五年级下册数学教案集合(15篇)
作为一位优秀的人民教师,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。快来参考教案是怎么写的吧!以下是小编精心整理的五年级下册数学教案,仅供参考,希望能够帮助到大家。
五年级下册数学教案1
教学目标:
1、通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。
2、欣赏美丽的对称图形,并能自身设计图案。
3、同学感受图形的美,进而培养同学的空间想象能力和审美意识。
重点难点:
1、能利用对称、平移、旋转等方法绘制精美的图案。
2、感受图形的内在美,培养同学的审美情趣。
教学准备:幻灯片、课件。
教学过程:
一、情境导入
利用课件显示课本第7页四幅美丽的`图案,配音乐,让同学欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让同学尽情发表自身的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2、上面哪幅图是对称的?先让同学边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、安排作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
五年级下册数学教案2
教学目标:
1.理解长方体、正方体体积计算公式的推导过程。
2.掌握长方体、正方体体积计算公式,正确计算长方体、正方体的体积。
3.经历动手操作,观察分析,归纳概括,进一步构建体积的空间观念 。
4.培养学生运用所学知识解决简单的实际问题的能力。
教学重点、难点:
1.重点:长方体、正方体的体积计算。
2.难点:长方体、正方体的体积计算公式的推导过程。
教学过程:
一、创设情景、导入新课。
1.(课件出示:蛋糕盒和粉笔盒)
哪个物体体积大?
2.(课件出示:2组长方体)
哪个长方体体积大?
出示板书:长方体的体积。
【 这一环节通过从生活中引入的蛋糕盒和粉笔盒这两个长方体的常见实物之间的比较,和两组长方体图形之间的比较,让学生猜一猜长方体的体积与什么有关吗?激发学生学习的探索欲,并引出学习内容。】
二、师生互动,探究新知。
1.动手操作:同桌合作,用桌上的12个小正方体搭出一个新的长方体。
2.观察分析:小组合作,借助搭建的长方体,完成实验报告。(课件)
思考:长方体体积与长、宽、高有什么关系?
3.分组讨论,尝试归纳:从表格中你发现了什么?
出示板书:长方体体积=长×宽×高
4.公式验证:一块长方体积木的长为6cm,宽为5cm,高为3cm,求出它的体积?
长方形的体积可以用字母V表示,长、宽、高分别可以用所a、b、h表示,字母表达式是什么?(课件)
出示板书:V=abh
5.实例应用:
学校需要在新校区新建一个长方体的司令台,要求长为8米,宽为5米,高为2米,需要多少立方米的建筑材料?
6.练习:(课件出示)
求长方体体积是多少立方米?
7.尝试解题,迁移推导: (课件演示)
如果缩短长方体的高,它就变成了什么?它的体积是多少?怎样计算?
汇报:正方体体积=棱长×棱长×棱长
出示板书:正方体体积=棱长×棱长×棱长
用v表示体积,字母a表示棱长。字母表达式是?
出示板书:V= a3
练习:13 33 103 0.53 n3 (理解 “ a3 “ 的具体含义)
8.练习:
(3)求正方体体积?
(4)小巧有一个饼干盒,它是一个棱长15cm为正方体,它的体积是多少立方厘米?
9.归纳总结:今天你学到了什么本领?
出示板书:长方体正方体的体积的计算
【这一环节的设计从“动手操作”、“观察分析”、“分组讨论”这样的自主学习方式,让学生充分参与知识的形成过程,让他们对知识点的掌握更完善。结合课件的演示,运用知识迁移把计算长方体体积变成计算长、宽、高相等的长方体体积,很自然地过渡到求正方体的'体积。由具体计算感知长方体体积公式类推出正方体体积公式。形式上更多变,学生更感兴趣。】
三、巩固练习(课件)
【巩固练习的练习题设计成表格形式,是从直观转换成了抽象,力求突出重点,解决难点,同时利用多样的题形,把基础认知与创新能力发展紧密结合起来,以达到发展学生思维、形成技能的目的。】
四、动脑拓展:(课件)
把1立方厘米的小正方体装入一个长为4厘米,宽为3厘米,高为2.5厘米的长方体盒子,装满整个盒子最多能装几块?
