高二数学教案

时间:2024-07-22 07:36:38 高二数学教案 我要投稿

高二数学教案14篇(合集)

  作为一位不辞辛劳的人民教师,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。教案应该怎么写呢?以下是小编整理的高二数学教案,欢迎大家分享。

高二数学教案14篇(合集)

  高二数学教案 篇1

  教学目标

  巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值。

  重点难点

  理解二元一次不等式表示平面区域是教学重点。

  如何扰实际问题转化为线性规划问题,并给出解答是教学难点。

  教学步骤

  【新课引入】

  我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用。

  【线性规划】

  先讨论下面的问题

  设,式中变量x、y满足下列条件

  ①求z的值和最小值。

  我们先画出不等式组①表示的平面区域,如图中内部且包括边界。点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上。

  作一组和平等的直线

  可知,当l在的右上方时,直线l上的点满足。

  即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t,以经过点的直线,所对应的t最小,所以

  在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件。

  是欲达到值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的`值和最小值问题。

  线性约束条件除了用一次不等式表示外,有时也有一次方程表示。

  一般地,求线性目标函数在线性约束条件下的值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得值和最小值,它们都叫做这个问题的解。

  高二数学教案 篇2

  一、教学目标

  1、知识与技能

  (1)理解流程图的顺序结构和选择结构。

  (2)能用文字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

  2、过程与方法

  学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

  3、情感、态度与价值观

  学生通过动手作图,、用自然语言表示算法,用图表示算法。进一步体会算法的基本思想程序化思想,在归纳概括中培养学生的逻辑思维能力。

  二、教学重点、难点

  重点:算法的顺序结构与选择结构。

  难点:用含有选择结构的流程图表示算法。

  三、学法与教学用具

  学法:学生通过动手作图,、用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的.过程。进而学习顺序结构和选择结构表示简单的流程图。

  教学用具:尺规作图工具,多媒体。

  四、教学思路

  (一)、问题引入揭示课题

  例1尺规作图,确定线段的一个5等分点。

  要求:同桌一人作图,一人写算法,并请学生说出答案。

  提问:用文字语言写出算法有何感受?

  引导学生体验到:显得冗长,不方便、不简洁。

  教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

  本节要学习的是顺序结构与选择结构。

  右图即是同流程图表示的算法。

  (二)、观察类比理解课题

  1、投影介绍流程图的符号、名称及功能说明。

  符号符号名称功能说明终端框算法开始与结束处理框算法的各种处理操作判断框算法的各种转移;

  输入输出框输入输出操作指向线指向另一操作。

  2、讲授顺序结构及选择结构的概念及流程图。

  (1)顺序结构

  依照步骤依次执行的一个算法;

  流程图:

  (2)选择结构

  对条件进行判断来决定后面的步骤的结构;

  流程图:

  3、用自然语言表示算法与用流程图表示算法的比较;

  (1)半径为r的圆的面积公式当r=10时写出计算圆的面积的算法,并画出流程图。

  解:

  算法(自然语言)

  ①把10赋与r

  ②用公式求s

  ③输出s

  流程图

  (2)已知函数对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

  算法:(语言表示)

  ①输入X值

  ②判断X的范围,若,用函数Y=x+1求函数值;否则用Y=2—x求函数值

  ③输出Y的值

  流程图

  小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

  学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

  (三)模仿操作经历课题

  1、用流程图表示确定线段A、B的一个16等分点

  2、分析讲解例2;

  分析:

  思考:有多少个选择结构?相应的流程图应如何表示?

  流程图:

  (四)归纳小结巩固课题

  1、顺序结构和选择结构的模式是怎样的?

  2、怎样用流程图表示算法。

  (五)练习P99 2

  (六)作业P99 1

  高二数学教案 篇3

  教学准备

  教学目标

  熟练掌握三角函数式的求值

  教学重难点

  熟练掌握三角函数式的求值

  教学过程

  【知识点精讲】

  三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

  三角函数式的求值的类型一般可分为:

  (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角

  (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

  (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

  (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

  三角函数式常用化简方法:切割化弦、高次化低次

  注意点:灵活角的变形和公式的变形

  重视角的范围对三角函数值的.影响,对角的范围要讨论

  【例题选讲】

  课堂小结】

  三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

  三角函数式的求值的类型一般可分为:

  (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角

  (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

  (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

  (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

  三角函数式常用化简方法:切割化弦、高次化低次

  注意点:灵活角的变形和公式的变形

  重视角的范围对三角函数值的影响,对角的范围要讨论

  高二数学教案 篇4

  ●三维目标

  (1)知识与技能:

  掌握归纳推理的技巧,并能运用解决实际问题。

  (2)过程与方法:

  通过“自主、合作与探究”实现“一切以学生为中心”的理念。

  (3)情感、态度与价值观:

  感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的.美感。

  ●教学重点

  归纳推理及方法的总结。

  ●教学难点

  归纳推理的含义及其具体应用。

  ●教具准备

  与教材内容相关的资料。

  ●课时安排

  1课时

  ●教学过程

  一.问题情境

  (1)原理初探

  ①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”

  ②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?

