现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级上册数学教案优秀

七年级上册数学教案优秀

时间:2024-08-27 14:10:47 七年级数学教案 我要投稿

七年级上册数学教案优秀

  作为一名教学工作者,很有必要精心设计一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。教案应该怎么写呢?以下是小编精心整理的七年级上册数学教案优秀,希望能够帮助到大家。

七年级上册数学教案优秀

七年级上册数学教案优秀1

  教学内容

  人教版《义务教育课程标准实验教科书数学》六年级上册

  教学目标

  1.使学生通过绕一绕、滚一滚等活动,自主探索圆的周长与直径的倍数关系。知道圆周率的含义,并能推导出圆的周长公式,学会运用公式解决简单的求圆周长的实际问题。

  2.使学生在活动中培养初步的动手操作能力和空间观念。

  3.结合圆周率的教学,使学生感受数学的文化价值,激发学习数学的兴趣。

  教学过程

  一、复习导入

  师:这一节课我们来研究有关周长的问题。

  出示正方形

  师:看屏幕,认识吗?

  师:这是一个(正方形)

  师:谁来指一指它的周长

  生上台指。

  师完整指:正方形4条边的总长就是它的周长。

  出示圆

  师:继续看,这是。

  生:圆

  师:圆的周长你能指一指吗?

  生上台指

  师:我们一起来指一指!从一点开始,绕一圈,回到这一点里结束。看清楚了吗?(出示动画)

  师:围成圆一周曲线的'长度就是圆的周长

  【板书:圆的周长】

  二、感知化曲为直

  1、师:2个图形,分别为1号和2号。(给图形标号。)

  师:给你一把直尺,(慢慢的拿出来)。让你通过测量得到它们的周长,【板书:量】你愿意测量几号?

  师:想想,用手势1或者2告诉老师……怎么想的?

  ……

  师:对,正方形是由线段围成的,可以用直尺直接测量。

  而围成圆的——是一条曲线【板书:曲】,直接量确实不太方便。

  师:不过呢,老师今天就是要为难一下你们,要求用直尺直接量出圆的周长,这可是要想办法的哦!敢不敢挑战?

  2、用直尺测量圆的周长

  (1)荧光圈

  师:看,什么?(圆形的荧光圈)怎样量它的周长?

  生:把接头拔下来,拉直了量。

  师:像这样!断开,拉直测量!

  把接头部分去掉,这一段的长就是荧光圈的周长。

  这个方法很不错哦!

  (2)飞镖盘

  师:继续挑战!第二样,什么?(圆形的飞镖盘)能拉直量吗?

  怎么办呢?

  生:用线绕。

  课件演示:线贴紧圆绕一周,多余部分去掉或者做上记号,然后把线拉直测量,这一段线的长就是圆的周长。

  师:还有其他办法吗?

  生:滚

七年级上册数学教案优秀2

  教学目标

  1 知识与技能:

  理解平行与垂直是同一平面内两条直线的两种特殊位置关系,初步认识平行线与垂线。

  2 过程与方法:

  在观察、操作、比较、概括中,经历探究平行线和垂线特征的过程,建立平行与垂直的概念。

  3 情感态度与价值观:

  在活动中丰富学生活动经验,培养学生的空间观念及空间想象能力。

  教学重难点

  1 教学重点:

  正确理解“相交”“互相平行”“互相垂直”等概念。

  2 教学难点:

  理解平行与垂直概念的本质特征。

  教学工具

  多媒体设备

  教学过程

  1 情境导入,画图感知

  1、学生想象在无限大的平面上两条直线的位置关系。

  教师:摸一摸平放在桌面上的白纸,你有什么感觉?

  (1)学生交流汇报。

  (2)像这样很平的面,我们就称它为平面。(板书:平面)

  我们可以把白纸的这个面作为平面的一部分,请大家在这个平面上任意画一条直线,说一说,你画的这条直线有什么特点?

