现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案优秀

八年级数学教案优秀

时间:2024-08-26 18:30:53 八年级数学教案 我要投稿

八年级数学教案优秀

  作为一名优秀的教育工作者,通常会被要求编写教案,教案是教学活动的总的组织纲领和行动方案。教案要怎么写呢?下面是小编整理的八年级数学教案优秀,欢迎大家借鉴与参考,希望对大家有所帮助。

八年级数学教案优秀

八年级数学教案优秀1

  【教学目标】

  1、了解分式概念。

  2、理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。

  【教学重难点】

  重点:理解分式有意义的条件,分式的值为零的条件。

  难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

  【教学过程】

  一、课堂导入

  1、让学生填写[思考],学生自己依次填出:,,。

  2、问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  设江水的'流速为x千米/时。

  轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=。

  3、以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式。分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母。

  [思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。注意只有满足了分式的分母不能为零这个条件,分式才有意义。即当B≠0时,分式才有意义。

  二、例题讲解

  例1:当x为何值时,分式有意义。

  【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围。

  (补充)例2:当m为何值时,分式的值为0?

  (1);(2);(3)。

  【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解。

  三、随堂练习

  1、判断下列各式哪些是整式,哪些是分式?

  9x+4,,,,,

  2、当x取何值时,下列分式有意义?

  3、当x为何值时,分式的值为0?

  四、小结

  谈谈你的收获。

  五、布置作业

  课本128~129页练习。

八年级数学教案优秀2

  教学目标

  ①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

  ②理解整式除法的算理,发展有条理的思考及表达能力。

  教学重点与难点

  重点:整式除法的运算法则及其运用。

  难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

  教学准备

  卡片及多媒体课件。

  教学设计

  情境引入

  教科书第161页问题:木星的质量约为1.90×1024吨,地球的质量约为5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?

  重点研究算式(1.90×1024)÷(5.98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

  注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的.除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

  探究新知

  (1)计算(1.90×1024)÷(5.98×1021),说说你计算的根据是什么?

  (2)你能利用(1)中的方法计算下列各式吗?

  8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

  (3)你能根据(2)说说单项式除以单项式的运算法则吗?

  注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

  单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。

  归纳法则

  单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

  注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。

  应用新知

  例2计算:

  (1)28x4y2÷7x3y;

  (2)—5a5b3c÷15a4b。

  首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。

  注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。

  巩固新知教科书第162页练习1及练习2。

  学生自己尝试完成计算题,同桌交流。

  注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。

  作业

  1。必做题:教科书第164页习题15.3第1题;第2题。

  2。选做题:教科书第164页习题15.3第8题

八年级数学教案优秀3

  教学目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点:分式通分的理解和掌握。

  教学难点:分式通分中最简公分母的确定。

  教学工具:投影仪

  教学方法:启发式、讨论式

  教学过程:

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的'分式相等的同分母的分式,叫做分式的通分。

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2、通分的依据:分式的基本性质。

  3、通分的关键:确定几个分式的最简公分母。

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母。

  根据分式通分和最简公分母的定义,将分式通分:

  最简公分母为:

  然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:xxx

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy2,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

  解:∵最简公分母是10a2b2c2,

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。

八年级数学教案优秀4

  教材分析

  1、本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

  2、本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

  学情分析

  1、学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

  2、在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

  教学目标

  知识技能:1、理解掌握等腰三角形的性质。

  2、运用等腰三角形的`性质进行证明和计算。

  数学思考:1、观察等腰三角形的对称性,发展形象思维。

  2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

  情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

  教学重点和难点

  重点:等腰三角形的性质及应用。

  难点:等腰三角形的性质证明。

八年级数学教案优秀5

  教学目标

  (一)教学知识点

  1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义。

  2.理解积的乘方运算法则,能解决一些实际问题。

  (二)能力训练要求

  1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力。

  2.学习积的乘方的`运算法则,提高解决问题的能力。

  (三)情感与价值观要求

  在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美。

  教学重点

  积的乘方运算法则及其应用。

  教学难点

  幂的运算法则的灵活运用。

  教学方法

  自学─引导相结合的方法。

  同底数幂的乘法、幂的乘方、积的乘方成一个体系,研究方法类同,有前两节课做基础,本节课可放手让学生自学,教师引导学生总结,从而让学生真正理解幂的运算方法,能解决一些实际问题。

  教具准备

  投影片.