  ③探究:他是怎么发现“杠杆原理”的?

  从而引入两则小典故:

  A:一个小孩,为何轻轻松松就能提起一大桶水?

  B:修筑河堤时,奴隶们是怎样搬运巨石的?

  高二数学教案 篇5

  一、教学目标

  1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法、

  (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念、

  (2)能从数和形两个角度熟悉单调性和奇偶性、

  (3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程、

  2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想、

  3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度、

  二、教学建议

  (一)知识结构

  (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系、

  (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的.判定方法,奇函数、偶函数的图像、

  (二)重点难点分析

  (1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉、教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实、

  (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它、这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫、单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点、

  (三)教法建议

  (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数、反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢、如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来、在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来、

  (2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律、

  函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来、经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式、关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件、

  高二数学教案 篇6

  教学目的:

  1、掌握掌握平面与平面间距离的概念,并能求出它们的距离

  2、弄清平行平面之间的距离的定义;

  教学重点:平行平面的距离的求法教学难点:平行平面的距离的求法

  教学过程:

  一、复习引入:

  1、点到平面的距离:已知点是平面外的任意一点,过点作,垂足为,则唯一,则是点到平面的距离即:一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离(转化为点到点的距离)结论:连结平面外一点与内一点所得的线段中,垂线段最短

  2、直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的距离(转化为点面距离)

  二、讲解新课:

  1、两个平行平面的公垂线、公垂线段:

  (1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线

  (2)两个平面的公垂线段:公垂线夹在平行平面间的部分,叫做两个平面的公垂线段

  (3)两个平行平面的公垂线段都相等

  (4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长2、两个平行平面的距离:两个平行平面的公垂线段的.长度叫做两个平行平面的距离

  三、讲解范例:

  例1如图,已知正三角形的边形为,点D到各顶点的距离都是,求点D到这个三角形所在平面的距离解:设为点D在平面内的射影,延长,交于,∴,∴即是的中心,是边上的垂直平分线,在中,即点D到这个三角形所在平面的距离是。

  四、课堂练习:

  五、课后作业:

  高二数学教案 篇7

  教学内容

  教科书125页,练习三十.

  一、素质教育目标

  (一)知识教学点

  1.通过整理和复习,进一步掌握方程的有关知识。

  2.通过整理和复习,进一步掌握用方程解应用题。

  (二)能力训练点

  1.通过整理和复习,加强知识间的联系,形成知识网络。

  2.通过整理和复习,培养学生计算的敏捷性和灵活性。

  (三)德育渗透点

  通过知识化间的联系,使学生受到辩证唯物主义的启蒙教育。

  (四)美育渗透点

  通过整理和复习,使学生感受到数学知识内在联系的逻辑之美,从而感悟到数学知识的魅力。

  二、学法指导

  1.引导学生回忆所学过知识,使知识系统化。

  2.指导学生利用已有经验,进行体验,巩固所学知识。

  三、教学重点

  通过知识间的联系,掌握方程的概念和解方程的能力。

  四、教学难点

  知识间的内在联系。

  五、教具学具准备

  投影仪、投影片等。

  六、教学步骤

  (一)导入(略)

  (二)复习

  1.这单元学习了什么内容

  2.回忆并概括,板书

  (1)用字母表示数

  (2)解简易方程

  (3)列方程解应用题。

  (先启发学生回忆学过的知识,为整理和复习做准备)。

  (三)整理

  1.用字母表示数

  用字母表示数每天跑步的米数用X表示。

  用字母表示数量关系一星期跑的米数7X。

  用含有字母的式子表示数量现在每天跑步的米数x+2凹

  (2)出示1(2),引导学生解答。

  (把用字母表示数,按整理和复习的类型进行梳理,形成知识结构。)

  2.解简易方程

  (1)方程的意义,引导学生回忆。

  解方程的意义

  出示练习三十二1题,进行反馈练习。

  (2)整理和复习3题

  ①口述解题步骤

  ②使学生明确:根据加、减、乘、除运算关系进解答,这在以前解含有未知数尤的等式中已经掌握。

  ③出示练习三十三3、4题,部分题分组进行解答,订正,并说一说是怎样想的

  (边整理边反馈练习,使学生已有的.经验得到充分体验和发展,提高学生的计算能力。)