  (3)闭上眼睛想一想:白纸所在的平面慢慢变大,变得无限大,在这个无限大的平面上,直线也跟着不断延长。这时平面上又出现了另一条直线,这两条直线的位置关系是怎样的呢?会有哪几种不同的情况?

  2、学生画出同一平面内两条直线的各种位置关系。

  把你想象的情况画在白纸上。注意一张纸上只画一种情况,想到几种就画几种,相同类型的不画。

  2 观察分类,感受特征

  1、展示作品。

  教师:同学们想象力真丰富!相互看一看,你们的想法一样吗?老师选择了几幅有代表性的作品,我们一起来欣赏一下。

  如果你画的和这几种情况不一样,可以补充到黑板上。

  不管哪种情况,我们所画的两条直线都在同一张白纸上。因为我们把白纸的面看作了一个平面,所以可以这样说,我们所画的两条直线都在同一平面。(板书:同一平面)

  2、分类讨论。

  教师:同学们的想象力可真丰富,画出来这么多种情况。能把它们分分类吗?为了方便描述,咱们给作品标上序号,可以怎么分?按什么标准分?

  (1)先独立思考:我打算怎么分?分几类?

  (2)再小组交流:怎么分?为什么这么分?

  3、汇报交流。

  教师:哪组来说一说你们的研究结果?

  学情预设:

  (1)分两类:交叉的为一类,不交叉的为一类。

  (2)分三类:交叉的为一类,不交叉的为一类,快要交叉的为一类。

  (3)分四类:交叉的为一类,不交叉的为一类,快要交叉的为一类,交叉成直角的为一类。

  教师:你们所说的交叉在数学上叫相交。(板书:相交)

  质疑:2、3两幅图中的两条直线相交吗?

  学生说明自己的想法和理由。

  课件演示:两条直线延长后相交于一点。

  图6属于哪一种情况?(相交)

  小结:同一平面内,两条直线的位置关系有相交和不相交两种,但在判断时我们不能光看表面,而要看他们的本质,也就是这两条直线延长后是否相交。

  3 自主探究,揭示概念

  1、揭示平行的概念。

  (1)感知平行的特点。

  教师:这两条直线就真的不相交吗?怎样验证?

  结合学生回答用课件演示两条直线无论怎样延长都不会相交的动态过程。

  (2)揭示平行的定义。

  ①教师:像屏幕上这样,两条直线的位置关系在数学上叫什么呢?

  ②课件出示:在同一平面内,不相交的两条直线叫做平行线,也可以说这两条直线互相平行。(板书:互相平行)

  ③教师:你认为在这句话中哪个词应重点强调?为什么?

  结合学生回答,教师举例:这两条直线互相平行吗?为什么?(出示一个长方体)

  学生体会“同一平面”和“互相平行”的含义。

  (3)介绍平行符号。

  ①课件分别呈现三组不同位置的平行线。

  ②教师:这三幅图中的直线a与直线b都互相平行,我们用符号“∥”来表示平行,a与b互相平行,记作a∥b,读作a平行于b。

  ③教师:用这样的方法来表示a平行于b,你们觉得怎么样?是呀,像这样来表示两直线互相平行,既形象又方便。

  (4)体验生活中的平行现象。

  教师:生活中我们常常遇到平行的现象,你能举几个例子吗?

  学生举例后,教师可用多媒体课件适时补充一些生活中的实例。

  2、揭示垂直的`概念。

  (1)感知垂直的特点。

  教师:刚才同学们在画两条直线的位置关系时,还画了相交的情况。我们一起来看一看这些相交的情况。(课件或实物投影呈现几组典型的作品)

  教师:观察一下这些相交的情况,你们发现了什么?(都形成了四个角,有的是锐角,有的是钝角;还有的比较特殊,四个角都是直角……)

  教师:你怎么知道他们相交后形成的角是直角呢?请同学们量一量,刚才所画的两条相交直线组成的角分别是多少度?通过测量,你们又有什么新发现?

