《数学广角》教案(精选15篇)
作为一名教师,很有必要精心设计一份教案,教案是保证教学取得成功、提高教学质量的基本条件。那么什么样的教案才是好的呢?以下是小编为大家收集的《数学广角》教案,欢迎阅读与收藏。
《数学广角》教案1
教材内容:
数学义务教育课程标准实验教材(人教版)中第三册第八单元99页“数学广角”第一课时。
教材分析:
这节课重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。学习简单的排列就是为了在生活中应用,让数学与生活密切联系,并且让学生在活动中发现数学的价值,给学生渗透简单的排列思想。排列与组合这个内容不仅是学习概率统计的基础,而且也是日常生活中应用比较广泛的数学知识,同时也是发展学生抽象能力和逻辑思维能力的好素材。这部分内容对于低年级学生来说内容比较抽象,因此设计本节课时,我把教学内容变为源于学生切身生活体验的,适合学生思考、探究,有利于培养学生创新意识、探究精神,促进学生发展的信息资源。《课标》中提出:在解决问题的过程中,使学生能进行简单的、有条理的思考。因此我制定本节课的教学目标是这样的:
1、知识目标:使学生通过观察、操作、实验等活动,找出简单事物的排列规律。
2、能力目标:培养学生初步的观察、分析和推理能力及有顺序地、全面地思考问题的意识,并通过互相交流,使学生体会解决问题策略的多样性。
3、情感目标:
①使学生感受数学在现实生活中的广泛应用,进一步体会数学与日常生活的密
切联系,尝试用数学的方法来解决实际生活中的问题,增强应用数学的意识,
并使学生在数学活动中养成与人合作的良好习惯。
②使学生在探索规律活动中获得成功的体验,增强对数学学习的兴趣和信心。
教学重点:找出简单排列与组合的规划,并能解答简单的排列与组合问题。
教学难点:简单区分排列与组合的异同。
学的作用,教法与学法选择:
在教学方法上,为了使学生能轻松、愉快地理解排列与组合的思想方法,根据学生的认知特点和规律,在本节课的设计中,我遵照《课标》的要求和低年级学生学习数学的实际,着眼于学生的可持续发展,发挥双向互动教学教通过课件的情境演示为学生创设情境,让学生先猜想,然后动手操作验证,最后总结发现规律等的活动方式组织教学。
在学法方面,《课标》指出,学生应是学习的主体,在教学设计过程中,为了进一步体现学生的主体地位,让学生在参与过程中感受数学知识的产生和应用,感受生活数学和数学生活,因而我设计了一系列贴近学生生活实际和年龄特点的教学活动,在这些教学活动中,着重以引导学生运用自主探究、合作探究两种学习方式交替学习,让他们真正课堂主体的身分参与全程。
教学程序:
教学环节教学程序设计意图
一、创设情境,引趣导入。
课件出示米奇老鼠邀请同学们去参加“数学广解”的场景。
(课件配音)同学们,你们好!我
是mickey,我想邀请小朋友们去参观我的数学广角。
板书:数学广角大家都知道“兴趣是最好的老师”,培养学生的学习兴趣,让学生在愉快的气氛中学习,是调动学生学习积极性,提高教学质量的至关重要条件。他们感兴趣的就会很积极地参与到学习中来,反之他们则会不予理睬。本节课中,我以学生喜欢的卡通人物米老鼠为主线,邀请同学们去参观它的数学广角乐园来贯穿始终,以激发学生的兴趣。
二、自主合作,探究新知
教师不是学生学习的指挥者,而是学生学习活动的伙伴,为了充分发挥学生是学习的主体,教师与学生共同探索,共同研究,与学生一起构建问题。让学生在情境体验中“学”,在解决问题中“悟”。调动学生学习的主动性,激发学生的竞争意识和表现意识,使学生发现问题、探索问题,解决问题的能力得到提高,思维也更加活跃。因此,我设计了“服装搭配”、“握手活动”、“数学游戏”等一系列的活动,在一项项的活动中把排列与组合的思想方法渗透给学生,让学生在不知不觉中去感知何谓排列,何谓组合。
1、服装搭配,感知组合
(1)进行服装搭配
出示:短袖衣服、长袖毛衣、长裤、短裤
让生进行连线,独立完成服装搭配。
(2)感知组合方法
①让生自由说说是怎样连的,怎样才能做到不重复不遗漏?
②让生评价这些搭配中有没有不太合理的。我把教材的安排稍做改动,设计了学生熟悉的卡通人物米老鼠邀请同学去参观它数学广角,需要选择一套漂亮的服装这个情境,因为学生对生活中搭配衣服的情景是非常熟悉的,并且他们很愿意给米老鼠提供帮助,所以我充分利用学生的这种心理向学生出示了两件衣服和两条裤子来搭配,以激发学生的兴趣。“服装搭配”是一个关于组合的问题,通过学生连一连,说一说,评一评三个活动来完成任务的。通过展示,评价,得出最优策略,体现了有序列举的优越性,最后让学生在所有的衣服搭配中指出其中不合理的搭配,并说明理理由,让学生在挑选衣服的过程,既掌握了搭配的知识,也对他们进行了审美观的教育,使得情感教育与知识技能教育有机地结合起来。
2、握手活动,进一步感知组合
课件出示mickey、维尼和唐老鸭。显示题目:每两个人握一次手,3个人一共要握几次手?)
①让生猜猜是几次
②小组合作,出示要求:小组内每
3人一队握握手,试试看,怎样握才能不重复、不遗漏,看哪个组的方法最好?
③组内交流
④小组汇报结果同学们穿上了漂亮的衣服进入了米老鼠的数学广角乐园中,我设计了米老鼠与维尼和唐老鸭巧遇的场面,让学生猜想见面后他们会做些什么?而学生们都知道握手是见面时表示礼貌的一种方式,于是我因势利导,先让学生猜一猜“如果他们每两个人握一次手,那么三个人一共要握几次手呢?”让学生先猜想,然后通过小组合作实践验证(每三人一组,握握手,试一试),这样的设计,使得每个学生都能在宽松的气氛中参与学习过程,进而引导他们概括出在这实践验证过程中怎样握手才能不重复、不遗漏,从而让学生进一步感知组合。
三、数学游戏,感受排列
1、课件出示抽奖活动场面:
(课件显示)幸运号码就是一个两位数!
①那谁来猜猜这个幸运号码是多少?(请学生猜猜)
②出示猜数字的提示语。
(课件配音)同学们,我给你们透
露点信息:幸运号码就是从1、2、3这3个数中选出两个数组成的两位数中的其中一个。
③提出质疑:那中奖号码可能是
哪些两位数呢?
④小组讨论:把所有可能的两位数
都写在左边的方框里;总结规律:怎样写才能不重复不遗漏
⑤学生汇报交流
⑥生生相互评价
⑦进行抽奖活动(请一学生作为抽奖主持,动员全体学生参与,并对猜中的学生发放奖品,鼓励没机会中奖的部分同学)。
学生学习热情高涨,我把握时机,为了进一步激发学生的学习热情,提高学生的积极性,我在米老鼠的数学广角乐园里设计了一个抽奖活动,让学生全体都能参与,让学生在活动中学会新知,我先告诉学生那个幸运号码是一个两位数,让他们来猜猜,然后通过米老鼠给学生一个提示:幸运号码就是从1、2、3这3个数中选出两个数组成的两位数中的'其中一个。这时学生肯定都希望自己能中奖,于是我就根据学生的心理我点,让他们小组合作,共同探究出这些由1、2、3组成的可能的哪些两位数,并给学生提出一个要求,总结怎样写才能不重复、不遗漏。最后再从这些数中选出一个自己认为能中奖号码,这时就会激发学生自觉主动的学习情感,为了体现学生学习的主体地位,体现课堂教学中师生的平行地位,让学生动起来,在抽奖环节,我让学生先出一位代表作为抽象司仪,主持整个抽奖过程,最后就是学生最期待的抽奖时刻,把这节课推向了高潮,在此过程中,关注没有中奖学生的情感,及时给予鼓励。这样的设计符合了新课标的基本理念,就是让学生在玩中学,在学中玩,体验出学习数学的乐趣。
四、巩固新知,突破难点。
1、付钱方法
显示题目:买一个拼音本,可以怎样付钱?(并显示有1角硬币、2角纸币、5角纸币)
①学生独立思考
②指名学生汇报
2、数学迷宫
出示数学迷宫(线路图):从入口到出口有哪几种走法呢?
①学生独立思考
②指名学生汇报
3、组词
真奇怪,为什么数学广角里会有语文知识竞赛呢?咱们一起去看看!
题目:你能把上面的字和下面的字来组词吗?能组多少个?
①春
天季雨风
可以组成()个词
②开
放花展张
可以组成()个词
提出疑问:那为什么同样的字数,
第一题可以组4个词,第二题就可以组8个词呢?
A、学生独立思考,找出原因。
B、引导学生得出:排列可以调换
顺序,组合就不可以。
为了让学生感知生活中处处有数学,学数学
是生活的需要,进一步巩固了所学的知识,也培养学生全面思思考问题的习惯。因此,我设计了“付钱方法”、“数学迷宫”、“组词”、“编音乐小节”等的巩固练习。这节课的教学难点是让学生初步感知简单事物排列与组合两种不同的数学思想,而排列与组合的区别相对于二年级学生来说可以说是非常抽象的,如何让学生轻松地掌握两者的不同之处,是本课的一个重点,根据这实际情况,我在练习中精心设计了语文学科“组词”游戏,这个练习中既感受到学科知识间的相互联系,也让学生感知排列与组合的不同,先在课件中出示第一题,第一行出示一个“春”字,再在第二行出示“天、季、雨、风”四个字,让学生用第一行的字和第二行的字来组词,看能组成多少个,这时学生都能说出是4个,再出示第二题,第一行是“开”,第二行是“放、花、展、张”,让学生说出此题可以组八个词,这时我及时提出问题:为什么同样是四个字两两组成词,第一题只能组四个,而第二题能组八个词呢?这样学生很容易就会发现这一题可以调换顺序组成另外一个词,我就可以根据学生的这个好奇心,告诉学生这是因为第一题是运用了组合知识,第二题是运用了排列知识,从而让学生总结出排列是顺序有关,而组合则于顺序无关,通过跨学科间的知识运用,既可以让学生感受到学科间知识的紧密联系,也可以把原来抽象的内容具体化。通过这个练习,使学生在的知识得到了强化,情感得到了进一步升华。
五、拓展应用,深入探究。
师:原来我们的生活中处处都有数学,还给我们带来了很多的乐趣,像我们的音乐家就用简单的7个音符
编出了很多美妙的曲子,让我们的生活增添了无限的色彩。现在就让我们当一回小音乐家!