  ④引导学生总结,解方程应注意的问题。

  3.列方程解应用题

  列方程解应用题,用方程的方法解决实际问题。

  (1)列方程解应用题的特点是

  ①用字母表示未知数

  ②分析题中的等量关系

  ③列出含有未知数x的等式方程

  ④解答,检验与答答话。

  (2)整理和复习4题

  分组进行交流,订正时说一说是怎样想的

  (3)练习三十三4题,用方程解,独立计算。

  (4)整理和复习5题

  ①先分组用不同方法解答

  ②引导学生进行比较

  使学生明确:

  用方程解应用题:用算术方法解应用题

  1.未知数用字母表示,勃口列式。

  1.未知数不参加列式。

  2。根据题意找出数量间的相等

  2.根据题里已知数和未知数间关系,引出含有未知数x的关系,引出含有末知数x的等式。的关系,确定解答步骤,再列式计算。

  注意:用方程解应用题,得数不注明单位名称;而用算术方法解应用题,得数要注明单位名称。

  今后题目中除指定解题方法以外,自己选择解题方法。

  (5)练习三十三6题

  订正时,引导学生分析、比较。

  七、布置作业

  练习三十三3、4题部分题,7、8题。

  八、板书设计(略)

  高二数学教案 篇8

  (一)教学目标

  1、知识与技能目标:

  (1)掌握逻辑联结词且的含义

  (2)正确应用逻辑联结词且解决问题

  (3)掌握真值表并会应用真值表解决问题

  2、过程与方法目标:

  在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。

  3、情感态度价值观目标:

  激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。

  (二)教学重点与难点

  重点:通过数学实例,了解逻辑联结词且的含义,使学生能正确地表述相关数学内容。

  难点:

  1、正确理解命题Pq真假的规定和判定。

  2、简洁、准确地表述命题Pq、

  教具准备:与教材内容相关的资料。

  教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。

  (三)教学过程

  学生探究过程:

  1、引入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。

  在数学中,有时会使用一些联结词,如且或非。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词且或非联结命题时的含义和用法。

  为叙述简便,今后常用小写字母p,q,r,s,表示命题。(注意与上节学习命题的条件p与结论q的区别)

  2、思考、分析

  问题1:下列各组命题中,三个命题间有什么关系?

  ①12能被3整除;

  ②12能被4整除;

  ③12能被3整除且能被4整除。

  学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词且联结得到的新命题。

  问题2:以前我们有没有学习过象这样用联结词且联结的命题呢?你能否举一些例子?

  例如:命题p:菱形的对角线相等且菱形的对角线互相平分。

  3、归纳定义

  一般地,用联结词且把命题p和命题q联结起来,就得到一个新命题,记作pq,读作p且q。

  命题pq即命题p且q中的且字与下面命题中的且字的含义相同吗?

  若xA且xB,则xB。

  定义中的且字与命题中的且字的含义是类似。但这里的逻辑联结词且与日常语言中的和,并且,以及,既又等相当,表明前后两者同时兼有,同时满足。说明:符号与开口都是向下。

  注意:p且q命题中的'p、q是两个命题,而原命题,逆命题,否命题,逆否命题中的p,q是一个命题的条件和结论两个部分。

  4、命题pq的真假的规定

  你能确定命题pq的真假吗?命题pq和命题p,q的真假之间有什么联系?

  引导学生分析前面所举例子中命题p,q以及命题pq的真假性,概括出这三个命题的真假之间的关系的一般规律。

  例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。

  一般地,我们规定:

  当p,q都是真命题时,pq是真命题;当p,q两个命题中有一个命题是假命题时,pq是假命题。

  5、例题

  例1:将下列命题用且联结成新命题pq的形式,并判断它们的真假。

  (1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。

  (2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;

  (3)p:35是15的倍数,q:35是7的倍数。

  解:(1)pq:平行四边形的对角线互相平分且平行四边形的对角线相等。也可简写成平行四边形的对角线互相平分且相等。

  由于p是真命题,且q也是真命题,所以pq是真命题。

  (2)pq:菱形的对角线互相垂直且菱形的对角线互相平分。也可简写成菱形的对角线互相垂直且平分。

  由于p是真命题,且q也是真命题,所以pq是真命题。

  (3)pq:35是15的倍数且35是7的倍数。也可简写成35是15的倍数且是7的倍数。

  由于p是假命题,q是真命题,所以pq是假命题。

  说明,在用且联结新命题时,如果简写,应注意保持命题的意思不变。

  例2:用逻辑联结词且改写下列命题,并判断它们的真假。

  (1)1既是奇数,又是素数;

