (1)表中有哪两种量?是相关联的量吗?

  教师板书:每本张数和装订本数

  (2)装订的本数是怎样随着每本的张数变化的?

  (3)表中的两种量有什么变化规律?

  (四)比较例4和例5,概括反比例的意义。

  1.请你比较例4和例5,它们有什么相同点?

  (1)都有两种相关联的量。

  (2)都是一种量变化,另一种量也随着变化。

  (3)都是两种量中相对应的两个数的积一定。

  2.教师小结

  像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。

  3.如果用字母 和 表示两种相关联的量,用 表示它们的积一定,反比例关系可以用一个什么样的'式子表示?

  教师板书:= (一定)

  (五)教学例6(演示课件:成反比例的量)

  1.出示例6,教师提问:

  (1)每天播种的公顷数和要用的天数是不是相关联的量?

  (2)每天播种的公顷数和要用的天数有什么关系?它们的积是什么?这个积一定吗?

  (3)播种总公顷数一定,每天播种公顷数和要用的天数成反比例吗?为什么?

  2.思考:播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?

  三、课堂小结

  这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。

  四、课堂练习

  (一)判断下面每题中的两个量是不是成反比例,并说明理由。

  1.路程一定,速度和时间。

  2.小明从家到学校,每分走的速度和所需时间。

  3.平行四边形面积一定,底和高。

  4.小林做10道数学题,已做的题和没有做的题。

  5.小明拿一些钱买铅笔,单价和购买的数量。

  (二)你能举一个反比例的例子吗?

  五、课后作业

  判断下面每题中的两种量是不是成反比例,并说明理由。

  1.煤的总量一定,每天的烧煤量和能够烧的天数。

  2.种子的总量一定,每公顷的播种量和播种的公顷数。

  3.李叔叔从家到工厂,骑自行车的速度和所需的时间。

  4.华容做12道数学题,做完的题和没有做的题。

  5.生产电视机的总台数一定,每天生产的台数和所用的天数。

  6.长方形的面积一定,它的长和宽。

  7.小林拿一些钱买练习本,单价和购买的数量。

  六、板书设计

  成反比例的量

  例4.每小时加工数加工时间=零件总数(一定)

  例5.每本页数装订本数=纸的总页数(一定)

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。它们的关系叫做反比例关系。

  = (一定)

  例6.因为:每天播种的公顷数天数=播种的总公顷数(一定)

  所以:每天播种的公顷数和要用的天数成反比例。

《反比例》数学教案15

  教学设计思路

  由对现实问题的讨论抽象出反比例函数的概念,通过对问题的解决进一步明确:1.反比例函数的意义;2.反比例函数的概念;3.反比例函数的一般形式。

  教学目标

  知识与技能

  1.从现实情境和已有的`知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念。

  过程与方法

  1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点。

  2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识。

  情感态度与价值观

  1.认识到数学知识是有联系的,逐步感受数学内容的系统性;

  2.通过分组讨论,培养合作交流意识和探索精神。

  教学重点和难点

  理解和领会反比例函数的概念。

  教学难点

  领悟反比例函数的概念。

  教学方法

  启发引导、分组讨论

  课时安排

  1课时

  教学媒体

  课件

  教学过程设计

  复习引入

  1.什么叫一次函数?一次函数的一般形式是怎样的?什么叫正比例函数?它与算术中的正比例有怎样的关系?

  2.在上一学段,我们研究了现实生活中成反比例的两个量

【《反比例》数学教案】相关文章:

《反比例》数学教案02-17

《反比例》数学教案07-20

《反比例》数学教案优秀01-22

《反比例》数学教案(优)07-20

[必备]《反比例》数学教案07-20

《反比例》数学教案(优选)07-20

数学教案-成反比例的量08-16

《反比例》数学教案15篇02-17

《反比例》数学教案(15篇)02-17