(显示要求:现在以小组为单位,在1、2、3、4、5、6、7七个音符里任意选3个,用排列的知识,把这三个音符排列成不同的音乐句子,可以边排边唱。)
①小组合作
学生汇报交流,相互评价为了让学生感到我们的生活中处处都有数
学,因此在最后的练习中,我利用了音乐中的七个音符,设计了“编音乐小节”的练习,让学生以小组为单位,在1、2、3、4、5、6、7七个音符中筛选出自己喜欢的三个,用排列的知识把所先的三个音符连起来,排列成不同的音乐句子,同时要求学生边排边唱,鼓励有能力的小组或学生填上歌词,最后以小组汇报的形式把编的句子唱出来。通过这样一系列的活动安排,使学生真正掌握了关于事物组合与排列的一些方法,让学生们从生活经验中发现数学,在数学学习过程中了解生活,让学生深切的感受到数学就在我们身边,我们学习的是有用的数学,体现了数学的应用价值,从而体会到学习数学的乐趣。
六、总结、作业报置。
1、让学生畅谈学习感受)
2、引导学生要善于发现身边的数学知识。
3、作业:在七个音符中任意选出三个,有多少种选法?以小组为单位,写一写,唱一唱,试试看。为达到让学生带着问题走出课堂这一原则,进而深化知识,在课外作业环节中,我设计了让学生小组合作完成的作业:在七个音符中任意选出三个,究竟一共有几种选法?你能把它们全部都写出来吗?让学生带着问题走出课堂。
《数学广角》教案2
教学目标
1、通过日常生活中的最简单的事例,让学生进行分析、推理得出结论,培养学生初步观察、分析与推理的能力。
2、培养学生的观察、操作及归纳推理的能力。
3、培养学生有顺序地、全面思考问题的能力。
教学重难点
教学重点
培养学生分析、推理的思维过程及有顺序地、全面思考问题的能力。
教学难点
培养学生分析、推理的思维过程及有顺序地、全面思考问题的能力。
教学过程
一、创设情境,导入新课
师:老师知道同学们最喜欢做游戏,上课之前我们先来做个游戏,好吗?
生:好。
1、
师:听老师口令,同学们做动作。
拍拍你的肩,不是左肩,那是哪个肩?摸摸你的耳,不是右耳,那是哪只耳?捂住你的眼,不是右眼,那是哪只眼?伸伸你的手,不是左手,那是哪只手?
师:同学们很聪明,刚才在游戏中我们顺利的做出正确的动作。谁来说一说你是怎么做对的?
生:不是......就是......
2、老师今天带来了《经典故事书》和《科学世界》中的一本书,你能一下就猜准是哪本书吗?
不能。
是《科学世界》。
可能是《经典故事书》。
师:这位同学总结的非常好,当出现两种情况的时候,我们可以用不是......就是......可能是.....的方法来判断。通过刚才的游戏,我们根据已知条件,推出结论的过程,在数学上称为推理。这种方法就是我们今天要学习的简单的推理。
教师板书课题:数学广角--推理
二、合作探究,经历体验推理过程
同学们,老师遇到了问题你们愿意帮帮老师吗?
1、动态,呈现问题。教师利用课件动态呈现例1。
(1)先出示例1的前半部分:有语文、数学、品德与生活三本书,下面三人各拿一本。
师:请同学们猜一猜:小丽拿的是什么书?小刚拿的是什么书?猜的出来吗?
生:猜不出来。
(2)再出示小红和小丽说的话,再出示问题。
引导孩子梳理信息:
“仔细读题,你知道了什么信息?要我们解决什么问题?”
2、自主,探究问题。
提问“到底他们三个人分别拿着什么书呢?”
(1)请同学们独立思考,把解决这个问题的过程用自己喜欢的方式记录下来,(2)把你的想法和同桌同学交流一下,说说你是怎样想的。
(3)汇报时教师要注意引导学生说自己是怎么想的
3、合作,交流提升。
4、交流后,孩子们有的阅读思考后用语言描述直接得出结论,有的`用连线的方法,有的用列表法。
强化,推理过程
小红拿的是()书。
小丽拿的不是()书,就是()书。
只剩下()书,所以小刚拿的一定是()书。
5、质疑,求同引思。
连线法和列表法可以让我们的推理过程更加直观。“几位小朋友在汇报自己的推理过程时为什么都要从小红说的话开始思考呢?”
6、教师小结:通过分析同学说的话,推理得出正确的答案,这种思考问题的方法就叫做简单的推理,推理是依据所给条件通过分析、推理、判断出正确的答案。师如果我们只分析小刚说的话,而不看小红说的话,能得正确的答案吗?
7、小结:在简单推理时,一定要全面地分析,进行判断,才能得到正确答案。
8、做一做。
(1)欢欢、乐乐和笑笑是三只可爱的小狗。体重分别是7千克、5千克、9千克。乐乐比欢欢重,笑笑最轻。你能写出他们的名字吗?
(2)游戏--猜图形。
信封里有一个圆,一个三角形,一个长方形。露出一部分,你能猜猜它们是谁吗?
(3)连一连
第1台电脑最便宜。
三、巩固练习。
1、游戏--帮小动物找家。森林里的小鹿、熊猫、小羊、猫和小兔分到了新房子。小鹿说:猫在我的左边。
小羊说:我家的左边是熊猫家,右边是小兔家。
小兔说:右数第3家就是我家。
你能帮他们找到各自的新家吗?说说你是怎样想的?
2、猜一猜下面小动物各住几号房间。
公鸡、小羊、熊猫、梅花鹿和松鼠去旅游,它们住在宾馆里的1-5号房间,服务员告诉他们:熊猫住的不是1、3、5号,梅花鹿住的号码比熊猫多一倍,小羊住在梅花鹿的右边,公鸡住的离熊猫最近,熊猫住在公鸡的右边。
猜一猜,这几只动物各住几号房间。
四、动笔练习。
让学生自己说出已知的信息,然后解答。
思考题:甲、乙、丙三位老师分别教语文、数学和英语。
已知:
1、每个老师只教一门课。
2、甲上课全用普通话。
3、外语老师是一个学生的哥哥。
4、丙是一位女教师,她比数学老师年轻。请问三位老师各教什么课?
五、小结。
今天我们学习的什么内容?你有什么收获吗?
板书设计
推理
例1小刚拿的是(数学)书熊猫、羊、兔、猫、鹿
小丽拿的是(英语)书
教后反思:
《数学广角》教案3
教材分析
1、教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的一般方法。“假设法“有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。
2、配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。
学情分析
1.学生思维面比较窄,基础弱,学生部分接触过“鸡兔同笼”问题,多数学生对独立学习“鸡兔同笼”问题存在一定的难度。所以在这节课中,我们就可以采用适当教学手段适时引导和学生小组合作探究相结合的教学方式,让学生在尝试,探索,交流合作中弄懂“鸡兔同笼”问题的基本结构特征,经历用不同的方法解决“鸡兔同”问题的过程,初步形成解决此类问题的一般性策略。
2.本课有三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的'基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。
3.学生认知障碍点:假设法的理解。
教学目标
1.使学生掌握用列表法、假设法、方程法解决问题。
2、通过自主探索,合作交流,让学生用不同的方法解决“鸡兔同笼”问题。
3、使学生感受数学问题的趣味性,提高学习数学的兴趣。
教学重点和难点
教学重点:尝试用不同的方法解决“鸡兔同笼”问题。
教学难点:理解运用假设法解决“鸡兔同笼”问题的算理。
《数学广角》教案4
《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的次品有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
新课程标准中指出:培养学生良好的数学思维能力是数学教学要达到的重要目标之一。因而新课标教材系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力。
找次品的教学,旨在通过找次品渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。
学情分析
解决问题的策略研究学生已经不是第一次接触,此前学习过的沏茶、田忌赛马、打电话等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的 可能、一定、可能性的大小、分数的通分等知识点学生在此之前都已学过的。
本节课学生的探究活动中要用到天平,在以往学习等式的性质等知识时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。
新课程实施已有几年的时间,几年来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。
教学目标
知识技能目标:让学生初步认识找次品这类问题的基本解决手段和方法。
过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学方法
1.加强学生的试验、操作活动。本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。活动完成后再让学生分组汇报结果。
2.重视培养学生的猜测、推理能力和探索精神。引导学生从纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。
教学过程
课前谈话
出示3瓶钙片,说明:在这3瓶钙片中有一瓶少装了几颗,你能帮我找出是哪一瓶少装了吗?
学生自由发言。
在同学们说的这些方法中,你认为哪一种方法最好?为什么?
[设计意图:在这一环节中,要引导学生根据次品的特点发现用天平称的方法最好,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]
出示天平。说说怎样利用天平来找出这瓶钙片呢?