  (2)2是素数且3是素数;

  6、巩固练习:P20练习第1,2题

  7、教学反思:

  (1)掌握逻辑联结词且的含义

  (2)正确应用逻辑联结词且解决问题

  高二数学教案 篇9

  教学目的:

  1、使学生理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。

  2、了解线段垂直平分线的轨迹问题。

  3、结合教学内容培养学生的动作思维、形象思维和抽象思维能力。

  教学重点:

  线段的垂直平分线性质定理及逆定理的引入证明及运用。

  教学难点:

  线段的垂直平分线性质定理及逆定理的关系。

  教学关键:

  1、垂直平分线上所有的点和线段两端点的距离相等。

  2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。

  教具:投影仪及投影胶片。

  教学过程:

  一、提问

  1、角平分线的性质定理及逆定理是什么?

  2、怎样做一条线段的垂直平分线?

  二、新课

  1、请同学们在课堂练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。

  2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?

  通过学生的观察、分析得出结果PA=PB,再取一点P'试一试仍然有P'A=P'B,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。

  定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。

  这个命题,是我们通过作图、观察、猜想得到的,还得在理论上加以证明是真命题才能做为定理。

  例题:

  已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上

  求证:PA=PB

  如何证明PA=PB学生分析得出只要证RTΔPCA≌RTΔPCB

  :证明:∵PC⊥AB(已知)

  ∴∠PCA=∠PCB(垂直的定义)

  在ΔPCA和ΔPCB中

  ∴ΔPCA≌ΔPCB(SAS)

  即:PA=PB(全等三角形的对应边相等)。

  反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?

  过P,P1做直线EF交AB于C,可证明ΔPAP1≌PBP1(SSS)

  ∴EF是等腰三角型ΔPAB的顶角平分线

  ∴EF是AB的垂直平分线(等腰三角形三线合一性质)

  ∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。

  逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的所有点的集合。

  线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。

  三、举例(用幻灯展示)

  例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。

  证明:∵点P在线段AB的垂直平分线上

  ∴PA=PB

  同理PB=PC

  ∴PA=PB=PC

  由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。

  四、小结

  正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。

  《教案设计说明》

  线段的垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹。在几何证明、计算、作图中都有重要应用。我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用。

  在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线EF,在EF上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出如果有两点到线段的两端点的`距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合。这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。最后总结点P是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。为了使学生当堂掌握两个定理的灵活运用,让学生做87页的两个练习,以达到巩固知识的目的。

  高二数学教案 篇10

  一 教学内容分析:

  本节内容在教材中有着重要的地位与作用,线性规划是利用数学为工具来研究一定的人、财、物、时、空等资源在一定的条件下,如何精打细算巧安排,用最少的资源,取得的经济效益,这一部分内容体现了数学的工具性、应用性,同时渗透了化归,数形结合的数学思维和解决实际问题的一种重要的解题方法——数学建模法。

  二 学生学习情况分析:

  把实际问题转化为线性规划问题,并结合出解答是本节的重点和难点,对许多学生来说,解数学应用题的最常见的困难是不会持实际问题转化或数学问题,即不会建模,对学生而言,解决应用问题的障碍主要有三类:①不能正确理解题意思,弄清各元素之间的'关系;②不能弄清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立考虑单个问题情境,不能多联想。

  三 设计思想:

  注意学生的探究过程,让学生体验探究问题的成就感,一切以学生的探究活动为主,以问题是驱动,激发学生学习乐趣。

  四 教学目标:

  1、使学生了解线性规划的意义以及约束条件、目标函数、可行域、可行解、解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题。

  2、通过本节内容的学习,培养学生观察、联想以及作图的能力等。渗透集合,化归,数形结合的数学思想,提问“建模”和解决实际问题的能力。

  五 教学重点和难点:

  教学重点:求线性目标函数的最值问题,培养学生“用数学”的意识,即线性规划在实际生活中的应用。

  教学难点:把实际问题转化为线性规划问题,并结合出解答。

  六 教学过程:

  (一)问题引入

  某工厂用A、B两种配件生产甲、乙两种产品,每生产一会一件甲产品使用4个A配件耗时1个小时,每生产一件乙产品使用4个B配件耗时2小时,该厂每天最多可以配件厂获得16个A配件和12个B配件,按每天工作8小时计算,该厂所有可能的月生产安排是什么?由学生列出不等关系,并画出平面区域,由此引入新课。

  (二)问题深入,推进新课

  ①引领学生自主探索引入问题中的实际问题,怎样安排才有意义?

  ②若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润?