【这一环节的设计是对本节课知识内容的提升,让学生了解到知识是源于生活,并要回归于生活的,并通过猜想、动手操作验证等环节,激发学生的学习欲望,培养学生的尝试创新意识。】
五年级下册数学教案3
教学目标:
1、探索并掌握分数除以整数的计算方法和意义。
2、通过涂一涂、算一算、小组合作交流等活动探索并理解分数除法意义。
3、培养学生合作探究的能力。
教学重点:掌握分数除以整数的计算方法和意义。
教学难点:理解分数除以整数的意义。
一、复习导入,出示目标、
师出示口算乘法
师(阅读课本第55页的内容,回答下面问题。)
一读:本节主要讲了( )除以( )的小数除法。(各自独立完成,有困难的同学可以互相帮助)
二读:这一节以4/7÷2=为例,它表示把( )平均分成( )份,求每份是多少。(自己完成后同桌之间交流)
三读:动手画一画,想一想,4/7÷2=和4/7÷3=分别是怎样计算出来的?(完成后在小组内进行交流)
思考:通过刚才的学习过程,你对分数除以整数有了怎样的的收获?说出来和大家分享。
师:我们已经学过了分数乘法,通过刚才的口算练习,发现大家对分数乘法掌握的非常好。今天我们一起来学习分数除法。
二、探究新知,合作交流
三、大组汇报,质疑问难
我发现了除以一个整数(0除外)等于乘这个数的倒数。
五、课堂检测
1、分数除以整数(0除外),等于分数( )这个整数的`( )。
2、8/9÷4=8/9×( )=( )
3、5/6÷2=5/6×( )=( )
4、教材56页“练一练”的第一题
(巩固分数除以整数的计算方法)
5、教材56页“练一练”第二题
让学生独立解决(进一步加深理解分数除法的意义)
6、教材56页“练一练”第三题
(设计这道题的主要目的是渗透分数除法与分数乘法的联系,也是为后面用到列方程解决问题作铺垫)
拓展提高:
如果a是一个不为零的自然数,那么
1/3÷a等于多少?
1/ a÷3等于多少?
板书设计 分数除法一
分数除以整数
分数除以整数(0除外)等于乘这个数的倒数。
五年级下册数学教案4
教学目标:
1、会让学生求物体的容积。
2、会用量具测量不规则物体体积。
教学重点和难点:
重点:探索测量不规则物体体积的方法。
难点:知道不规则物体的体积就是排开水的体积
教学媒体:
教学平台
课前学生准备:
课堂练习本
教学过程:
一、课前准备:
师:上节课,我们学习了什么内容?
(容积与容积单位,容积单位有:1升=1立方分米 1毫升=1立方厘米)
填空
3升=( )毫升 2700毫升=( )升
2.57升=( )毫升 640毫升=( )升
2.4升=( )毫升 3.5升=( )立方分米
500毫升=( )升 760毫升=( )立方厘米
师:今天我们就来求一求一些物体的容积。
二、中心阶段
(一)求物体的容积。
提问:求装多少升汽油就是求这个油箱的什么?这个油箱的容积怎样算?(板书列出算式)
说明:因为计算容积就是求油箱里面容纳物体的体积,所以要用里面的长、宽、高相乘。
1、长方体容器内部长30厘米、宽15厘米、高10厘米。
(1)在长方体容器内注水5厘米深,一共注入多少毫升的水?
解:V=abh
=30×15×5
=2250(cm3)
2250 cm3=2250ml
师:你们是怎么思考的?
(求一共注入多少毫升的水,就是求水的体积,也就是求这个长方体容器的容积,所以要利用到容器内部的长和宽,由于水没有注满,水深就是所求长方体的高。因为1cm3=1ml,所以还要进行单位换算。)
(2)将长方体容器注满水,这时一共注入多少毫升的水?
(把容器注满水,这时就是求这个长方体的容积,所以要运用到长方体容器内部的长、宽、高。)
解:V=abh
=30×10×15
=4500(cm3)
4500 cm3=4500ml
2、用厚1.5厘米的有机玻璃做一个无盖的长方体容器,在容器内注满水,一共可装多少毫升水?
(把容器注满水,就是求这个长方体的容积,所以要求长方体内部的长、宽、高,也就是长方体外部的长、宽、高减去有机玻璃的厚度。)
解:V=abh
=(15-1.5×2)×(9.5-1.5)×(13-1.5×2)
=12×8×10
=960(cm3)
960cm3=9600ml
(二)测量不规则物体的体积
1、师:展示规则物体(长方体和正方体)和不规则物体(石块、土豆、苹果等),观察这些物体的形状,你发现了什么?
(一类是长方体和正方体,属于规则物体,另一类属于不规则物体)
师:哪些物体的体积我们会求了,这些物体的体积如何计算?
(长方体和正方体的`体积我们会求,先测出它们长、宽、高,再利用长方体和正方体的体积公式计算。)
师:那么形状不规则的物体,它们的体积能够直接计算出来吗?(不能)我们怎样求得它们的体积呢?
2、师:请你们以小组为单位,任选一样不规则的物体,再利用手中的工具来测测它们的体积。
生操作交流:
1、先在量杯中放入一定量的水,测量水深,记录下来。
2、将不规则物体放入盛有水的量杯中。
3、测量水面上升的高度,记录下来。
4、计算上升部分水的体积。
师:为什么能通过这么方法测量出这些不规则物体的体积呢?