学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。
揭示课题:在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做找次品,这节课我们就一起来研究如何利用天平找次品。板书课题:找次品
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。]
设疑:如果老师有2187瓶钙片,其中一瓶少了一颗,用天平几次保证能找到次品?请你猜一猜。
找次品的解决方法
小组合作:从5瓶钙片中找出少装了的那瓶次品。
(合作要求:用手模拟天平,用5个学具当钙片。你们是怎样称的?称了几次?组长负责作好记录。)
指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:
平衡:11次
5(2,2,1)
不平衡:2(1,1) 2次
5(1,1,1,1,1) 1次或2次
从这儿我们可以看出,用天平找次品的`方法是多种多样的。
[设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。但考虑到学生用天平来称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,所以让学生用手模拟天平来进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下一定的基础。]
观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?
[设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解至少称几次就一定能找到这个次品 的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]
探索最优策略
在9个零件中有一个次品(次品重一些),用天平称,至少称几次就一定能找到这个次品呢?
小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。
(合作要求:2名同学摆学具,2名同学用图示法作记录,2名同学分析填表。)
零件个数
分成的份数
每份的个数
至少称几次就一定能找到这个次品
[设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]
指名汇报,根据学生的回答填表并板书:
平衡 3(1,1,1)
9(3,3,3)
不平衡3(1,1,1) 2次
平衡1
9(4,4,1) 平衡2(1,1) 3次
不平衡4(1,1,2)
不平衡1
平衡1
平衡(2,2,1)
9(2,2,2,2,1) 不平衡2(1,1)3次
不平衡2(1,1)
9(1,1,1,1,1,1,1,1,1) 4次
引导观察:用哪一种方法保证能找出次品需要称的次数最少?
小结:平均分成3份去称,保证能找出次品所需的次数最少。
[设计意图:小组汇报时将学生的操作过程用图示法板书,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其它任何一种分法都比2次要多,这样便于学生发现规律。]
解决课始提出的问题,只需7次,让学生从强烈的对比中感受数学的魅力。
不能平均分成3份的应该怎样分呢?
全班合作:用图示法从10个和11个零件中找出一个次品。
(合作要求:将全班所有的小组分成2部分,一部分小组分析从10个零件中找出一个次品,另一部分小组分析从11个零件中找出一个次品。小组内先共同讨论出几种不同的分法,再2人合作选一种(组内不重复)用图示法分析。)
指名汇报,投影展示学生的分析过程。
引导观察,感知规律:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。
[设计意图:设计待测物品数量为10个和11个,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法。在这一环节中,让学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡,但考虑到学生独立用图示法分析仍有难度,因而采用两个合作的方式进行。把学生分成2部分分别分析10个和11个,并要求小组内选方法时组内不重复,这样能提高探究的效率,在较短的时间内把几种情况都分析到。]
你知道这是为什么吗?你能不能对这个规律作出解释?
[设计意图:4-6年级学段目标中指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。学生通过合作探索、归纳总结出了找次品的最优策略,解释这个规律能使学生对得出结论从感性认识上升为理性认识。要想用比较少的次数找到次品,那么每称一次都应该将次品锁定在一个尽可能小的范围内,因为天平有2个托盘,每称一次不但能对放上去的2份进行推理判断,还能对没放上去的1份进行推理判断,所以每称一次保证能锁定范围的最小值是待测物品的三分之一左右。]
拓展提高
猜测:这种方法在待测物品的数量更大时是否也成立呢?
第135页做一做:
有( )瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?
请你选择一个合适的数来解这道题,独立用图示法分析,验证你的猜测是否正确。
[设计意图:本节课中提供的归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用,还需要通过试验来检验。先让学生进行猜测,引发学生进一步进行归纳、推理等数学思考活动,再将做一做进行适当的改编,设计成较为开放的问题,既能满足不同层次学生的需求,又可以用更多的数据对总结的规律进行验证。如果课堂时间不允许,这一环节也可以作为课堂的延伸让学生课后完成。]
《找次品》教学反思
著名的心理学家布鲁纳说过这样一句话:学习的最好刺激是对学习材料的兴趣。学生有了兴趣,学习活动对他们来说不是一种负担,而是一种享受、一种愉悦的体验。因此,上课开始,我首先拿出学生们喜欢的口香糖调动学生的兴趣,并与学生交流:老师这里有3瓶口香糖,要送给今天表现得最出色的同学,不过其中有一瓶已经被我吃过了两片,送给你们肯定不行,你能用什么办法把它找出来吗?随着学生的回答揭示本节课的教学内容找次品:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确的把它找出来,我们把这类问题叫做找次品。
从3瓶口香糖中找次品的方法是本节课的基础。在这一环节中,我让学生用手做天平的托盘,感知从3瓶口香糖中找次品,只要称一次就足够了。接着
让学生用五个圆片代替5瓶口香糖,通过自己动手操作,体验从五件物品中找出一件次品的基本方法。随后,师生小结出方案。第一种方案:每份分一个,至少需要称两次就一定能找出来。第二种方案:有2份分2个,1份分1个,至少需要称两次就能找出来。
然后通过从9个零件中找出一个轻一些的次品,归纳出找次品的最优方法。《数学课程标准》强调:教师是学习的组织者、引导者和合作者。教师的引导能让学生对学习的程序、方式、方法、策略等有更进一步的了解。所以,本环节我把主动权交给学生,让学生小组合作,在试验、研讨的过程中自主探索解决问题的最优方法。接下来,在学生汇报、交流时引导学生归纳出找次品的最优策略,一是把待测物品平均分成3份,这样次数最少。
接着呼应课前的猜想,从9到27到81到243到729到2187,只需7次就能保证找到次品,学生从强烈的反差中感受到数学的魅力。
为了知识体系的完整,我让学生继续自主分析8瓶的找法,当数字不能被平均分成3份时,怎样分更合理,从均分2份需3次,而分成3、3、2时只需2次,从而更加清楚均分3份的好处,及尽量均分3份的策略。但因时间仓促,过程太简单,效果受到影响。
《数学广角》教案5
教学目标
1.使学生通过简单的事例,初步体会运筹思想和对策论方法在解决实际问题中的应用。
2.使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
3.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
4.使学生逐渐养成合理安排时间的良好习惯。
教材说明
和前面几册教材一样,在本册中也专门安排“数学广角”一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容也是新增的内容。
本单元主要是通过日常生活中的一些简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。《标准》中指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”在日常生活中,解决问题的方法学生很容易找到,而且会找到解决问题的不同的策略,这里的关键是让学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生的解决问题的能力。
优化问题是人们经常要遇到的问题,例如,我们出门旅行就要考虑选择怎样的路线和交通工具,才能使旅行所需费用最少或者所花的时间最短;又如著名的邮递员送信最短路线问题。在经济建设、工农业生产、交通运输、军事国防等各行各业都会面临优化的问题,比如企业要考虑怎样安排生产能使利润最大,农民会考虑怎样安排播种能使年产量最多等等。当年华罗庚先生提出的“优选法”已经广泛地应用于人们的生产和生活中了,现在这些思想已经形成了数学中一门应用性很强的分支──运筹学。在这一单元我们主要是通过一些简单的优化问题向学生渗透优化思想,例如,例1讨论烙饼时怎样操作最省时间;例2分析家里来客人需要沏茶时,怎样安排各种事情能让客人尽快喝上茶;在“做一做”中安排了餐厅怎样安排炒菜的顺序能让客人都尽快吃上菜等等;例3安排的是在码头卸货时,按照怎样的顺序卸货能让三艘船总的等候时间最少,接下来的“做一做”是医务室的就诊顺序问题。通过这些生活中常见的这些简单事例,让学生从中体会运筹思想在解决问题中的作用。
其实我国古人早就有了丰富的运筹思想,比如战国时期“田忌赛马”的故事,就是对策论的应用。对策论是运筹学的一个分支,对策论的方法也是运筹思想中常用的方法之一,在体育比赛中经常会用到。比如在乒乓球团体比赛中就要根据不同的对手来排兵布阵,这里就用到了对策论的方法。例4就呈现了“田忌赛马”的故事,让学生体会对策论的方法在实际中的应用。最后还安排了一个“数学游戏”,学生可以去思考在这个报数游戏中先报数的人采用怎样的对策就能保证一定获胜。
教学建议
1.适当把握教学要求。
运筹思想和对策方论的理论都是比较系统、抽象的数学思想方法,在这里只是让学生通过简单的事例,初步体会运筹思想和对策方法在解决实际问题中的应用,初步培养学生的应用意识,提高解决实际问题的能力。学生只要能从解决问题的多种方案中寻找出最优的方案,初步体会优化思想的应用就可以了,并不要求学生一看到问题就能从优化的角度给出最优的方案。另外老师在教学中也不要使用运筹、优化和对策等数学化的语言进行描述。
2.本单元内容可用3课时进行教学。
具体内容的说明和教学建议
1.例1。
例1讨论烙饼时怎样合理安排操作最节省时间,让学生体会在解决问题中优化思想的应用。教材首先给出一幅生动有趣的情境图:妈妈正在烙饼,并且说出了烙饼的方法“每次只能烙两张饼,两面都要烙,每面3分钟”。小女孩说:“爸爸、妈妈和我每人一张。”也就是说总共要烙3张饼。然后小精灵提出问题:“怎样才能尽快吃上饼?”接下来教材呈现出3个学生互相讨论交流的场景。第一个学生说的方法是一张一张地烙:“烙一张饼要6分钟,烙3张饼要18分钟。”旁边的小女孩说:“一张一张地烙太费时间了。”提示学生还可以有更快捷的方法。接下来另一个小女孩给出了她的方法:“可以先烙两张,再烙一张,这样省时间。”通过计算学生可以发现这种方法只需要12分钟,比第一种方法节省了6分钟。当然,这还不是最优的方法。所以,教材接下来提出:还可以怎样烙?哪种方法比较合理?让学生继续探索。这里最好的方法是:先烙1,2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2,3号饼的反面。这种方法只需9分钟。最后,教材提出:如果要烙的是4张饼,5张饼......10张饼呢?让学生根据前面的方法独立思考,寻找合理、快捷的烙饼方案。
教学时,教师首先要引导学生观察、理解情境图里的内容。可以提问:烙1张饼需要几分钟?烙两张饼呢?使学生明确要解决的问题:一共要烙3张饼,怎样烙花费的时间最少?