  教学过程

  Ⅰ.提出问题,创设情境

  [师]还是就上节课开课提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?

  [生]它的体积应是V=(1.1×103)3cm3。

  [师]这个结果是幂的乘方形式吗?

  [生]不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理。

  [师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒。

  Ⅱ.导入新课

  老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳。

  出示投影片

  1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?

  (1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

  (2)(ab)3=______=_______=a()b()

  (3)(ab)n=______=______=a()b()(n是正整数)

  2.把你发现的规律用文字语言表述,再用符号语言表达。

  3.解决前面提到的正方体体积计算问题。

  4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法。

  5.完成课本P170例3。

  学生探究的经过:

  1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则。同样的方法可以算出(2)、(3)题。

八年级数学教案优秀6

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的`三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值

  ,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  引导学生分析并严格书写解题过程

八年级数学教案优秀7

  教学目标:

  1.知道负整数指数幂=(a≠0,n是正整数).

  2.掌握整数指数幂的运算性质.

  3.会用科学计数法表示小于1的数.

  教学重点:

  掌握整数指数幂的运算性质。

  难点:

  会用科学计数法表示小于1的数。

  情感态度与价值观:

  通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题.

  教学过程:

  一、课堂引入

  1.回忆正整数指数幂的运算性质:

  (1)同底数的幂的乘法:am?an = am+n(m,n是正整数);

  (2)幂的`乘方:(am)n = amn (m,n是正整数);

  (3)积的乘方:(ab)n = anbn (n是正整数);

  (4)同底数的幂的除法:am÷an = am?n(a≠0,m,n是正整数,m>n);

  (5)商的乘方:()n = (n是正整数);

  2.回忆0指数幂的规定,即当a≠0时,a0 = 1.

  3.你还记得1纳米=10?9米,即1纳米=米吗?

  4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

  二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立.事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n(m,n是整数)这条性质也是成立的.

  三、科学记数法:

  我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5.即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

八年级数学教案优秀8

  一、学生起点分析

  学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?

  反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中

  可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。

  二、学习任务分析

  本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理

  并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:

  ● 知识与技能目标

  1、理解勾股定理逆定理的具体内容及勾股数的概念;

  2、能根据所给三角形三边的条件判断三角形是否是直角三角形。

  ● 过程与方法目标

  1、经历一般规律的探索过程,发展学生的抽象思维能力;

  2、经历从实验到验证的过程,发展学生的数学归纳能力。

  ● 情感与态度目标

  1、体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;

  2、在探索过程中体验成功的喜悦,树立学习的自信心。

  教学重点

  理解勾股定理逆定理的具体内容。

  三、教法学法

  1、教学方法:实验猜想归纳论证

  本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验

  但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:

  (1)从创设问题情景入手,通过知识再现,孕育教学过程;

  (2)从学生活动出发,通过以旧引新,顺势教学过程;

  (3)利用探索,研究手段,通过思维深入,领悟教学过程。

  2、课前准备

  教具:教材、电脑、多媒体课件。

  学具:教材、笔记本、课堂练习本、文具。

  四、教学过程设计

  本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:

  登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。

  第一环节:情境引入

  内容:

  情境:1.直角三角形中,三边长度之间满足什么样的关系?

  2、如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?

  意图:

  通过情境的创设引入新课,激发学生探究热情。

  效果:

  从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。

  第二环节:合作探究

  内容1:探究

  下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:

  1、这三组数都满足 吗?

  2、分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。

  意图:

  通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

  效果:

  经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。

  从上面的分组实验很容易得出如下结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

  内容2:说理

  提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?

  意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

  满足 的三个正整数,称为勾股数。

  注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。

  活动3:反思总结

  提问:

  1、同学们还能找出哪些勾股数呢?

  2、今天的结论与前面学习勾股定理有哪些异同呢?

  3、到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?

  4、通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?