(水是液体,当物体放入量杯中,能排开一部分水的体积,水面就升高,水面升高那部分水的体积就是这些物体的体积。)
师:通过量具来测定不规则物体的体积,我们可以知道物体排出水的体积就是该物体的体积。
师:书上用这个“排水法”测量了一个苹果的体积,我们一起看一下。
苹果的体积:800-600=200mL=200cm3
师:生活中如果遇到困难或不易解决的问题,我们不要畏惧,多角度、多方位去思考,一定能找到解决问题的好方法。例如:乌鸦喝水、曹冲称象等等这些小故事都告诉我们要开动脑筋。
师:两只形状、大小相同的量杯盛有同样多的水,放入两块形状不同的石头后,如果水面升到一样高,那么这两块石头的体积相同吗?
(相同,两个量杯中放入物体后,水面上升一样高,说明物体排开的水的体积是相同的。)
三、巩固练习:
1、一个长方体水箱,从里面量长12分米,宽6分米,深5分米,这个水箱可装水多少毫升?
2、一种正方体铁皮水箱棱长0.8米,这个水箱能装水多少升?(铁皮的厚度略去不计)
3、一个长方体水箱,长30厘米,宽20厘米,水深6厘米,把一个玻璃球沉没在水中后,水面上升4厘米,那么玻璃球的体积是多少?
检测目标达成练习:
1、一个长方体仓库,从里面量长12米,宽80分米,高3米,这个仓库能容纳多少货物?
2、一个长方体油桶,底面积是0.16平方米,高是5米。如果1升汽油重0.74千克,这个油桶可以装多少千克汽油?
3、把一个棱长为1分米的正方体石块浸入一个长方体水箱里,这个水箱的长是5分米,宽是4分米,水深2分米,石块浸没后,水面上升多少?
板书设计
长方体容器内部长30厘米、宽15厘米、高10厘米。在长方体容器内注水5厘米深,一共注入多少毫升的水?
解:V=abh
=30×15×5
=2250(cm3)
2250 cm3=2250ml
五年级下册数学教案5
教学目标
1、知识与技能
初步认识分数乘法,具备计算整数乘以分数的能力。
2、过程与方法
通过举例以及变式初步理解分数乘法。
3、情感态度和价值观
通过举实例,逐步深入讲解分数乘法,有利于理解运用新知识。
教学重难点
通过举例以及变式初步理解分数乘法
教学过程
一、知识回顾
1、
2、
3、
二、新课引入
1、举例
1个占整张纸条的1/5,3个占整张纸条的.几分之几?
两种计算方法:
加法计算:
乘法计算:
2个3/7的和是多少?
2、观察上述算法,你发现了什么?
3、对比下列两种算法。
4、总结归纳
分数和整数相乘,分子与整数相乘,分母不变。
计算结果可以写成最简分数,能约分的,可以先约分。
5、练习
计算下列题目,并将结果填入表格中。
4211/21/4
x12
48241263
观察并说一说你有什么发现?
三、例与练
例1:4个2/15是多少?
例2:
练习:2/3x4
2/3x4=(2x4)/3=8/3
四、课堂小结
五、拓展延伸
淘气吃了这个蛋糕的1/8,爸爸吃的是淘气的2倍,爸爸吃了蛋糕的几分之几?
1x1/8x2=1/4
答:爸爸吃了蛋糕的1/4。
五年级下册数学教案6
教学目标:
1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。
3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。
教学重点:
探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探索,归纳概括分数的基本性质。
教具学具准备:
多媒体课件,正方形纸,彩笔。
教学设计:
一、创设情境,导入新课:
1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。
2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。
3.学生初步感知了什么变了而什么却没有变的概念。
4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。
二、探究新知。
(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:
被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。
3.教师引导说出商不变的性质,课件出示商不变的性质的定义。
设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。
(二)、教学新知。
1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。
2.学生操作,教师巡视并特别提醒学生注意“平均分”。
3.展示学生的作业。
4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。
5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的'份数,拓展学生的思维能力。
6.引导学生观察:
观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:
教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。
设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。
7.课件出示:(通知互相讨论)
(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。
8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。
9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。
10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)
师:分数的基本性质和商不变性质的规律是一致的。
三、巩固强化,拓展应用。
(1)课件出示:(集体回答)。
(2)指出下列分数是否相等。(指名回答)。
(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。
(4)课件出示小故事。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)
设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。
四、回顾总结,梳理新知。
同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。
教学反思:
1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。
2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。
五年级下册数学教案7
教学内容
教科书第72页例5及课堂活动。
教学目标
1. 在具体情境中,理解整数加法运算定律在分数加法中同样适用的道理。
2. 计算分数加减法时,能根据具体的数据,选择合理的算法,使一些计算简便;继续培养同学们观察、分析能力和思维的灵活性。
3. 感受运用数学知识可以解决一些生活中的实际问题,增强应用意识。
教具准备
多媒体课件、视频展示台、小黑板。
教学过程
一、复习铺垫,引入课题
师:下面的各等式应用了什么规律?这些运算定律有什么作用?