理解了问题情境和需要解决的问题后,先让学生独立思考,再分小组讨论交流,说一说自己是怎样安排的,自己的方案一共需要多长时间烙完。学生可能会有不同的方案,教师可以把各小组汇报的不同方案在黑板上展示出来,让大家来比较各种方案的优劣。如果学生已经想出了最好的方法,老师对此可以再加以详细的'分析;如果学生只出现课本上的两种方法,老师可以引导学生思考讨论,在讨论的基础上让学生发现更优的方案。
在探索更优的方案时,教师可以这样启发引导:在用第二种方法烙第3张饼的时候,本来一次可以烙两张饼的锅现在只烙了一张,这里可能就浪费了时间。想一想,会不会还有更好的方法呢?启发学生发现:如果锅里每次都烙2张饼,就不会浪费时间了。接着可以进一步启发学生:一张饼正反面分别要烙3分钟,怎样安排才能每次都是烙的2张饼呢?
也可以让学生动手实验试一试,并要求把实践的结果记录下来。可以用硬币、课本或者写着“正”“反”两字的橡皮来代表饼,分别用他们的正反面代表烙饼的正反面。学生记录的方法也可以有不同,可以用图示的方法,还可以用下面的表格记录(供参考)。通过实验,可以发现用这种方法烙饼总共只需要9分钟。
1
2
3
第一次
正
正
第二次
反
正
第三次
反
反
在此基础上,让学生比较上面讨论过的各种方法,体会优化思想在解决实际问题中的应用。最后还可以让学生在实验的基础上独立完成:如果要烙的是4张饼,5张饼......10张饼,怎样安排最节省时间?再通过小组讨论交流,说一说自己的发现。其正确的结果是:如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2个2个的烙,最后3张饼按上面的最优方法烙,最节省时间。
2.例2。
例2以家里来客人要沏茶的实际素材为背景,提出“怎样安排才能尽快让客人喝上茶?”问题,继续讨论如何用优化的思想选择合理、快捷的解决问题的方法。教材在情境图下给出了沏茶所要做的各种工序,以及做每件事情所需的时间。然后呈现学生们讨论怎样安排的场面。在这些内容中包含了解决这一问题的思考方法:首先要明确沏茶的大致顺序,也就是说哪些事情要先做,然后再考虑还有哪些事情可以同时做,能同时做的事尽量同时做,这样才能节省时间。比如“要烧水,必须先洗水壶,接水。”小男孩想:“等待水开的时间可以做点什么呢?”等,提示学生有些事情(烧水和找茶叶、洗茶杯等)可以同时进行。教材还提示可以用流程图的方式表示解决问题的顺序或方案,教给学生设计方案的具体方法。最后,教材让学生比一比谁的方案所需的时间最少,谁的方案更合理;再一次揭示了讨论这一问题的目的:探讨解决问题的优化方案。
教学例2时,教师首先引导学生观察、理解情境图,可以让学生用讲故事的方法引出问题。之后可以组织学生讨论:沏茶都需要做哪些事情?每件事大概需要多长时间?学生讨论交流后,再出示教材中给出的图例。
接下来可让学生分小组来设计方案,要让学生首先思考并讨论清楚:这些工序中哪些事情要先做?哪些事情可以同时做?在小组汇报时,教师可以引导学生用画箭头的方法把沏茶的过程图表示出来,再让各小组把自己的方案用这种流程图表示出来,然后在全班展示。
最后,让学生比较同学们设计的方案,看看每一种方案中,沏茶的顺序对不对,所需的时间各是多少。从中选出最佳的方案。下面是参考的答案(当然还可以显示出时间):
“做一做”的问题可以让学生先独立思考,然后再通过小组讨论看看谁的方案最合理。
第1题是与例1配合的,意思是:餐厅现在同时来了3位顾客,每人点了两个菜,而只有两个厨师,怎样安排炒菜的顺序比较合理呢?与例1的解决方法相同,应先给前两个人各炒一个菜,接下来给第一个人和第三个人各炒一个菜,最后给后两个人各炒一个菜。汇报交流时,可以让学生们说一说自己的理由。
第2题是与例2对应的,是关于生病吃药中各项事情的安排问题。这里通过表格的方式给出吃药时要做的各项事情以及所需的时间,让学生来合理安排。与例2的解决方法相同,一方面要考虑各项事情的先后顺序,比如要先倒水,然后才能等水变温;另一方面要考虑哪些事情可以同时进行,比如在等开水变温的时候可以找感冒药,还可以量体温,这样就能节省时间了。
第3题是让学生互相交流一下生活中还有哪些事情可以通过合理安排来提高效率,体会优化思想在生活中的应用,并逐渐养成合理安排时间的良好习惯。学生可以从各个方面、各个行业去考虑,但主要还是结合学生的实际生活,从身边的事例中寻找。比如在学校里,打扫卫生时怎样合理安排各项事情能节省时间,在家里用洗衣机洗衣服时,还可以同时整理房间等等。在此,教师可以结合具体事例教育学生养成合理安排时间的良好习惯。
3.例3。
例3是关于排队论的问题,排队论是关于随机服务系统的理论,其中的一项研究是怎样使服务对象的等候时间最少的问题。教材出示了一个码头卸货的情景:码头上现在同时有3艘货船需要卸货,但是只能一船一船地卸货,并且每艘船卸货所需的时间各不相同,那么按照怎样的顺序卸货能使三艘货船等候的总时间(等候时间包括卸船时间)最少呢?教材没有给出答案,而是让学生自己来解决。这里卸货顺序的种数是一个排列问题,一共有6种不同的方案,主要是要让学生从中选出最优的方案。学生可以计算出每种方案中三艘货船的等候时间的总和各是多少,从而找出最优的卸货顺序。
接下来的“做一做”安排了3名同学同时到学校医务室看病,每人就诊所需的时间各不相同,怎样安排他们的就诊顺序可以使他们的等候时间之和最少。要解决的问题和例3基本相同。
教学例3时,教师可以先引导学生观察情境图,让学生说一说可以得到哪些信息。然后提出问题:要使三艘货船的等候时间的总和最少,应该按怎样的顺序卸货?接着可以让学生分小组讨论:①可以有哪些卸货的顺序?②每种方案总的等候时间是多少?在这里卸货顺序的方案是一个排列问题,学生一共可以找出6种不同的方案,教师可以引导学生用表格的方式罗列出来。可以用船1.船2和船3分别代表三艘货船(教材图中从上到下的顺序),并让学生算出每种方案三艘货船的等候时间的总和。
方案
卸货顺序
船1的等候时间(时)
船2的等候时间(时)
船3的等候时间(时)
等候时间的总和(时)
1
船1→船2→船3
8
8+4
8+4+1
33
2
船1→船3→船2
8
8+1+4
8+1
30
3
船2→船1→船3
4+8
4
4+8+1
29
4
船2→船3→船1
4+1+8
4
4+1
22
5
船3→船1→船2
1+8
1+8+4
1
23
6
船3→船2→船1
1+4+8
1+4
1
19
然后,让各小组汇报所找出的最优方案。老师可以提问:从表中你有什么发现吗?引导学生思考:如果先卸船1的货,那么三艘船都要等候8小时;而如果先卸船3的货,每艘船只需等候1个小时,所以依次从等候时间较少的船开始卸货,就能使总的等候时间最少。这一点只要求学生有所体会,不作为教学的要求。
接下来让学生完成“做一做”中的问题,同样的也可以让学生用列表的形式给出不同的就诊顺序,并算出等候时间,从中找出最优的方案。当然如果学生能运用例3里分析的优化思想直接找到依次从等候时间较少的同学开始就诊也可以。学生完成设计后,先分小组交流,再在班上汇报。
4.例4。
例4从“田忌赛马”的故事引入对策论的应用问题,对策论研究的是竞争的双方各自采取什么对策才能够战胜对手。“田忌赛马”的故事学生可能已经了解,但是并不是从数学的角度去理解的。在这里,通过这个故事让学生体会对策论方法在实际中的应用。
教材首先引导学生回忆这个故事,并让学生把田忌在赛马中使用的方法通过表格的形式列出来,通过比较让学生看到:虽然在同等级的马中,田忌的马都不如齐王的马;如果拿同等级的马进行比赛田忌一定会输,但是田忌所采用的策略却让他赢了。从而,让学生体会到对策论的方法在这场比赛中的重要性。接下来让学生思考:田忌所用的这种策略是不是唯一能赢齐王的方法?并让学生把田忌所有可以采用的策略列出来,通过对照来找到答案。田忌可以采用的策略一共有6种,但只有一种也就是他所使用的方法是唯一可以获胜的。最后,教材让学生说一说田忌的这种策略在生活中还有哪些应用,让学生体会对策论方法在生活中的应用。
例4后面有一个“数学游戏”,让两人轮流报数,每次只能报1或2,把每人报的数连续相加起来,最后一个报数使和为10的人就是获胜者。通过游戏活动让学生思考:如果先报数,采用怎样的策略能够确保获胜?在游戏中让学生体会对策论方法的应用。
教学例4时,教师可以先让学生回忆“田忌赛马”的故事,也可以请同学来讲一讲这个故事。让学生把田忌在赛马中使用的方法在教材给出的表格上补充完整(见下表)。
齐王
田忌
本场胜者
第一场
上等马
下等马
齐王
第二场
中等马
上等马
田忌
第三场
下等马
中等马
田忌
接下来让学生思考:田忌所用的这种策略是不是唯一能赢齐王的方法?让学生分组讨论,教师可引导学生:看一看田忌一共有多少种可采用的应对策略。并让学生把田忌所有可以采用的策略都找出来,填入表中(见下表,田忌1代表他的第一种策略),并指出每种策略获胜的一方。
第一场
第二场
第三场
获胜方
齐王
上等马
中等马
下等马
齐王
田忌1
上等马
中等马
下等马
齐王
田忌2
上等马
下等马
中等马
齐王
田忌3
中等马
上等马
下等马
齐王
田忌4
中等马
下等马
上等马
齐王
田忌5
下等马
上等马
中等马
田忌
田忌6
下等马
中等马
上等马
齐王
老师把各小组汇报的结果展示出来,通过对照学生很容易看到答案。接下来教师可以让学生说一说田忌的这种策略在生活中还有哪些应用,比如前面提到的乒乓球团体比赛,还可以让学生结合实际说一说。
做“数学游戏”时,教师可以先说明游戏的规则,学生明确方法后,让同桌的两人一组来玩这个游戏(每次游戏先报数的人可以交换)。学生对这个游戏方法比较熟悉后,老师再让学生来做一遍,这时第一个报数的人要思考:要想确保获胜,第一次应报几?接下来该怎样报?另一个人考虑怎样应对有获胜的可能。先让学生独立思考,然后可以进行实验,并在小组中讨论。
如果有困难的话,教师可以提示学生思考:因为每次可报1或2,那么如果一方报1,另一方就可以报2;一方报2,另一方就可以报1,这样总能保证每个回合连续两次报数之和是3。因为谁最后报数使和是10谁获胜,所以你一定要设法报数使和是7,这样对方无论怎样接着报数,你都可以保证最后报数使和是10。同理,要想保证报数使和是7,倒推一步就是一定要先报数使和是4,再倒推一步就是一定要先报数1。如果两个人都清楚这个策略,那么,谁先报谁获胜。如果对方不知道这个策略,那么在报数的过程中要设法能够报数使和是7,就可以获胜。
利用减法原理就是:从最后报数和是10中每次减去3,减去3个3还剩1,即
10-3-3-3=1,用除法表示是:10÷3=3......1
所以第一个报数的人先报1,就可以保证控制局势。
同理,如果把最后报的数扩大到50,就是50÷3=16......2
所以第一个报数的人先报2,就可以保证获胜。
依此类推,如果每个人每次可以报2或3,就要把5做除数。学生明白其中的奥妙后,教师可以把最后的和10改为30或更大,或者每次可以报2或3,再让学生试一试。
《数学广角》教案6
一、 目标
(一)知识与技能
1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。
2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。
(二)过程与方法
通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。
(三)情感态度与价值观
体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。
二、 诊断
“集合问题”是人教版三年级下册第九单元“数学广角”的第一课时,是小学阶段集合思想教学。集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。
三、教学重难点
教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。
教学难点:理解集合图的意义,会解决简单重复问题。
四、教学准备
多媒体课件、小白板、练习题卡
五、教学过程
(一)巧用对比,初悟“重复”
1.观察与比较(课件出示图片)
第一组;父与子
(1)提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?