  设计意图:

  由实际问题出发激发学生学习兴趣,在探究过程中,看似简单的问题,学生容易抓不住问题的主干,需要适时的引导。

  (三)揭示本质 深化认识

  提出问题:

  ① 上述探索的问题中,Z的几何意义是什么?结合图形说明

  ②结合以上探究,理解什么是目标函数?线性目标函数?什么是线性规划?弄清什么是可行域解?可行域?解?

  ③你能根据以上探究总结出解决线性规划问题的一般步骤吗?

  (四)应用示例

  高二数学教案 篇11

  教学目标

  1、知识与技能

  (1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.

  2、过程与方法

  通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.

  3、情态与价值

  通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.

  教学重难点

  重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.

  难点:终边相同的角的表示.

  教学工具

  投影仪等.

  教学过程

  【创设情境】

  思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25

  小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

  [取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.

  【探究新知】

  1.初中时,我们已学习了角的概念,它是如何定义的呢?

  [展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的`位置,绕着它的端点o按逆时针方向旋转到终止位置OB,就形成角a.旋转开始时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点.

  2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?

  [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).

  8.学习小结

  (1)你知道角是如何推广的吗?

  (2)象限角是如何定义的呢?

  (3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

  线上的角的集合.

  五、评价设计

  1.作业:习题1.1A组第1,2,3题.

  2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

  进一步理解具有相同终边的角的特点.

  课后小结

  (1)你知道角是如何推广的吗?

  (2)象限角是如何定义的呢?

  (3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

  线上的角的集合.

  课后习题

  作业:

  1、习题1.1A组第1,2,3题.

  2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

  进一步理解具有相同终边的角的特点.

  高二数学教案 篇12

  教学目标

  使学生了解并会作二元一次不等式和不等式组表示的区域.

  重点难点

  了解二元一次不等式表示平面区域.

  教学过程

  【引入新课】

  我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?

  【二元一次不等式表示的平面区域】

  1.先分析一个具体的例子

  我们知道,在平面直角坐标系中,以二元一次方程 的解为坐标的点的集合 是经过点(0,1)和(1,0)的一条直线 l (如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式) 的解为坐标的点的集合 是什么图形呢?

  在平面直角坐标系中,所有点被直线 l 分三类:①在 l 上;②在 l 的右上方的平面区域;③在 l 的左下方的'平面区域(如图)取集合 A 的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在 l 的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于 A ,它们满足不等式 ,这些点却在l的左下方的平面区域.

  由此我们猜想,对直线 l 右上方的任意点 成立;对直线l左下方的任意点 成立,下面我们证明这个事实.

  在直线 上任取一点 ,过点 P 作垂直于 y 轴的直线 ,在此直线上点 P 右侧的任意一点 ,都有 ∴

  于是

  所以

  因为点 ,是 L 上的任意点,所以,对于直线 右上方的任意点 ,

  都成立

  同理,对于直线 左下方的任意点 ,

  都成立

  所以,在平面直角坐标系中,以二元一次不等式 的解为坐标的点的集点.

  是直线 右上方的平面区域(如图)

  类似地,在平面直角坐标系中,以二元一次不等式 的解为坐标的点的集合 是直线 左下方的平面区域.

  2.二元一次不等式 和 表示平面域.

  (1)结论:二元一次不等式 在平面直角坐标系中表示直线 某一侧所有点组成的平面区域.

  把直线画成虚线以表示区域不包括边界直线,若画不等式 就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.

  (2)判断方法:由于对在直线 同一侧的所有点 ,把它的坐标 代入 ,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点 ,以 的正负情况便可判断 表示这一直线哪一侧的平面区域,特殊地,当 时,常把原点作为此特殊点.

  【应用举例】

  例1? 画出不等式 表示的平面区域

  解;先画直线 (画线虚线)取原点(0,0),代入 ,

  ∴ ∴? 原点在不等式 表示的平面区域内,不等式 表示的平面区域如图阴影部分.

  例2? 画出不等式组

  表示的平面区域

  分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.

  解:不等式 表示直线 上及右上方的平面区域, 表示直线 上及右上方的平面区域, 上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.

  课堂练习

  作出下列二元一次不等式或不等式组表示的平面区域.

  高二数学教案 篇13

  一、教材分析

  【教材地位及作用】

  基本不等式又称为均值不等式,选自北京师范大学出版社普通高中课程标准实验教科书数学必修5第3章第3节内容。教学对象为高二学生,本节课为第一课时,重在研究基本不等式的证明及几何意义。本节课是在系统的学习了不等关系和掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续进一步了解不等式的性质及运用,研究最值问题奠定基础。因此基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

  【教学目标】

  依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:

  知识与技能目标:理解掌握基本不等式,理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;

  过程与方法目标:通过探究基本不等式,使学生体会知识的形成过程,培养分析、解决问题的能力;

  情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

  【教学重难点】

  重点:理解掌握基本不等式,能借助几何图形说明基本不等式的意义。

  难点:利用基本不等式推导不等式.