小黑板出示:56+782=782+56
(89+475)+25=89+(475+25)
4.5+7.8=7.8+4.5
(0.5+3.49)+0.51=0.5+(3.49+0.51)
指学生回答。
生:应用了加法的交换律和结合律,应用这些运算定律可以使计算简便。
师:加法的交换律和结合律适用于整数和小数。能否应用到分数加减运算中呢?我们这节课就来研究这个问题。
(板书课题:整数加法运算定律推广到分数加法)
二、探究新知,归纳总结
1. 教学例5
多媒体出示例5的情境图。
师:你从情境图中获得哪些数学信息?
抽生说一说。
师:根据这些信息,你能提哪些数学问题?
(学生提出一步应用题,可让学生直接列式。)
教师板书问题:种树的面积占这片荒地面积的几分几之几?
学生独立列式。抽生汇报列式:5/12+3/7+1/12 5/12+1/12+3/7 3/7+(5/12+1/12)
师:这三种算式都正确吗?理由呢?
生:这三个算式都应该是正确的。因为前两种是把三种树的面积合起来,而第三种是把松树的面积和柏树的面积先合起来,再加上果树的面积,这三个算式都是在求三种树的面积之和。
独立计算,教师巡视指导。
展示算法。
师:通过上面的计算,你发现了什么?
生:5/12+3/7+1/12=5/12+1/12+3/7=3/7+(5/12+1/12)。
师引导学生发现:整数加法的运算律不仅对整数和小数的.加法运算适用,对分数加法的运算也同样适用。
2. 教学教科书第73页的"课堂活动第2题"
1/12+8/17+9/17+5/12 11/25+7/13-1/25+6/13
师:根据这两道题的数据特征,怎样算简便?计算的依据是什么?
学生独立完成,教师巡视,个别辅导,集体订正。
师:根据什么想到这样计算?
生:观察到算式中有分母相同的分数,应用加法的交换律和结合律先算同分母分数,这样可以使计算简便。
三、课堂活动
小黑板出示课堂活动"算一算,议一议。"
第1小题:1-4/15-11/15。
师:计算结果是0,还是0/15?为什么?
如果学生不能根据分数与除法的关系来解释,教师应及时地讲解。
第2小题:7/8-5/24+11/24。
师:通过前面的学习,这道题应怎样计算才更简便?有什么根据?小组讨论后汇报。
四、小结
今天学习了什么?你知道了什么?是怎样学习的?
五年级下册数学教案8
课题:
列方程解应用题复习(行程问题)
学情分析:
相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。
教学目标(课时目标):
1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;
2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程
3、逐步掌握画线段图分析题目的方法。
教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。
教学难点:认识相遇的过程中理解运用等量关系的解决问题。
教学准备:PPT、练习本
教学过程:
教学活动教学说明
一、复习引入
1、揭题
2、常见的相遇问题类型(手势演示)
(1)同时出发,相向而行
(2)一车先行,另一车再行,相向而行
(3)同时出发,途中一车暂停,相向而行
二、基础练习
1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?
(1)画线段图分析题意
(2)找出等量关系
(3)列式
2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。
小结:(1)相加=总路程
(2)相差=路程差
3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?
小结:(3)到中点相等
4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。
小结:(4)总路程相等
三、巩固提升
5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?
6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?
7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?
8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。
四、思维训练
9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。
五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。
“相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。
通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。
板书设计:列方程解应用题(行程)
相遇问题(1)相加=总路程
(2)相差=路程差
(3)到中点相等
(4)总路程相等
教学反思:
行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:
1、合理组织安排教材,激发学生主动参与教学
首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。
追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的`特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。
2、运用线段图进行教学,培养学生的分析、观察能力
学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。
3、为学生提供充分的思考、分析的空间
在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。
4、分层递进,满足不同层次需求
在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。
总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。
五年级下册数学教案9
一、复习导入
师:我们在数学世界里,结识很多好朋友。我们刚刚认识了分数,看看你对他有多少了解?
练习:用分数表示阴影部分面积(其中一题突出“平均分”)
师:看来大家已经和分数成为了好朋友,他要邀请我们去一个好地方,当当蛋糕房开业了,快来看看吧!
当当蛋糕房里推出两款特色蛋糕,巧克力蛋糕和水果蛋糕,你喜欢哪一种?请你调查小组同学的选择情况,你能用分数分别把调查结果表示出来吗?(出示调查要求)
学生调查,汇报。
师:到底喜欢哪种蛋糕的人更多,比较这两个分数的大小就知道了。这节课我们就来研究“比较分数的大小”。(板书课题)
二、探索规律
(一)分母相同的分数大小的比较
1、师:开动脑筋想一想,我们可以怎样比较出这两个分数的大小?
(1)多种方法比较
折纸、画图形、画线段
(2)汇报结果,板书
师:介绍你们是怎样比较出这两个分数的大小的?