第一种:无重复情况。
黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。
预设:列式一:2+2=4(人)
第二种:有重复情况。
汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。
列式二:2+2=4(人)4-1=3(人)
师追问:为什么减1?
第二组:小棒拼三角形
(1)3根小棒拼成的一个三角形。
(2)提出问题:摆2个这样的三角形需要几根小棒?
预设:可能会说6根,表示3+3=6(根)
还可能会说5根,表示3+3-1=5(根)
图片出示有重复情况的2个三角形。
教师追问:根据图中摆的方法,哪种列式是正确的?为啥要减1?
2.思考与发现
(课件出示)把2组有重复情况的图片放在一起。
(1)提问:你发现了什么?
学生思考,回答想法。
教师要引导学生突出:(1)“重叠”或“重复”一词;(2)列式中“减1”的意义;(3)能用表达逻辑关系的语言“既…又…”和“或”说出这两个关于重复现象的问题;(4)师生小结,得出:图片1中有个人既是爸爸又是儿子,他的身份重复了;三角形中有1根小棒是公共边,重复使用了,既是左边三角形的一条边,又是右边三角形的一条边。
教师揭示课题,今天我们研究有重复现象的数学问题。
【设计意图】设计2组简单实例,既有生活中的问题又有数学中的重叠问题,不同角度的对比,共同的理解方法,都从简单数据入手,让学生在计算总数时都不能用直接相加的方法求出总数,引发学生认知冲突,唤醒探究热情,也让学生初识重复问题的基本含义。
(二)善用例题,引入新课
1.情境引入(课件出示“通知”)
(1)了解信息,提出问题
你认为三(1)班要选拔多少名同学参加这两项比赛?
让学生尝试回答参加比赛的总人数。
(2)出示名单,引发认知冲突
课件出示三(1)班参赛学生的名单的统计表,让学生观察。
2.观察名单,验证人数,初悟“重复”
问题:仔细观察过这份报名表,你有什么发现?
让学生根据自己的理解分析,发现有参加两个项目的同学,从而得出“重复”或相近的意思。
(三)合作探究,体验过程
1.策略分析
谈话:你能从这份报名表中一眼就看出有几位同学参加两项比赛?
让学生意识到如果能直观看出重复的同学就不会计算错误的问题,激发学生想重新整理名单的欲望。
借助学具,小组合作,同学间相互交流。教师巡视,个别辅导。
【设计意图】通过分析,让学生认识到要解决重叠问题,就要清楚看出重复部分的数量,从而引发学生操作意识,这时教师放手让学生进行探究,整理,在小组合作中完成。
2.探究方法
(1)选出几种不同作品展示,理解分析不同整理方法。
预设:方法一
方法二:
跳绳
杨明
刘红
李芳
陈东
王爱华
马超
丁旭
赵军
徐强
踢毽子
于丽
周晓
朱晓东
陶伟
卢强
方法三: 跳绳 即参加跳绳又参加踢毽子 踢毽子
陈东 丁旭 杨明 于丽 陶伟
王爱华 赵军 刘红 周晓 卢强
马超 徐强 李芳 朱晓东
(2)交流不同思想,比较各自的优缺点。
(3)引入韦恩图(集合图),了解集合图中的各标题含义,进行填写。
课件出示:
(4)介绍韦恩,拓宽视野
课件出示:在数学中,经常用平面上封闭曲线的内部代表集合,以及用以表示集合之间关系。这种图称为维恩图(也叫文氏图),是由英国数学家叫维恩发明创造的, 维恩图常用来研究表示数学中的“集合问题”,也叫集合图。
【设计意图】让学生亲历整理过程,在这个过程中通过合作、思考、交流、比较等活动,让学生充分认识到,体现重复部分怎样做到既直观又美观,还能表示每部分的内容。结合各小组展示的优点,引出韦恩图,让学生了解韦恩图的同时,又体会到数学文化的底蕴。
3.辩论感悟
谈话:现在用维恩图来表示各项参赛的'人数,与之前的表格比较,它有哪些优点?
让学生感悟集合图能直观看出参加各项运动的人数,尤其是重复参加两项比赛人数的部分很清楚。
4.据图列式,运用集合图
谈话:你了解图中各部分的意义吗?
(1)课件演示各部分,让学生比较正确表述各部分的意义。
(2)利用数据,列式计算出该班参加比赛的人数。
指名学生计算,反馈交流,理解各算式的意义。
可能会出现:8+9-3=14(人);6+3+5=14(人);8-3+9=14(人)9+5=14(人)
【设计意图】让学生借助直观图,理解集合图的意义,并利用集合的思想方法解决简单的实际问题。在不同的策略中感受到解决问题方法的多样性,提高学生思维水平和学习能力。
5.变式练习,内化集合思想
课件出示:三(2)参加运动会学生名单(学号表示),根据信息填写集合图中。
跳绳
9
13
17
18
25
29
33
38
42
踢毽子
17
25
28
30
31
39
40
44
教师在引导中要让学生意识到先填写哪部分,再填写哪部分会更好些。
请学生板演,汇报填写的策略,看图理解各部分的意义,计算三(2)班参加比赛的总人数。
师生小结。
【设计意图】变式练习是让学生从集合图中会看信息,到会填写集合图的一个数学思想的延伸,也是解决重复问题的关键,是为学生以后解决此类问题打好基础。
(四)巩固应用,建构模型
1.基础性练习
(1)完成教材上105页“做一做”第1题.
指导学生把动物的序号填进合适的图中,并请学生说说集合图中各部分的意义
2.趣味性练习
3.拓展性练习
估计三(3)班可能有多少同学参加比赛。
讨论:根据学校要求,每班要选拔9人参加跳绳,8人参加踢毽子比赛,你觉得三(3)班可能会选拔多少人?
判断:参赛的同学最多有17人。( )参赛的同学最少有 8人。( )
小组讨论,全班分析,得出:参赛同学最多是17人,没有人重复;最少有9人,其中8人重复。
【设计意图】设计一组由梯度的练习,从简单应用到开放,从正向思维到逆向思维,既链接所学知识资源,又实现对学生思维的拓展。这样的练习设计不仅能让学生结合集合思想进行分析,还能结合可能性的知识解决问题。
(五)全课总结,呼应课题
师:今天我们认识了用集合图来解决有重复现象的数学问题。这是一种数学思想,叫集合思想。(板书:集合)今天我们利用集合数学思想方法解决一些数学问题,希望同学们以后在学习上能多观察、勤思考,探寻更多的数学奥秘。
《数学广角》教案7
班级学情分析:
我校三年级共有学生43人,大多数数学学习能力较强,但是优劣差距较大,所以教学起来还是有一定困难的。
教学目标:
1、通过摆一摆、玩一玩、画一画等实践活动,了解有关两两组合的知识。
2、培养学生初步的观察、分析能力和有序的、全面思考问题意识。
3、培养学生大胆猜想、积极思维的学习品质。
4、通过学习学生能应用排列组合的知识解决生活中的实际问题。
教学重点:经历探索简单事物两两组合规律的过程
教学难点:能用不同的方法准确地计算出组合数。
教学用具:课件、卡片、铅笔、直尺等。
教学过程:
一、创设情境,激趣导入:
师:小朋友们喜欢什么样的球类运动呢?