  关键是对基本不等式的理解掌握.

  二、教法分析

  本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率.

  三、学法指导

  新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动,勇于探索的学习方法,因此,本课主要采取以自主探索与合作交流的学习方式,通过让学生想一想,做一做,用一用,建构起自己的知识,使学生成为学习的主人。

  四、教学过程

  教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

  具体过程安排如下:

  (一)基本不等式的教学设计创设情景,提出问题

  设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:

  上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

  [问题1]请观察会标图形,图中有哪些特殊的几何图形?它们在面积上有哪些相等关系和不等关系?(让学生分组讨论)

  (二)探究问题,抽象归纳

  基本不等式的教学设计1.探究图形中的不等关系

  形的角度----(利用多媒体展示会标图形的变化,引导学生发现四个直角三角形的面积之和小于或等于正方形的面积.)

  数的角度

  [问题2]若设直角三角形的两直角边分别为a、b,应怎样表示这种不等关系?

  学生讨论结果:。

  [问题3]大家看,这个图形里还真有点奥妙。我们从图中找到了一个不等式。这里a、b的取值有没有什么限制条件?不等式中的等号什么时候成立呢?(师生共同探索)

  咱们再看一看图形的变化,(教师演示)

  (学生发现)当a=b四个直角三角形都变成了等腰直角三角形,他们的面积和恰好等于正方形的面积,即.探索结论:我们得到不等式,当且仅当时等号成立。

  设计意图:本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式基本不等式的教学设计。在此基础上,引导学生认识基本不等式。

  2.抽象归纳:

  一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。

  [问题4]你能给出它的证明吗?

  学生在黑板上板书。

  [问题5]特别地,当时,在不等式中,以、分别代替a、b,得到什么?

  学生归纳得出。

  设计意图:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.

  【归纳总结】

  如果a,b都是非负数,那么,当且仅当a=b时,等号成立。

  我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。

  3.探究基本不等式证明方法:

  [问题6]如何证明基本不等式?

  设计意图:在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。

  方法一:作差比较或由基本不等式的教学设计展开证明。

  方法二:分析法

  要证

  只要证2

  要证,只要证2

  要证,只要证

  显然,是成立的。当且仅当a=b时,中的等号成立。

  4.理解升华

  1)文字语言叙述:

  两个正数的算术平均数不小于它们的几何平均数。

  2)符号语言叙述:

  若,则有,当且仅当a=b时,。

  [问题7]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)

  “当且仅当a=b时,等号成立”的含义是:

  当a=b时,取等号,即;

  仅当a=b时,取等号,即。

  3)探究基本不等式的几何意义:

  基本不等式的教学设计借助初中阶段学生熟知的几何图形,引导学生探究不等式的几何解释,通过数形结合,赋予不等式几何直观。进一步领悟不等式中等号成立的条件。

  如图:AB是圆的直径,点C是AB上一点,

  CD⊥AB,AC=a,CB=b,

  [问题8]你能利用这个图形得出基本不等式的几何解释吗?

  (教师演示,学生直观感觉)

  易证RtACDRtDCB,那么CD2=CA·CB

  即CD=.

  这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.

  因此:基本不等式几何意义可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高.

  4)联想数列的知识理解基本不等式

  从形的角度来看,基本不等式具有特定的几何意义;从数的角度来看,基本不等式揭示了“和”与“积”这两种结构间的不等关系.

  [问题9]回忆一下你所学的知识中,有哪些地方出现过“和”与“积”的结构?

  归纳得出:

  均值不等式的代数解释为:两个正数的等差中项不小它们的等比中项.

  基本不等式的教学设计(四)体会新知,迁移应用

  例1:(1)设均为正数,证明不等式:基本不等式的教学设计

  (2)如图:AB是圆的直径,点C是AB上一点,设AC=a,CB=b,

  ,过作交于,你能利用这个图形得出这个不等式的'一种几何解释吗?

  设计意图:以上例题是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式成立的条件,及当且仅当时,等号成立。这里完全放手让学生自主探究,老师指导,师生归纳总结。

  (五)演练反馈,巩固深化

  公式应用之一:

  1.试判断与与2的大小关系?

  问题:如果将条件“x>0”去掉,上述结论是否仍然成立?

  2.试判断与7的大小关系?