(3)观察分数及比较结果,总结规律。
师:同学们想出了这么多比较的方法,你们能从不同的角度,用不同的方法来解决问题真了不起。接下来我们一起来观察这些不等式,你发现了什么规律了吗?
板书:分母相同,分子不同的分数,分子越大,分数越大。
师:你能运用这个规律,来解决问题吗?
(4)用规律练习3道题
(二)分子相同的分数大小比较
师:当当非常感谢大家帮他做的小调查,送给大家每人一个相同的蛋糕,请你带回家与家人一同分享。你们家有几口人?你吃了其中的几分之几?你的好朋友呢?(询问多人,记录分数)
1、任意选择两个分数,他们谁吃得多?请你与好朋友一起合作,想办法比较出两个分数的大小。
(1)合作,用喜欢的方式来比较这两个分数的大小。
(2)汇报,展示,板书结果。
师:请小组派代表来汇报你们的比较过程及结论。
(分母代表将单位1平均分的份数,份数越多,每一份就越小。)
2、我们班有两对双胞胎,(笑笑哈哈、乐乐闹闹)一对家里共有5口人,一对家里有4口人,请你帮助两个哥哥比一比,谁吃的那块比较大?
(画图比较),从分数的意义的角度分析?
3、我再来观察这一组比较的结果,你能尝试着总结规律吗?
板书:分子相同,分母不同的分数,分母越大,分数越小;分母越小,分数反而越大。
4、用这个规律,解决问题
小结:你能总结一下我们今天一同探讨“比较分数的大小”,你有了哪些收获吗?
生总结。
师:看来我们今后可以运用这些规律来帮助我们更快地解决比较分数大小的问题。只是小猪和小猴在比较的时候出现了点小问题,也要提醒你注意啊!
(三)小猪与小猴吃蛋糕,一定一样多吗?——比较分数的大小,要以单位“1”相同为前提。
师;这节课我们更多的了解了有关分数的知识,接下来,就让我们开动智慧的大脑,来迎接这位朋友对我们的挑战。
三、巩固练习
1、比较分数大小
(1)看图、写分数、比大小2道
(2)看分数,比大小6道
2、补充分数的不等式4道
3、用分数表示数轴上的一点,并比较大小
4、三个分数比较大小1/3 2/3 2/4
5、一大一小怎样平均分?
四、拓展延伸
师:你们运用自己的聪明才智解决了这么多的问题,相信你今天一定有很多收获。可是当当蛋糕屋里有人不太开心,小兔子菲菲和小狗汪汪买了一个蛋糕,菲菲吃了这个蛋糕的1/5,汪汪吃了这个蛋糕的2/5,到底还剩下这块蛋糕的几分之几,他们弄不清楚了,下节课,我们一起来帮帮他们,好吗?
教学反思:
“比大小”是在初步理解分数的意义,会认、读、写简单分数的基础上,让学生经历比较简单分数大小的过程。基于数学教学是数学活动的教学的理念及教材的编写意图,我将课堂教学分为以下三个环节。
1、复习整理。进一步巩固已有的学习成果,强调分数意义,为下一步学习打下基础。
2、探索规律――给学生提供自主学习的机会。通过分、折、画等操作活动,培养学生独立思考、合作交流的能力,在活动过程中体会比较方法,并在多个实例中尝试概括比大小的'规律。
3、运用规律解决问题――通过设计由浅入深、由易到难的练习和游戏情境,使学生牢固掌握所学的知识,培养学生的创新精神和创新思维;有意识地联系生活,使学生发现生活中的数学问题并交流解决。
整节课以一个情境贯穿始终,学生在整堂课中反应积极,有强烈的求知欲望,以图形直观验证猜想的方法,发展到抽象思维。为学生提供大量动手操作、独立思考与合作交流的机会和空间,突出体现教师的组织、引导、合作者角色和学生的主体地位。针对学生情况,我适度地拓展知识的广度,在教材要求掌握“分子是1,分母不同”的基础上,将教学内容扩展为“分子相同,分母不同”的分数进行比较,学生掌握的效果很好,为以后的知识系统性打下基础。
在今后的教学过程中,除了师生之间的反馈交流外,还要注重生生之间的评价交流,多创造这样的机会,让学生在互相评价的过程中学会倾听别人的意见,在碰撞中加深知识的理解和扩展。注意教学的艺术性,倾听学生的发言,并能用“点睛之笔”来引导学生简洁、准确、完整的表述自己的观点。在组织学生进行合作交流时,一定保证相应的环节,要在个体充分思考的基础上进行。另外在应用探索规律解决问题的过程中,对数学知识的扩展适度,突出梯度。
在多次的课程活动中,在领导和老师们无私的帮助下,感觉自己有了很多的收获,但仍然有太多需要加强和改进的方面,我会在以后的教学中,更加努力,从有秀教师身上汲取更多的营养。
五年级下册数学教案10
教学内容:
教材第xx页的内容及第xx页练习的第x题。
教学目标:
1.理解两个数的公倍数和最小公倍数的意义。
2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点:
理解两个数的公倍数和最小公倍数的'意义。
教学难点:
自主探索并总结找最小公倍数的方法。
教学具准备:
多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。
教学方法:
小组合作谈话法。
教学过程:
一、创设情景,生成问题:
前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。
二、探索交流,解决问题
1.在数轴上标出4、6的倍数所在的点
拿出老师课前发的画有两条直线的纸。
在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。
2.引入公倍数
(1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。
(2)观察:从4和6的倍数中你发现了什么?