(让学生各抒已见。)当有人说到足球时。老师马上引到学校冬季运动会,我们三年级3个班的比赛情况,结果我们班得了第一。那我们班比赛了几场?学生回答两场。三个班比赛,每两个班比赛一场,那一共要比赛多少场呢?四人小组合作完成。然后汇报,并说理由。
二、引导参与:4人小组合作完成。然后汇报,并说理由。
三、共同探究:
师:20xx年世界杯足球C组比赛有几国家?是哪几个国家?让学生发表意见。他们说不出,老师再告诉他们。
师:如果这四个队每两个队踢一场球,一共要踢多少场?(课件演示主题图)
1、让学生大胆说一说、猜一猜。
2、四人小组用学具卡片摆一摆、讨论讨论。
3、学生汇报。
4、汇报时可让学生利用学具卡片在黑板上演示他们求组合数的方法。
5、一小组演示。
6、其他同学认真观看。
8、然后在相互探讨、补充。
9、力求能准确算出比赛场数。
10、方法允许多样。每种方法都放手让学生相互交流、学习。老师适当引导。
11、师生共同。
A、用画“正”字数出要踢多少场。
B、把巴西、土耳其、中国、哥斯达黎加四个国家摆成正方形用连线的方法求出场数。
C、把巴西、土耳其、中国、哥斯达黎加四个国家摆在一直线上在用连线的方法求出场数。
13、用课件将上面第二、第三种方法直观演示。
14、让学生把这些抽象的知识直观化、具体化。
15、老师总结。
刚才同学们有的.用了把所有的情况逐一罗列出来,有的同学是用图示法求出两两组合数的,用哪一种方法求都可以,只要这种方法是你喜欢的。
课堂练习:
比赛结束了。运动员相互握手告别。问题是:四个人每两人握手一共要握几次手呢?
(1)进行礼仪教育。
(2)四人小组进行实践。
(3)请1-2个小组代表上台演示。
作业设计:
提问:如果是5个运动员每两人握一手,一共要握几次手呢?
我的问答:
课堂是以学生为主体的, 所以学生的主体地位在任何时候都要放在首位,但这一点也是许多教师都犯的一个通病,把课堂看做自己表演的舞台,给学生留的空间很少,这就我自己认为是错误的,你说呢!
《数学广角》教案8
教学目标:
1.让学生通过观察、猜测、操作、验证等活动,初步体会等量代换的思想方法。
2.培养学生有序地、全面地思考问题的意识和合作学习的习惯。
教学重点:
利用天平或跷跷板的原理,使学生在解决实际问题的.过程中初步体会等量代换的思想方法,为以后学习代数知识做准备。
教学难点:使学生会运用等量代换这一数学思想方法来解决一些简单的实际问题或数学问题。
教具、学具:卡片、课件
教学过程:
一、创设情境、提高兴趣
1. 师:同学们,我们的童年生活在丰富多彩、游戏多种多样,跷跷板就是其中之一,你们玩过吗?好玩吗?(自由回答)
师:想一想,玩跷跷板的两个人在体重上有什么要求?
生:两人体重不能相差太多。
师:三四班的甲同学体重50千克、乙、丙分别重25千克,假如甲和乙玩跷跷板会出现什么情况?
生画图表示。
师:如何使跷跷板平衡?
生画图表示。
2. 介绍天平
师:天平的工作原理同跷跷板一样,下面请看大屏幕(flash画面伴有声音:同学们,大家好,我叫天平。在实验室里能见到我,当我平衡时,表示左右两边的物体同样重。)
二、动手合作、探究就知
1. 故事引入
(flash画面伴有声音。)森林王国的熊妈妈生病了,小猴和小兔准备买东西去看望他。他们来到水果摊前,小猴对小兔说:“西瓜又大又甜,我们就买它吧。”于是他俩把西瓜放到天平上称了称,发现一个西瓜重4千克,小猴提了提:“哎呀,太沉了,我提不动。”小兔试了试:“我也不行。”正在他们俩不知怎么办时,售货员叔叔说:“西瓜和苹果都是1千克2元钱,你们可以把西瓜换成苹果,这样就一人一半了。”“对呀!叔叔的主意好。”他俩高兴地说:“一个西瓜4千克,4个苹果1千克,假如每个苹果同样重,1个西瓜能换几个苹果?小朋友,你能帮我们算一算吗?”
①抓住时机,对学生进行思想教育,学会关心别人;
②师:你得到了哪些数学信息?
生:从第一个图中看出,一个西瓜重4千克,从第2个图中看出4个苹果1千克,问题是一个西瓜和几个苹果同样重?
师:请同学们用学具摆一摆。(教师巡视,适当指导)
学生讲思路。
师:熊妈妈见到两位小客人,心情十分高兴,病也好了一大半,决定邀请小猴和小兔去动物园逛逛,他们看到了什么?请看大屏幕。
①P109做一做。
(flash画面伴有声音:森林王国动物园的跷跷板平衡游戏开始了。“我小猪先坐上去,谁来和我玩呀?”“小猪等等我,我们和你玩,呵,跷跷板平衡了。”“你们玩的这么开心,我也来凑凑热闹吧!”“老牛,我们四头小猪站在一起才能和你玩啊!”同学们,两头牛和几只羊站在一起才能使跷跷板平衡呢?)
学生找出条件和问题。
师:2头牛等于几只羊?应怎样思考,自己想一想,再交流讨论。
师:边播放课件边讲解。
②看大屏幕(练习二十四4题)
(flash画面伴有声音:“小鸡,你比我轻,我不想和你玩。”“臭鸭子,你才比我轻呢!我还不想和你玩呢。”在一旁的鹅听到后,赶紧跑来劝架:“别吵了,我和你们一起玩吧!”孩子们看到这里,你们知道一只鸡和一只鸭谁重一些?)
学生讨论,汇报结果。
播放课件,讲解。
三、拓展内化 解决问题
师:参观完动物园后,在回家的路上又碰到什么情况了?
看大屏幕(练习二十四.3)
(flash画面伴有声音:“灰兔哥哥,今天我们真是大丰收,我采了大萝卜,你采了这么多胡萝卜和白菜,我想用9个大萝卜换3棵白菜,行吗?”“白兔弟弟,行,那我也用6个胡萝卜换2个大萝卜吧。”等量代换游戏开始了,你们知道6棵白菜能换几个胡萝卜吗?)
师:提示先求1棵白菜能换几个胡萝卜?
学生可用学具摆一摆。
课件展示:
9个大萝卜=3棵白菜→3个大萝卜=1棵白菜
6个胡萝卜=2个大萝卜→3个胡萝卜=1个大萝卜
6棵白菜=?胡萝卜→1棵白菜=?胡萝卜
(54) ← (9)
四、布置作业(练习二十四.5)
《数学广角》教案9
教学目标:
1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。
2. 通过操作发展学生的推理能力,形成比较抽象的数学思维。
教学重点:
经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。
教学难点:
运用 “鸽巢问题”,解决一些简单的实际问题。
教具准备:
每组都有相应数量的杯子、小球、扑克牌、多媒体课件。
教学过程:
一、游戏引入:
师:我们今天来做个游戏,游戏要求,把全班分成若干小组,每小组的组长手中有3个小球和2个杯子,要求把所有小球全都放进杯子里。同学们看看老师猜的对不对。
请三位小组长上台来猜另外三小组同学小球是怎么放的。生讲师板书。
师小结:一定有一个杯子里至少有两个小球。
同学们你们想不想知道为什么老师会知道呢?板书课题:鸽巢问题
二、探究原理:
1、动手摆一摆,感受原理。
(1)探究物体个数比抽屉多1的情况。
例1、现在要把4支铅笔放进3个文具盒里,会有几种不同的放法?请大家摆一摆,边摆边记录。
全班分小组摆一摆。
各组长边摆边记录。教师板书,全班同学报数,一起记录。
联系小球放进杯子的游戏,引导学生讲出:不管怎么放,总有一个杯子至少放有2根小棒。
师:总有一个杯子至少有……
师:A、总有是什么意思?
师:B、“至少”又是什么意思? “至少’的意思是2根或2根以上。
师:如此往下想,7根小棒放在6个杯子里,
10根木棒放进9个杯子里
100根木棒放进99个杯子里会有怎么样的结论?
要证明这个结论能想出一种简便的'方法来吗?大家讨论讨论。
学生讨论。
师:想出什么办法?谁来说说。
刚才这样分是怎样分?为什么要用平均分,才能证明这个结论?
(边摆边说。如果用算式怎样表示?板书(4÷3=1……1)
学生得出:只要小棒数量比杯子数量多1都有这样的结论。
2、探究商不是1的情况。
讨论7本书放进3个抽屉里,想知道结论吗?还要摆吗?
那8本书进3个抽屉里。
10本书放进3个抽屉里又是怎样?你发现了什么?
我发现 7÷3=2……1
8÷3=2……2
10÷3=3……1
板书:至少数=商+1。
小结:我们今天探究的原理就是数学中有名的鸽巢原理。
三、本课总结:
鸽子÷鸽巢 = 商…… 余数
至少数 = 商+1
四、用今天知识来解决生活中的一些实际问题。
1、做一做
2、玩扑克的游戏。
五、板书:略
《数学广角》教案10
教学目标:
1、使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用。
2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
3、使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。
4、使学生感受到数学在日常生活中的广泛应用,尝试用数学的`方法解决生活中的简单问题。
教学重点: 体会优化的思想。
教学难点: 寻找解决问题最优方案,提高学生解决问题的能力。
教案2
教学内容:教科书第115页的例题3。
教具准备: 图片。
教学过程:
一、情境导入:
1、同学们想一想,生活中有哪些事情可以通过合理安排来提高效率?