  公式应用之二:

  设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中

  (1)用一个两臂长短有差异的天平称一样物品,有人说只要左右各秤一次,将两次所称重量相加后除以2就可以了.你觉得这种做法比实际重量轻了还是重了?

  (2)甲、乙两商场对单价相同的同类产品进行促销.甲商场采取的促销方式是在原价p折的基础上再打q折;乙商场的促销方式则是两次都打折.对顾客而言,哪种打折方式更合算?(0≠q)

  (五)反思总结,整合新知:

  通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?

  设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.从各种角度对均值不等式进行总结,目的是为了让学生掌握本节课的重点,突破难点

  老师根据情况完善如下:

  知识要点:

  (1)重要不等式和基本不等式的条件及结构特征

  (2)基本不等式在几何、代数及实际应用三方面的意义

  思想方法技巧:

  (1)数形结合思想、“整体与局部”

  (2)归纳与类比思想

  (3)换元法、比较法、分析法

  (七)布置作业,更上一层

  1.阅读作业:预习基本不等式的教学设计

  2.书面作业:已知a,b为正数,证明不等式基本不等式的教学设计

  3.思考题:类比基本不等式,当a,b,c均为正数,猜想会有怎样的不等式?

  设计意图:作业分为三种形式,体现作业的巩固性和发展性原则,同时考虑学生的差异性。阅读作业是后续课堂的铺垫,而思考题不做统一要求,供学有余力的学生课后研究。

  五、评价分析

  1.在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。

  2.本节的教学中要求学生对基本不等式在数与形两个方面都有比较充分的认识,特别强调数与形的统一,教学过程从形得到数,又从数回到形,意图使学生在比较中对基本不等式得以深刻理解。“数形结合”作为一种重要的数学思想方法,不是教师提一提学生就能够掌握并且会用的,只有学生通过实践,意识到它的好处之后,学生才会在解决问题时去尝试使用,只有通过不断的使用才能促进学生对这种思想方法的再理解,从而达到掌握它的目的。

  高二数学教案 篇14

  第1课时算法的概念

  [核心必知]

  1.预习教材,问题导入

  根据以下提纲,预习教材P2~P5,回答下列问题.

  (1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?

  提示:分五步完成:

  第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③

  第二步,解③,得x=b2c1-b1c2a1b2-a2b1.

  第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④

  第四步,解④,得y=a1c2-a2c1a1b2-a2b1.

  第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.

  (2)在数学中算法通常指什么?

  提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.

  2.归纳总结,核心必记

  (1)算法的概念

  12世纪

  的算法指的是用阿拉伯数字进行算术运算的过程

  续表

  数学中

  的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤

  现代算法通常可以编成计算机程序,让计算机执行并解决问题

  (2)设计算法的目的

  计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.

  [问题思考]

  (1)求解某一个问题的算法是否是的?

  提示:不是.

  (2)任何问题都可以设计算法解决吗?

  提示:不一定.

  [课前反思]

  通过以上预习,必须掌握的几个知识点:

  (1)算法的概念:;

  (2)设计算法的目的:.

  [思考1]应从哪些方面来理解算法的概念?

  名师指津:对算法概念的三点说明:

  (1)算法是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确的和有效的,而且能够在有限步骤之内完成.

  (2)算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系.算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决.

  (3)算法一方面具有具体化、程序化、机械化的特点,同时又有高度的抽象性、概括性、精确性,所以算法在解决问题中更具有条理性、逻辑性的特点.

  [思考2]算法有哪些特征?

  名师指津:(1)确定性:算法的每一个步骤都是确切的,能有效执行且得到确定结果,不能模棱两可.

  (2)有限性:算法应由有限步组成,至少对某些输入,算法应在有限多步内结束,并给出计算结果.

  (3)逻辑性:算法从初始步骤开始,分为若干明确的步骤,每一步都只能有一个确定的继任者,只有执行完前一步才能进入到后一步,并且每一步都确定无误后,才能解决问题.

  (4)不性:求解某一个问题的算法不一定只有的一个,可以有不同的算法.

  (5)普遍性:很多具体的问题,都可以设计合理的算法去解决.

  V讲一讲

  1.以下关于算法的说法正确的是()

  A.描述算法可以有不同的方式,可用自然语言也可用其他语言

  B.算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题

  C.算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果

  D.算法要求按部就班地做,每一步可以有不同的结果

  [尝试解答]算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题,故B不正确.

  算法过程要一步一步执行,每一步执行操作,必须确切,只能有结果,而且经过有限步后,必须有结果输出后终止,故C、D都不正确.

  描述算法可以有不同的语言形式,如自然语言、框图语言等,故A正确.