  意图:进一步让学生认识该定理与勾股定理之间的关系

  第三环节:小试牛刀

  内容:

  1、下列哪几组数据能作为直角三角形的三边长?请说明理由。

  ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2、一个三角形的`三边长分别是 ,则这个三角形的面积是( )

  A 250 B 150 C 200 D 不能确定

  解答:B

  3、如图1:在 中, 于 , ,则 是( )

  A 等腰三角形 B 锐角三角形

  C 直角三角形 D 钝角三角形

  解答:C

  4、将直角三角形的三边扩大相同的倍数后, (图1)

  得到的三角形是( )

  A 直角三角形 B 锐角三角形

  C 钝角三角形 D 不能确定

  解答:A

  意图:

  通过练习,加强对勾股定理及勾股定理逆定理认识及应用

  效果

  每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。

  第四环节:登高望远

  内容:

  1、一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?

  解答:符合要求 , 又 ,

  2、一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?

  解答:由题意画出相应的图形

  AB=240海里,BC=70海里,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船转弯后,是沿正西方向航行的。

  意图:

  利用勾股定理逆定理解决实际问题,进一步巩固该定理。

  效果:

  学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。

  第五环节:巩固提高

  内容:

  1、如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。

  解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF

  2、如图5,哪些是直角三角形,哪些不是,说说你的理由?

  图4 图5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意图:

  第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。

  效果:

  学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。

  第六环节:交流小结

  内容:

  师生相互交流总结出:

  1、今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;

  2、从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。

  意图:

  鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。

  效果:

  学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。

  第七环节:布置作业

  课本习题1.4第1,2,4题。

  五、教学反思:

  1、充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。

  2、注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

  3、在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。

  4、注重对学习新知理解应用偏困难的学生的进一步关注。

  5、对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。

  由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。

  附:板书设计

  能得到直角三角形吗

  情景引入 小试牛刀: 登高望远

八年级数学教案优秀9

  课题:一元二次方程实数根错例剖析课

  【教学目的】精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。

  【课前练习】

  1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

  【典型例题】

  例1 下列方程中两实数根之和为2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  错答: B

  正解: C

  错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。

  例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  错解 :B

  正解:D

  错因剖析:漏掉了方程有实数根的前提是△≥0

  例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。

  错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2

  错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。

  正解: -1≤k<2且k≠

  例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。

  错解:由根与系数的关系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

  =[-(2m+1)]2-2(m2+1)

  =2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。

  正解:m = 2

  例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。

  错解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范围是m≠±1且m≥ -

  错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。

  正解:m的取值范围是m≥-

  例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。

  错解:∵方程有整数根,

  ∴△=9-4a>0,则a<2.25

  又∵a是非负数,∴a=1或a=2

  令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2

  ∴方程的整数根是x1= -1, x2= -2

  错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3

  正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3

  【练习】

  练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。

  (1)求k的取值范围;

  (2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。

  解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<

  ∴当k< 时,方程有两个不相等的实数根。

  (2)存在。

  如果方程的两实数根x1、x2互为相反数,则x1+ x2=- =0,得k= 。经检验k= 是方程- 的解。

  ∴当k= 时,方程的两实数根x1、x2互为相反数。

  读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。

  解:上面解法错在如下两个方面:

  (1)漏掉k≠0,正确答案为:当k< 时且k≠0时,方程有两个不相等的实数根。

  (2)k= 。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数

  练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?

  解:(1)当a=0时,方程为4x-1=0,∴x=

  (2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4

  ∴当a≥ -4且a≠0时,方程有实数根。

  又因为方程只有正实数根,设为x1,x2,则:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。

  【小结】

  以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。

  1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。

  2、运用根与系数关系时,△≥0是前提条件。

  3、条件多面时(如例5、例6)考虑要周全。

  【布置作业】

  1、当m为何值时,关于x的'方程x2+2(m-1)x+ m2-9=0有两个正根?

  2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。

  求证:关于x的方程

  (m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。

  考题汇编

  1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。

  2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0

  (1)若方程的一个根为1,求m的值。

  (2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。

  3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。

  4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。

八年级数学教案优秀10

  教学目标:

  1、 掌握三角形内角和定理及其推论;

  2、 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3、通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4、通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5、 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的.一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的。关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  引导学生分析并严格书写解题过程

【八年级数学教案优秀】相关文章:

(优秀)八年级数学教案05-30

八年级下册数学教案优秀02-29

八年级上册数学教案优秀05-08

八年级数学教案15篇[优秀]06-20

优秀的数学教案07-08

优秀数学教案07-26

优秀数学教案01-09

数学教案优秀02-14

优秀的数学教案02-05

(优秀)大班优秀数学教案07-05