2、这节课我们继续来学习数学广角。
板书课题:数学广角
二、探究新知:
教学例3
1、出示情境图片:码头上现在同时有3艘货船需要卸货,但是只能一条一条地卸货,并且每艘船卸货所需的时间各不相同,那么按照怎样的顺序卸货能使3艘货船等候的总时间最少呢?
2、观察图,说说可以得到哪些信息?
问:要使三艘货船的等候时间的总和最少,应该按怎样的顺序卸货?(学生讨论)
3、可以有哪些卸货的顺序?每种方案总的等候时间是多少?
列出表格,问:从表中你有什么发现吗?(引导学生思考汇报)
4、找出最优方案。
三、巩固新知:
1、书后做一做
小名、小亮、小叶同时来到学校医务室。要使三人的等候时间的总和最少,应该怎样安排他们的就诊顺序?
2、有210人选举大队长,有三位候选人甲、乙、丙,每人只能选之中1人,不能弃权。前190张票中甲得75张,乙得65张,丙得50张,规定谁的票最多谁当选。若甲要当选,最少还需要多少张票?
四、小结:这节课你有什么收获?
五、作业:补充练习
教学目标:
1、使学生初步体会运筹思想在解决实际问题中的应用。
2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
3、使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。
4、使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。
教学重点: 体会优化的思想。
教学难点: 寻找解决问题最优方案,提高学生解决问题的能力。
《数学广角》教案11
教 材 分 析
《数学课程标准》指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会统筹思想在实际生活中的应用,以及在解决问题中的运用。
学 情 分 析
四年级学生在数学知识和技能方面已有了一定的基础,但是其思维能力尚停留在形象化和表面化,对于数学与生活的'联系也不能灵活运用,所以在教学时,教师应做好课前准备,让学生提前了解烙饼的方法和时间。
教 学 目 标
1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
教学重点和难点
教学重点:体会优化思想。
教学难点:寻找解决问题的最优方案。
《数学广角》教案12
教学目的:
1、初步建立“倍”的概念,理解“几倍”与“几个几”的联系。
2、培养学生观察、推理、迁移的能力及语言表达能力。
3、培养学生善于动脑的良好学习习惯和对数学的学习兴趣,培养他们创新的意识。
4、对学生进行爱护花草树木的教育
教学重难点:
教学重点:进一步感知除法的意义,感悟乘、除法之间的内在联系。
教学难点:会用乘法算式求商的方法。
教具准备:
圆片、小棒、多媒体课件。
教学过程:
一、设计问题情境,引入新课
出示:2只白羊和6只小兔
教师:我们学习过比较两个量多少的知识,谁能根据这幅图说一句话?(小兔比白羊多4只;白羊比小兔少4只。)
教师:同学们说得很好,我也说一句,小兔的只数是白羊的3倍。他们知道这句话是什么意思吗?
(在学生感到迷惘时,揭示今天的学习内容。板书:倍的概念。)
二、探究新知
1、教学例1
(1)动手操作。(指名学生上台摆。)
第一行摆:
第二行摆:2个3根(教师只说2个3根,让学生思考2个3应怎样摆。)
(2)教师揭示倍的含义,指着学生摆的两行小棒小结:第一行摆了3根小棒为一份,第二行摆了2个3根是2份,我们就说,6里面有2个3,6是3的2倍。
(3)教师在第二行添上3根小棒,问:第二行里有几个3根?第二行的小棒数是第一行的几倍呢?
让同桌学生两个互相说一说,然后指名说。再添上3根呢?
(4)摆一摆,说一说。8是4的几倍?8是1的几倍?
2、教学例2。
(1)教师摆。
第一行摆:2片枫叶
第二行摆:4片叶子
问:第二排是第一排的几倍?你是怎样知道的?怎样挪动第二排的树叶就可以一眼看出两排树叶之间的.关系?摆一摆。你发现了什么?(把4片叶子每2片分一份,可以分两份)用除法怎样表示?
板书:第二行的个数是第一行的xxx倍。
4÷2=
教师提问:你能将空填完整吗?第二行要怎样摆,才能清楚地看出是第一行的2倍呢?
(2)教师摆第三排叶子
问:第三排是第二排的几倍?你是怎样知道的?怎样挪动第三排的树叶就可以一眼看出两排树叶之间的关系?摆一摆。你发现了什么?(把12片叶子每4片分一份,可以分三份)用除法怎样表示?
板书:第三行的个数是第二行的xxx倍。
12÷4=
3、新课小结:这节课你都知道了什么?一个数里面有几个另一个数,我们就说这个数是另一个数的几倍。
4、课堂活动
(1)学生自己画示意图,并完成填空。
(2)让学生说说,为什么红花的朵数是黄花的5倍呢?
三、巩固练习
1、课堂活动2题。
摆一摆,说一说。
2、口答
12里面有()个6,12是6的()倍。
42里面有()个7,42是7的()倍。
25里面有()个5,25是5的()倍。
18里面有()个3,18是3的()倍。
21里面有()个3,21是3的()倍。
30里面有()个5,30是5的()倍。
《数学广角》教案13
教学目标:
1、通过观察、猜测、实验、推理等活动,探索解决问题的策略,渗透优化的数学思想方法。
2、利用图形、符号等直观方式,表示数学思维过程,培养观察、分析、推理的能力和解决问题的能力。
3、体会解决问题策略的多样性,感悟和运用数学思想方法,感受数学的魅力和数学学习的快乐。
教学重点:
体会解决问题策略的多样性,探求解决问题的优化策略,渗透数学思想方法。
教学难点:
从解决问题策略的多样化中发现最优策略。
教具准备:
瓶装口香糖、课件
学具准备:
圆片、纸笔。
教学过程:
一、借助直观,理清“找次品”的思路
1、创设情境。
同学们,在生活中你们或家人、同学有买过次品的经历吗?在我们的日常生活中,有许多产品,有的外观有瑕疵,有的成分不过关,还有的轻重不合格,我们称它们为次品。(板书:次品)
出示实物,提出问题:这里有3瓶口香糖,其中有一瓶少了3片,你能用天平把它找出来吗?
2、理解天平的原理。(课件出示天平图)你们都知道天平吧!谁来说说天平原理?
3、在2瓶中找次品。(课件演示)看,次品在哪?
4、在3瓶中找次品。
全班汇报:怎么样利用天平找出这瓶少了的`口香糖。
课件演示:随意拿两瓶放在天平上,可能会出现几种情况?
小结:看来从3瓶中找一瓶次品,我们称一次,通过天平的平衡与不平衡,就能准确找出次品。
5、在4瓶中找一个次品
提出问题:如果增加1瓶,有4瓶了。要怎么找出轻的这一瓶呢?可以怎样称?结合学生回答演示课件。
6、揭示课题。我们就用这个好方法,今天一起来研究——找次品。(板书课题:找次品)
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例题前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理;再从4瓶中找次品。在2个、3个和4个中找次品是基础,只有理清了这些“找次品”的思路,后面的探究、推理活动才能顺利进行。]
二、引导探究,体会方法的多样性
1、出示例题:5个乒乓球中有一个较轻的是次品,你想怎么称?
(1)收集称的方法。(一个一个称,两个两个称)
(2)同桌合作,摆学具,想一想:怎样称?需称几次?
(3)指名汇报:(教师随机课件演示:怎么找?可能出现什么情况?说明什么?教师帮助板书示意图。)
5(1,1,3)2次
5(2,2,1)2次
2、小结:同学们真是能干!从5个乒乓球中找到了轻的那一个。先分一分,想到了两种方法,再通过天平的平衡与不平衡,至少2次找到次品。
[设计意图:在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。为了便于学生操作和节省时间,所以让学生用学具模拟天平实验来进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下基础。]
三、猜测实验,寻找规律
1、出示例题:有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
2、枚举所有称法,学生分析、汇报。
(1)有几种分法?
(2)画图分析,有困难的可以摆摆学具帮助分析。
(3)汇报各种称法。
3、教师引导学生观察、比较:你有什么发现?
4、优化解决办法:分3份、平均分。
5、小结:同学们通过观察表格,比较这三种方法,发现只要把9个零件平均分成3份,就能最快找到次品了。
[设计意图:这一环节是本节课的重点也是难点,学生通过思考、分析,结合操作,尝试用图示法记录找次品过程,是完成由具体到抽象过渡中的重要一步。让学生在交流、对比中探索最简的方法,经历学习、发现和探索的过程。]
四、拓展延伸,优化策略
1、同学们,生活中有很多的“找次品”的问题并不能平均分成3份。“我们看看前面的5的例子,[师指黑板5(2,2,1)],我们要分成3份时要分得尽量怎样?”(要分得尽量平均)。
2、在8个中找次品。试一下,怎么分3份?(预设:2,2,4或3,3,2)
引导学生分析哪种分法好?板书:8(3,3,2)2次
3、小结:看来,没法平均分的数,我们只要“尽量”(试着让学生说出来)平均分。也就是分在三份里的数中,最大与最小份只相差1,也能既快又保证找到次品了。
补板书:尽量
同学们真了不起,能从刚才发现的规律推理到8个中找次品,并归纳出找次品的最优策略。
[设计意图:从5个中找次品类推到8个中找次品,引导学生探索发现不能平均分成3份的要尽量平均分成3份,完善找次品的最优方法,引发学生进一步学习归纳、推理等数学思考活动。]
五、巩固应用,深化认识
师:有了找次品的最优策略,想不想试试它的功效呢?
出示:有()瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?
让学生自主选择10或15,尝试解决这道题。
六、课堂总结,拓展延伸
1、这节课我们解决什么问题?怎样解决最优?
2、我们用了哪些方法发现了找次品的最优策略?
3、我们为什么要研究找次品?
