现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学《绝对值》教案

七年级数学《绝对值》教案

时间:2024-07-22 14:37:14 七年级数学教案 我要投稿

七年级数学《绝对值》教案汇编6篇

  作为一名为他人授业解惑的教育工作者,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么问题来了,教案应该怎么写?下面是小编整理的七年级数学《绝对值》教案,仅供参考,大家一起来看看吧。

七年级数学《绝对值》教案汇编6篇

七年级数学《绝对值》教案1

  ●教学目标

  知识与能力:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

  过程与方法:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

  情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

  ●教学重点与难点

  教学重点:绝对值的概念和求一个数的绝对值

  教学难点:绝对值的几何意义及求绝对值等于某一个正数的有理数。

  ●教学准备

  多媒体课件

  ●教学过程

  一、创设问题情境

  用多媒体动画显示:两只小狗从同一点O出发,在一条笔直的街上跑,

  一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记做__________,B处记做__________。

  以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

  (用生动有趣的图画吸引学生,即复习了数轴和相反数,又为下文作准备)。

  2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两

  又有什么特征?(从形和数两个角度去感受绝对值)。

  3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?

  小结:在实际生活中,有时存在这样的`情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。

  二、建立数学模型

  绝对值的概念

  (借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

  绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。

  注意:①与原点的关系②是个距离的概念

  练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。

  (通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

  三、应用深化知识

  1、例题求解

  例1、求下列各数的绝对值

  -1.6, , 0, -10, +10

  解:|-1.6|=1.6 ||= |0|=0

  |-10|=10 |+10|=10

  2、练习2:填表

  相反数 绝对值 2.05 1000 0 - -1000 -2.05

  (以表格的形式将绝对值和相反数进行比较,为归纳绝对值的特征作准备)

  3、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

  特点:1、一个正数的绝对值是它本身

  2、一个负数的绝对值是它的相反数

  3、零的绝对值是零

  4、互为相反数的两个数的绝对值相等

  4、练习3:回答下列问题

  ①一个数的绝对值是它本身,这个数是什么数?

  ②一个数的绝对值是它的相反数,这个数是什么数?

  ③一个数的绝对值一定是正数吗?

  ④一个数的绝对值不可能是负数,对吗?

  ⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?

  (由学生口答完成,进一步巩固绝对值的概念)

  5、例2、求绝对值等于4的数。

  (让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

  分析:

  ①从数字上分析

  ∵|+4|=4,|-4|=4 ∴绝对值等于4的数是+4和-4画一个数轴(如下图)

  ②从几何意义上分析,画一个数轴(如下图)

  ∵数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

  ∴绝对值等于4的数是+4和-4

  注意:说明符号“∵”读作“因为”,“∴”读作“所以”

  6、练习本:做书上16页课内练习3、4两题。

  四、归纳小结

  本节课我们学习了什么知识?

  你觉得本节课有什么收获?

  由学生自行总结在自主探究,合作学习中的体会。

  五、课后作业

  让学生去寻找一些生活中只考虑绝对值的实际例子。

  课本16页的作业题。

  本人在近几届乐清市中、小、幼教师教学论文联评中均有获奖,特别是论文《谈数学学困生的惰性心态及教学策略》在全国数学教研第十一届年会论文(初中组)比赛中获三等奖;而且在近几年的说课比赛和优质课评比中表现出色;是校青年骨干教师,名教师培养对象。

  乐清市虹桥镇第一中学 陈杨明

  -4 -3 -2 -1 0 1 2 3 4

  4个单位长度 4个单位长度

  M

七年级数学《绝对值》教案2

  一、教学目标

  【知识与技能】

  借助于数轴理解相反数和绝对值的概念,会求一个数的绝对值,能借助绝对值比较两个负数的.大小。

  【过程与方法】

  通过自主探索、小组讨论、合作交流探索得到绝对值的过程,培养学生发现和解决问题的能力,锻炼学生合作交流的意识。

  【情感态度与价值观】

  体会到数学和生活之间的联系,提升学生学习数学的自信心和乐趣。

  二、教学重难点

  【教学重点】

  相反数、绝对值的概念。

  【教学难点】

  求一个数的绝对值和相反数;借助绝对值比较负数间的大小。

  三、教学过程

  (一)引入新课

  教师回顾旧知并提问:上节课学习了哪些知识?

  预设:学习了数轴,知道了有理数都可以用数轴上的点来表示。

  多媒体出示,3与-3,5和-5等数字,再次提出问题:这些数有什么相同点,你能找到这些数在数轴上的位置吗?引出新课。

  (二)探索新知

  学生自主观察,并写出几组类似的数字。

七年级数学《绝对值》教案3

  一、教学目标:

  1.知识目标:

  ①能准确理解绝对值的几何意义和代数意义。

  ②能准确熟练地求一个有理数的绝对值。

  ③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

  2.能力目标:

  ①初步培养学生观察、分析、归纳和概括的思维能力。

  ②初步培养学生由抽象到具体再到抽象的思维能力。

  3.情感目标:

  ①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

  ②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的`快乐,从而增强他们的自信心。

  二、教学重点和难点

  教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

  教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

  三、教学方法

  启发引导式、讨论式和谈话法

  四、教学过程

  (一)复习提问

  问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

  (二)新授

  1.引入

  结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

  2.数a的绝对值的意义

  ①几何意义

  一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|。

  举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

  强调:表示0的点与原点的距离是0,所以|0|=0。

  指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

  ②代数意义

  把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

七年级数学《绝对值》教案4

  一、教学目标:

  1、掌握绝对值的概念,有理数大小比较法则。

  2、学会绝对值的计算,会比较两个或多个有理数的大小。

  3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

  二、教学难点:

  两个负数大小的比较。

  三、知识重点:

  绝对值的概念。

  四、教学过程:

  (一)设置情境。

  1、引入课题。

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

  (1)用有理数表示黄老师两次所行的路程。

  (2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  2、学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

  3、观察并思考:

  画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

  4、学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

  例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

  (二)合作交流。

  1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

  -3,5,0,+58,0.6。

  2、要求小组讨论,合作学习。

  3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。

  (三)巩固练习:教科书第15页练习。

  1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。 学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

  2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

  (1)把14个气温从低到高排列。

  (2)把这14个数用数轴上的点表示出来。

  3、观察并思考:

  (1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?

  (2)学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

  4、想象练习:

  想象头脑中有一条数轴,其上有两个点,分别表示数-100和-90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

  5、课堂练习例2,比较下列各数的大小。(教科书第17页例)

  比较大小的过程要紧扣法则进行,注意书写格式。

  6、练习:第18页练习。

  (三)小结与作业。

  课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

  (四)本课作业。

  1、必做题:教产书第19页习题1,2,第4,5,6,10

  2、选做题:教师自行安排。

  五、本课教育评注(课堂设计理念,实际教学效果及改进设想)。

  1、情景的创设出于如下考虑:

  (1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的'必要性和激发学习的兴趣。

  (2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

  2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

  4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学《绝对值》教案5

  教学目标

  1,掌握绝对值的概念,有理数大小比较法则.

  2,学会绝对值的计算,会比较两个或多个有理数的大小.

  3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

  教学难点

  两个负数大小的比较

  知识重点

  绝对值的概念

  教学过程(师生活动)

  设计理念

  设置情境

  引入课题

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升。

  学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反

  意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

  观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

  学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

  例如,上面的问题中|20|=20|-10|=10显然|0|=0

  这个例子中,第一问是相反意义的量,用正负

  数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体

  验数学知识与生活实际的联系.

  因为绝对值概念的几何意义是数形转化的典型

  模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

  合作交流

  探究规律

  例1求下列各数的绝对值,并归纳求有理数a的绝对

  有什么规律。、

  -3,5,0,+58,0.6

  要求小组讨论,合作学习.

  教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

  巩固练习:教科书第15页练习.

  其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别.

  求一个数的绝时值的法则,可看做是绝对值概

  念的一个应用,所以安排此例.

  学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

  结合实际发现新知

  引导学生看教科书第16页的图,并回答相关问题:

  把14个气温从低到高排列;

  把这14个数用数轴上的点表示出来;

  应怎样比较两个数的大小呢。

  学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:

  在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

  在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

  想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

  要求学生在头脑中有清晰的图形.

  让学生体会到数学的规定都来源于生活,每一种规定都有它的`合理性

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

  课堂练习

  例2,比较下列各数的大小(教科书第17页例)

  比较大小的过程要紧扣法则进行,注意书写格式

  练习:第18页练习

  小结与作业

  课堂小结

  怎样求一个数的绝对值,怎样比较有理数的大小。

  本课作业

  1,必做题:教产书第19页习题1,2,第4,5,6,10

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在

  这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学

  习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意

  义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理

  数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

  2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3,有理数大小的比较法则是大小规定的直接归纳,其中第

  (2)条学生较难理解,教学

  中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到

  大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

  4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教

  学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学《绝对值》教案6

  教学目标

  1.知识与技能

  会利用绝对值比较两个负数的大小.

  2.过程与方法

  利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.

  3.情感、态度与价值观

  敢于面对数学活动中的困难,有学好数学的自信心.

  教学重点难点

  重点:利用绝对值比较两个负数的大小.

  难点:利用绝对值比较两个异分母负分数的大小.

  教与学互动设计

  (一)创设情境,导入新课

  投影 你能比较下列各组数的大小吗?

  (1)│-3│与│-8│ (2)4与-5 (3)0与3

  (4)-7和0 (5)0.9和1.2

  (二)合作交流,解读探究

  讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.

  思考 若任取两个负数,该如何比较它的大小呢?

  点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?

  【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大.

  注意 ①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.

  ②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的`绝对值.

  ③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.

【七年级数学《绝对值》教案】相关文章:

初中数学绝对值教案12-30

数学教案-绝对值08-16

《绝对值》数学教案01-09

七年级数学绝对值教案10-19

七年级数学《绝对值》教案09-11

(精品)七年级数学《绝对值》教案12-11

(通用)七年级数学《绝对值》教案07-22

数学教案-绝对值(一)08-16

七年级数学《绝对值》教案(精选11篇)07-20

七年级数学上册《绝对值》教案10-16