(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。
(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)
说说看,什么叫两个数的公倍数?
3.用集合图表示
如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。
4.引人最小公倍数
学生汇报后问:
(1)为什么三个部分里都要添上省略号?
(2)4和6的公倍数还有哪些?有没有最大公倍数?
(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)
4的倍数6的倍数
4,8,
16,20,
12,24,
4和6的公倍数:
五年级下册数学教案11
教学目标:
1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。
2.从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。
教学重点:在理解题意的基础上寻找等量关系,能列方程解“相遇问题”。
教学难点:从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。
教学准备:配套课件
一、导入阶段
1.复习行程问题中的'速度、时间、路程的基本数量关系。(口答
甲每分钟行50米,乙每分钟行40米,1分钟两人共行几米?
2分钟两人共行几米?
5分钟两人共行几米?
2.根据题意写出含有字母的式子。
一辆卡车每小时行45千米,一辆轿车每小时行60千米,卡车和轿车同时行了x小时,问:卡车行了多少千米?
轿车行了多少千米?
两车共行了多少千米?
二、结合实例,探究新知
1. 出示例题1
沪宁高速公路全长约270千米,一辆轿车和一辆客车分别从上海和南京两地同时出发,相向而行。轿车平均每小时行100千米,客车平均每小时行80千米,经过几小时两车在途中相遇?
2. 学生读题,找出未知量与已知量之间的等量关系。
(1) 你可以从题目中收集到哪些数学信息?
(2) 学生介绍,教师画线段图。
(3) 分析: 设经过x小时两车在途中相遇,那么客车行的路程可以用80x千米表示,轿车行的路程可以用100x千米表示。
(4) 寻找等量关系:客车行的路程+轿车行的路程=沪宁高速公路全长。
(5) 列方程解决问题:
解:设经过x小时两车在途中相遇。
80x+ 100x = 270
180x = 270
x = 1.5
答:经过1.5小时两车在途中相遇。 (检验)
三、巩固深化,灵活应用
1. 练一练
(1) 小亚和小巧同时从相距路程为960米的两地出发,相向而行,小亚平均每分钟走58米,小巧平均每分钟走62米,几分钟后两人在途中相遇?(学生尝试画线段图,反馈交流)
解:设x分钟后两人在途中相遇。
58x+ 62x = 960
120x = 960
x = 8
答:8分钟后两人在途中相遇。(检验)
(2) 两个城市之间的路程为405千米,一辆客车和一辆货车同时从这两个城市出发,相向而行,客车平均每小时行44千米,4.5小时后两车相遇,货车平均每小时行多少千米?
客车行的路程+货车行的路程=两个城市之间的路程
解:设货车平均每小时行x千米。
44×4.5+4.5x = 405
198+4.5x = 405
4.5x = 207
x =46
答:货车平均每小时行46千米。(检验)
2. 看图解题
分析比较,与例题比较,哪些题用方程解容易想?为什么?
3. 补充练习。(学生尝试着独立完成)
(1)一辆客车和一辆货车同时从路程为260千米的两地同时出发,相向而行,客车平均每小时行60千米,货车平均每小时行44千米,几小时后两车在途中相遇?
(2)小巧和小胖合作打一篇1850字的文章,小巧平均每分钟打36个字,小胖平均每分钟打38个字,完成这篇文章需要多少分钟?
(3)甲乙两人同时从路程为546米的两地出发,相向而行,6分钟后在途中相遇,已知甲平均每分钟走50米,乙平均每分钟走多少米?
四、全课总结
五年级下册数学教案12
教学内容
教科书第70~71页的例3及试一试。
教学目标
1、结合具体情境,理解整数的加减混合运算顺序在分数加减混合运算中同样适用的道理;认识带分数。
2、会用所学知识灵活解决混合运算中的问题,提高应用能力。
3、激发同学们参与数学学习的兴趣,获得成功体验,建立信心。
教学重、难点
分数的加减混合运算中怎样通分。
教学过程
一、复习铺垫
1、出示口算卡片
2/7+1/7 1/4+1/2 8/9—4/9 7/8—1/4 1—3/5 2/5+7/15
2、复习整数加减混合运算
(1)56+32+28 95+42-21 56-(21+14)
(2)整数加减混合运算的运算顺序是怎样的?