《数学广角》教案14
教学目标:
1、通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:尝试用数学方法解决实际生活中的简单实际问题。
教学难点:尝试用数学方法解决实际生活中的简单实际问题。
课时安排:约 2 课时
课时1找次品
教学内容:人教版数学五年级下册第134-135页的内容。
教学目标:
1、让学生初步认识“找次品”这类问题的基本解决手段和方法。
2、学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:观察归纳“找次品”这类问题的最优策略。
教学准备:课件
教学过程:
一、情境导入
电脑出示图片:美国第二架航天飞机,再出示它爆炸的`图片。
电脑解说:1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是生产了一个不合格的零件引起的。
师:可见,次品的危害有多大,在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,重一点或轻一点的物品。需要想办法把它找出来,我们把这类问题叫做找次品。
师:下面我们一齐来研究找次品。
出示课题:找次品
二、初步认识“找次品”的基本原理
1、自主探索。
a 出示口香糖:老师这儿有三盒口盒糖,其中有一盒是吃了两粒的,你说有什么办法帮忙将它找出来吗?
师:对,我们可以用天平来帮忙找出次品。
让生根据讨论题同桌互相说说方法:
电脑出示:同桌说说:(1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?
b 学生汇报方案并上台边讲边在天平演示。
师据生回答板:3(1,1,1) 1次
2、老师又拿来了两盒口香糖,和前面的三盒混在一起,你还能用天平将那盒吃了两粒的口香糖找出来吗?
a 出示:小组讨论:(1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?(4)至少称几次就一定能找出次品来?
让生根据讨论题在学习小组讨论交流,把自己的想法说给小组其他成员听。
b 学生在投影上演示,边演示边讲。
师据生回答板:5(2,2,1) 2次
5(1,1,1,1,1) 2次
三、从多种方法中,寻找“找次品”的最佳方案 “9”“刚才大家都很聪明,都能在几盒口香糖里找出轻的那盒次品来,那如果有的次品是比是重一些的,那你又能不能把它找出来呢?”
1、课件出示例2,有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、一定。
2、让学生拿出九个正方体,把它当作这几个零件,自己根据刚才的讨论题,说说方法,如果想到有几种方法的,都将方法说出来。
然后让生说说方法,师据生回答板:
零件个数 分成的份数 保证能找出次品的次数
9 3(4,4,1) 平
不平4(2,2) 不平2(1,1) 3次
9 3(3,3,3) 平 3(1,1,1)
不平3(1,1,1) 2次
9 5(2,2,2,2,1)平(2,2)平 不平2(1,1)
不平2(1,1) 3次
9 9(1,1,1,1,1,1,1,1,1) 4次
2、观察分析,寻找规律。
“好,刚才我们在9个零件里找次品,方法就有四种了,如果待测物品更多一些,那方法也会更多,如果每次都这样找的话就比较?(麻烦、复杂)对,那我们能不能找出一些规律呢?”
“同学们观察表格,那种方法最简便、最快的?称几次就一定能找出次品来?”
“那这种方法我们分成几份?是怎么分的?”(分成三份,并且平均分)
“是否所有“找次品”的问题中,都可以将物品平均分成三份呢?”(不是)
“对,有的数能平均分成3份,如:6、9、12、27等。有的数不能均分成3份,如5。”
“我们看看前面的5的例子,(师指板5(2,2,1)),我们要分成三份时要分得尽量怎样?”(要分得尽量平均)
然后再让学生小组讨论:找次品的最好方法是怎样?
(1)把待测物品分成几份?
(2)假如待测物品不能平均分,怎么办?
据生回答出示:最好方法:一是把待测物品分成三份;
二是要分得尽量平均。
3、练习:如果零件是10个,你认为怎样分最好?
让生思考后回答,师电出:10(3,3,4)
如果零件是11个呢?11(4,4,3)
四、看书质疑
五、练习:
书本第136页的第2题
六、小结
“这节课你学会了什么?请跟同桌交流交流。”
师全课小结:这节课我们主要是学了如何找次品,那找次品的最好方法是什么?
“同学们这节课上得不错,其实在日常生活中,我们经常会遇到这样的问题,希望同学们多观察、多思考,从而发现更多知识。”
七、板书设计:
找次品
最好方法:一是把待测物品分成三份;
二是要分得尽量平均。
3(1,1,1) 1次 零件个数 分成的份数 保证能找出次品的次数
5(2,2,1) 2次 9 3(4,4,1) 平
5(1,1,1,1,1) 2次 不平4(2,2) 不平2(1,1) 3次
9 3(3,3,3) 平 3(1,1,1)
10(3,3,4) 不平3(1,1,1) 2次
9 5(2,2,2,2,1)平(2,2)平 不平2(1,1)
11(4,4,3) 不平2(1,1) 3次
9 9(1,1,1,1,1,1,1,1,1) 4次
《数学广角》教案15
教学内容:
义务教育课程标准实验教科书四年级下册第117——118页例题1及相应的“做一做”。
教学目标:
1.通过教学初步培养学生“从特殊到一般”的思维方法,使学生在动脑、动口、动手的活动中掌握利用特殊的数量关系思考和解答一些实际问题的方法。
2.培养学生观察事物的能力、操作能力以及与人合作交流的能力。
教学过程:
一、引入新课
解决问题:
1.出示题1:“四(1)班有8组,每组6人,一共有几人?”要求学生解答。然后教师指出:解决问题就是根据“数量关系”来解实际问题。
2.出示题2:
(1)“方娟同学在第3小组,她前面有3名同学,她后面也有3名同学,问第3小组共有几名同学?”(现场表演)
(2)一根绳子要剪成3段,需剪几下?(现场操作)
学生回答后,教师:有些实际问题要用特殊的数量关系来解答。
板书课题:数学广角(一)——用特殊数量关系解答的一些实际问题
[反思:从课题的复习开始,教师就注意抓住学生在解答时较易出错实际问题(前一道容易答“共有6名同学”,后一道容易误答为“要剪3下”)来引入新课,这有利于激发学生思维的积极性及思维的准确性,为后面的学习作了有效的'捕垫。]
二、讲授新课
(一)准备知识:
1.下面的每两个“○”中间摆一个“△”,每行要摆几个“△”?
(1)○ ○
(2)○ ○ ○
(3)○ ○ ○ ○
(4)○ ○ ○ ○ ○
(5)○ ○ ○ ○ ○ ○
①指名一学生在黑板上演板,其余学生以小组为单位在练习本上试画。
②引导学生观察填空:
各小题有()个“○”,中间摆了()个“△”。
③引导学生找出规律:“△”的个数总是比“○”的个数少一个。
④运用规律回答:如果有9个“○”,要摆几个“△”?12个“○”呢?
⑤教师:两个相邻“○”之间的部分称为一个“间隔”,有几个“间隔”就可以摆几个“△”。概括得出:间隔数=物体的总数量-1。
2巩固规律:.口答
①五个手指之间有几个间隔:如果每两个手指之间都夹一支粉笔(表演),可以夹几支?两个手指之间都夹两支呢?
②我们班一组有7个同学,1、3、5、7号同学站起来后,问:坐下的有几人?(现场表演)
[反思:善于运用“现场表演”的方法来增强学生的感性认识,为学生的理性认识作了铺垫和准备。同时这种表演形式因为有学生的参与,使得学生更加专注于听讲和思考,因而取得了良好的教学效果。]
(二)教学例1:同学们在全长100米的小路一边植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?
1.引导分析:
①问: 100米 里有几个 5米 ?100÷5=20(个)。准备20棵树苗够吗?
②看图帮助理解: 100米 里共有20个 5米 ,实际上就是有20个间隔。
100米
5米 一个间隔共有20个间隔
③得出结论:20个间隔,应该要栽20+1=21(棵)树。
2.学生列式计算:
教师根据学生列式完成下列板书:
间隔数
↑
100÷5+1
↓
应栽树的棵数
=20+1
=21(棵)
答:一共需要21棵树苗。
(三)即时训练,课本第118页“做一做”:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
1.引导分析:
①设问:如果在每两棵树之间插一面小旗,一共要插几面小旗:(36-1=35面)
②全班交流:(重点让学生理解“36-1=3 5” 实际上就是表示间隔数。)
③得出结论:36棵树之间有几个间隔?(35个)
2.学生列式计算:
教师根据学生的计算完成下列板书:
树的棵数
↑
6×(36-1)
↓
间隔数
=6×35
=210(米)
答:从第一棵到最后一棵的距离有210米。
三、巩固练习:
1.联系实际练习:一栋6层楼房,每两层之间有22级楼梯,一共有多少级楼梯?
2.看谁算得又对又快:
(1)1+2+1=
(2)1+2+1+2+1=
(3)1+2+1+2+1+( )+( )=
(4)1+2+1+2+1+2+1+……+2+1=
50个“ 1”
(通过(1)——(3)的练习,引导学生发现数字的排列规律,做(4)时,先要求学生说出题中共有的特性,然后计算:1×50+2×49=148)
[反思:巩固练习3、4设计得比较巧妙,既紧扣本课所学内容,又能注意适当的变化,始终使学生保持较高的学习兴趣,从而在愉悦中获取知识,获得用特殊的数量关系解答某些实际问题的能力。]
四、:
在解决问题时,要看清题目,做到具体问题具体分析。今天所学的特殊数量关系仅限于某些实际问题的解答,还有很多实际问题需要用另外的特殊数量关系来解答,这有待我们今后进一步学习和探讨。
[反思:有针对性和拓展性,使人感到余音缭绕,比起那种戛然而止的做法更有效,而且有利于开拓学生的思维,拓宽学生的视野。]
【《数学广角》教案】相关文章:
数学广角教案03-18
《数学广角》教案02-10
《数学广角》教案[精选]07-28
《数学广角》教案05-19
数学教案-数学广角08-16
数学广角推理教案02-24
《数学广角》教案(合集)05-19
数学广角教案15篇03-18
数学广角教案(精选22篇)03-24