  答案:A

  判断算法的关注点

  (1)明确算法的含义及算法的特征;

  (2)判断一个问题是否是算法,关键看是否有解决一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步内完成.

  V练一练

  1.(20xx?西南师大附中检测)下列描述不能看作算法的是()

  A.洗衣机的'使用说明书

  B.解方程x2+2x-1=0

  C.做米饭需要刷锅、淘米、添水、加热这些步骤

  D.利用公式S=πr2计算半径为3的圆的面积,就是计算π×32

  解析:选BA、C、D都描述了解决问题的过程,可以看作算法,而B只描述了一个事例,没有说明怎样解决问题,不是算法.

  假设家中生火泡茶有以下几个步骤:

  a.生火b.将水倒入锅中c.找茶叶d.洗茶壶、茶碗e.用开水冲茶

  [思考1]你能设计出在家中泡茶的步骤吗?

  名师指津:a→a→c→d→e

  [思考2]设计算法有什么要求?

  名师指津:(1)写出的算法必须能解决一类问题;

  (2)要使算法尽量简单、步骤尽量少;

  (3)要保证算法步骤有效,且计算机能够执行.

  V讲一讲

  2.写出解方程x2-2x-3=0的一个算法.

  [尝试解答]法一:算法如下.

  第一步,将方程左边因式分解,得(x-3)(x+1)=0;①

  第二步,由①得x-3=0,②或x+1=0;③

  第三步,解②得x=3,解③得x=-1.

  法二:算法如下.

  第一步,移项,得x2-2x=3;①

  第二步,①式两边同时加1并配方,得(x-1)2=4;②

  第三步,②式两边开方,得x-1=±2;③

  第四步,解③得x=3或x=-1.

  法三:算法如下.

  第一步,计算方程的判别式并判断其符号Δ=(-2)2+4×3=16>0;

  第二步,将a=1,b=-2,c=-3,代入求根公式x1,x2=-b±b2-4ac2a,得x1=3,x2=-1.

  设计算法的步骤

  (1)认真分析问题,找出解决此题的一般数学方法;

  (2)借助有关变量或参数对算法加以表述;

  (3)将解决问题的过程划分为若干步骤;

  (4)用简练的语言将步骤表示出来.V

  练一练

  2.设计一个算法,判断7是否为质数.

  解:第一步,用2除7,得到余数1,所以2不能整除7.

  第二步,用3除7,得到余数1,所以3不能整除7.

  第三步,用4除7,得到余数3,所以4不能整除7.

  第四步,用5除7,得到余数2,所以5不能整除7.

  第五步,用6除7,得到余数1,所以6不能整除7.

  因此,7是质数.

  V讲一讲

  3.一次青青草原草原长包包大人带着灰太狼、懒羊羊和一捆青草过河.河边只有一条船,由于船太小,只能装下两样东西.在无人看管的情况下,灰太狼要吃懒羊羊,懒羊羊要吃青草,请问包包大人如何才能带着他们平安过河?试设计一种算法.

  [思路点拨]先根据条件建立过程模型,再设计算法.

  [尝试解答]包包大人采取的过河的算法可以是:

  第一步,包包大人带懒羊羊过河;

  第二步,包包大人自己返回;

  第三步,包包大人带青草过河;

  第四步,包包大人带懒羊羊返回;

  第五步,包包大人带灰太狼过河;

  第六步,包包大人自己返回;

  第七步,包包大人带懒羊羊过河.

  实际问题算法的设计技巧

  (1)弄清题目中所给要求.

  (2)建立过程模型.

  (3)根据过程模型建立算法步骤,必要时由变量进行判断.

  V练一练

  3.一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?

  解:法一:算法如下.

  第一步,任取2枚银元分别放在天平的两边,若天平左、右不平衡,则轻的一枚就是假银元,若天平平衡,则进行第二步.

  第二步,取下右边的银元放在一边,然后把剩下的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银元.

  法二:算法如下.

  第一步,把9枚银元平均分成3组,每组3枚.

  第二步,先将其中两组放在天平的两边,若天平不平衡,则假银元就在轻的那一组;否则假银元在未称量的那一组.

  第三步,取出含假银元的那一组,从中任取2枚银元放在天平左、右两边称量,若天平不平衡,则假银元在轻的那一边;若天平平衡,则未称量的那一枚是假银元.

【高二数学教案】相关文章:

高二数学教案12-04

高二数学教案01-26

高二数学教案优秀10-12

高二数学教案范文01-06

关于高二数学教案12-16

高二数学教案精品01-24

关于高二数学教案12-01

高二优秀数学教案11-14

高二数学教案(合集)03-26

中职高二数学教案11-07