二、学习新知
结合情境,感悟分数混合运算顺序。
(1)教学例3(课件展示)。
师:观察图,你获得了哪些数学信息?
生:第一瓶剩下的酒精是3/5瓶,第二瓶剩下的酒精是2/3瓶,第三瓶剩下的酒精是2/5瓶,求"一共剩下多少瓶酒精。"
师:想一想,怎样解决这个问题呢?
生1:把剩下的酒精倒在一起。
让学生实践操作,体验感知结果是1瓶又2/3瓶。
生2:可以列式计算:3/5+2/3+2/5。
师:为什么用加法算?这是一道什么算式?(分数连加)
师:这是一道分数连加的算式。想一想,你准备怎样来计算这道题呢?说出理由。
学生先独立思考,然后全班交流。
生:我认为应该先确定它的运算顺序。
师:它的运算顺序是怎样的?
生:应该和整数连加运算一样,在没有括号的算式里,都应按从左到右依顺序计算。
师:为什么?
(引导学生看课件上的图)
生:因为在这道题中,先算第一瓶和第二瓶共剩多少酒精,再和第三瓶合起来共剩多少酒精,这个运算顺序正好和整数连加一样。
学生独立解答,然后展示解题结果,如下。有可能只出现其中一种解法,教师可引导学生想出
另一种算法。
算法一:3/5+2/3+2/5=9/15+10/15+6/15=25/15=5/3
算法二:3/5+2/5+2/3=1+2/3=123
师:请两位同学分别说说计算时是怎样想的'?(也可多请几名学生说)
师:算法一是先把三个数一次性进行通分,再加。算法二是先算3/5+2/5得出1,再加2/3得
1+2/3。我们前面操作的结果就是1瓶又2/3瓶,说明这样计算是正确的。1+2/3可以写成1 。
(2)自主学习,认识带分数。
师:像1这样的分数又叫什么分数呢?怎么读?请同学们看教科书第70页。
生:像1这样的分数是带分数,读作:一又三分之二。
师:1在本题中表示的含义是1瓶多2/3瓶。5/3和1这两个结果相等吗?(充分让学生说
说自己的想法。可画线段图表示两个分数来比较。)
师:5/3和1相等,带分数1只是假分数5/3的另一种表现形式。
师:5/3怎样改写成带分数1?
小组讨论后汇报,教师引导出5/3=5÷3=1 。
归纳假分数化带分数的方法:用分母除以分子,整数商作带分数的整数部分,余数作带分数分
数部分的分子,原分母作带分数分数部分的分母。
(3)尝试练习,理解分数混合运算顺序,弄清计算步骤。
教科书第71页试一试:
8/15+2/5+1/2 3/4-1/5-3/8 4/6-1/4+11/12
师:观察这几道题,它们分别是什么样的算式?运算顺序是怎样的?
生:分别是没有括号的异分母分数的连加、连减、加减混合算式,都应按从左到右的顺序计算。
学生独立解答,小组内相互交流各自的算法。
教师展示学生的作业,请学生分别说说每题的计算步骤。有不同算法的作业都展示出来。
师:观察这几道题的算法,比较这些算法有什么异同点?
生1:相同点是都要通分。
生2:不同点是可以分步计算,分步通分。
生3:也可以一次通分,然后再计算。
……
总结:计算异分母分数的加减混合运算时,必须先把相加减的异分母分数通分,化成同分母分
数。通分时可以分步计算,分步通分;也可以一次通分,然后再计算。注意计算时根据题目的特点和自己的方便来选择通分的方法。
三、总结新知,揭示课题
今天我们学习了哪些知识?(板书课题)这节课还有哪些收获?还有什么不懂的问题?
四、课堂作业
练习十五第2题第一横排。
五年级下册数学教案13
教学内容:
人教版五年级数学下册第四单元P49l。
教学目标:
1.使学生理解两个整数相除的商可以用分数来表示,会用分数表示两个数相除的商。
2.使学生正确理解和掌握分数与除法的关系
3.培养学生的应用意识,渗透辩证思想,激发学生学习兴趣。
教学重难点:
1.理解和掌握分数与除法的关系。
2.用除法的意义理解分数的意义。
教学具准备:
课本主题挂图,圆形纸片(4—5张)。
教学过程:
一、创设问题,复习导入
1.填空。
2.问题引入
师:5除以9,商是多少?(板书:5÷9 =)如果商不用小数表示,还有其他方法吗?有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识“分数与除法的关系”。 板书课题:分数与除法
二、探索研究,学习新知
(一)教学例1
1.出示主题挂图,读题后,指导学生根据整数除法的意义列出算式。
2.讨论:1 除以3结果是多少?你是怎样想的?
3.汇报讨论结果:
生:我解答这道题的列式是1÷3,可以把一个蛋糕看作单位“1”,把它平均分成3份,表示这样的一份的数,可以用分数1111来表示,1个蛋糕的就是个,所以,1÷3 =。 3333
教师根据学生回答板书:
1÷3 =
(二)教学例3
1.出示主题挂图,读题后,引导学生列出算式:3÷4。
2.指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
引导学生边分边思考:我们把谁看作单位“1”?把它平均分成4份,每份是多少?你想怎样分? 教师巡视,参与指导。
3.汇报演示分得的过程及结果,教师根据学生汇报总结不同的.分法。
方法一:可以一个一个地分,先把每块月饼平均分成4份,每块可分得4个
个11(个)答:每人分得个。 331,3块月饼共分得124113,平均分给4个人,每人可分得3个,合在一起是块。
3块月饼,4方法二:可以把3块月饼叠在一起,再平均分成4份,拿出其中的1份,拼在一起就得到
所以每人分得3块。(如图)
板书:3÷4 =
4.理解。 师: 33(块)答:每人分得块。 443块月饼表示什么意思?
指导学生说清理解:表示把3个月饼平均分成4份,表示这样1份的数;还可以表示把1个月饼平均分成4份,表示这样3份的数。 师:去掉单位名称,你能说一说3表示的意思吗?
可以放手让学生说一说,归结明白:可以表示把单位“1”平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样1份的数。
五年级下册数学教案14
教学目标
1. 进一步巩固长方体和正方体表面积的计算方法。
2. 能运用所学的知识解决生活中的一些简单问题,体会数学与生活的联系。
3. 培养同学们分析问题和解决问题的能力。
教学重难点
用长方体和正方体表面积的计算方法解决实际问题。
教学过程
一、复习引入
1. 什么是长方体、正方体的表面积?
2. 怎样计算长方体、正方体的表面积?
3. 计算下面长方体和正方体的表面积。
二、教学例1
思考:根据实际情况还要扣除什么的面积?
1. 独立解答,并在4人小组内交流你的.想法?
2. 指名汇报,根据学生的回答板书:
8×6+(6×3+8×3)×2
=48+(18+24)×2
=48+84=132(m2)
132-26=106(m2)
答:粉刷的面积是106m2。
3. 小结:在解决生活中的实际问题时,我们往往要根据实际情况求出一个面或者几个面的面积,而不是求长方体或正方体的6个面的面积和,所以我们要具体问题具体分析。
三、巩固练习
1. 练习十三第1题。
提示:损耗的纸块面积应加上去。
2. 练习十三第2题
仔细看图,数一数要计算哪几个面的面积。
四、全课总结
今天我们学习了什么?你有哪些收获?
五年级下册数学教案15
【教学内容】
教科书第1~2页的例1以及相关的练习。
【教学目标】
1、理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。
2、培养学生的分析能力和归纳概括能力。
3、通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。
【教具准备】
多媒体课件和视频展示台。
【教学过程】
一、复习引入
师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗?多媒体课件展示:
等学生完成后,抽学生的作业在视频展示台上展示,集体订正。
二、教学新课
1、教学例1,理解单位“1”
师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。
师:同学们,你们能用小圆代替月饼,帮小华分一分吗?
等学生分好后,抽一个学生分的小圆在视频展示台上展示。
师:这时,小华的爸爸又提出了问题。
课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?
引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。
师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?
多媒体课件演示下面的月饼图:
引导学生理解两个1/4代表的数量不一样。
师:为什么会出现这种现象呢?
引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的'1/4。课件中随学生的回答在图形下出现相应的文字。
师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?
让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。
师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。课件出示第2页的熊猫图。
师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?
请分一分,并填空。
课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。师:通过上面的研究,同学们有什么发现?
引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。
师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。
板书单位“1”的含义。
师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体?教师再举两个例子,深化学生对单位“1”的理解。
2、理解并归纳分数的意义
师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?
学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5.2份有4根小棒,这4根小棒是10根小棒的2/5??
师:想想自己操作的过程,你能说一说什么是分数吗?
学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。
师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。
归纳并板书分数的意义,板书课题。
试一试:涂色部分占整个图形的几分之几?
师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。
生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。
师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢?
3、说生活中的分数
师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?
学生说生活中的分数。
三、课堂小结
(略)
四、课堂作业
1、第4页课堂活动第2题。
2、练习一第1,2,3,4题。
分数的意义
师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?
课件出示如下的题目:
(1)把一个月饼平均分成4份,其中的1份是这个月饼的();
(2)把一张手工纸
【五年级下册数学教案】相关文章:
五年级下册人教版数学教案01-12
五年级下册数学教案01-04
五年级下册数学教案01-30
五年级下册数学教案(经典)07-06
人教版五年级下册数学教案01-09
【热】五年级下册数学教案01-20
【热门】五年级下册数学教案01-23
[精品]五年级下册数学教案06-19
五年级下册数学教案(优)07-25
[集合]五年级下册数学教案07-05