  学生通过测量能够发现有一种情况比较特殊,所形成的四个角,每个角都是90°。

  (2)认识垂直的定义。

  教师:如果两条直线相交成直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

  课件呈现三组垂线。

  教师:观察这里的三幅图,它们有什么相同点和不同点?根据刚才的比较,能尝试总结你的发现吗?

  预设:垂直要看两条直线相交是否成直角,而与怎样摆放无关。

  (3)介绍垂直符号。

  教师:垂直和平行一样,也可以用符号表示,就是“⊥”,直线a与直线b互相垂直,记作a⊥b,读作a垂直于b。

  (4)感受生活中的垂直现象。

  教师:生活中我们还会常常遇到垂直的现象,你能举出生活中一些有关垂直的例子吗?

  学生举例后,教师用多媒体课件补充一些实例。

  教师:同学们,以上内容就是今天我们学习的有关平行和垂直的知识。

  (板书课题:平行与垂直)

  4 练习巩固,拓展延伸

  1、下面各组直线,哪一组互相平行?哪一组互相垂直?

  2、下面每个图形中哪两条线段互相平行?哪两条线段互相垂直?

  结合新知完善对长、正方形特征的认识。

  5 全课小结

  通过今天这节课的学习,你有什么收获?还有什么疑问?

  1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

  2、如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

  课后小结

  通过今天这节课的学习,你有什么收获?还有什么疑问?

  1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

  2、如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

七年级上册数学教案优秀3

  一、教材分析

  (一)教材的地位和作用

  本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.

  (二)教材的重难点

  本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.

  二、教学目标分析

  (一)知识技能目标

  1.目标内容

  (1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.

  (2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.

  2.目标分析

  (1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.

  (2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.

  (二)过程目标

  1.目标内容

  在活动中感受方程思想在数学中的作用,进一步增强应用意识.

  2.目标分析

  利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.

  (三)情感目标

  1.目标内容

  (1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.

  (2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.

  2.目标分析

  七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.

  三、教材处理与教法分析

  本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.

  四、教学过程分析

  (一)教学过程流程图

  探究Ⅰ

  (二)教学过程Ⅰ

  (以探究为主线、形式多样化)

  1.问题情境

  (1) 多媒体展示有关盈亏的新闻报道,感受生活实际.

  (2) 据此生活实例,展示探究Ⅰ,引入新课.

  考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.

  2.讨论交流

  (1) 学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.

  (2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)

  (3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.

  (4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.

  让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.

  3.建立模型

  (1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.

  (2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价.

  (3) 师生互动:①两件衣服的进价和为 ;②两件衣服的售价和为 ;③由于进价 售价,由此可知两件衣服的盈亏情况.

  (教师及时给出完整的.解答过程)

  学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.

  4.小结

  一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.

  培养学生科学的学习态度与严谨的学习作风.

  探究Ⅱ

  (三)教学过程Ⅱ

  1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.

  恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性.

  启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:

  2.列代数式

  费用=灯的售价+电费

  电费=0.5×灯的功率(千瓦)×照明时间(时)

  在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.

  节能灯的费用(元):60+0.5×0.011t.

  白炽灯的费用(元):3+0.5×0.06t.

  分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.

  3.特值试探

  具体感知

  学生分组计算:

  t=1000、20xx、2500、3000时,这两种灯具的使用费用,填入下表:

  时间(小时)

  1000

  20xx

  2500

  3000

  节能灯的费用(元)

  白炽灯的费用(元)

七年级上册数学教案优秀4

  一、知识与技能

  能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

  二、过程与方法

  借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

  三、情感态度与价值观

  培养学生积极思考,合作交流的意识和能力。

  教学重、难点与关键

  1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

  2、难点:正确理解负数的概念。

  3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

  教具准备

  投影仪。

  教学过程

  四、课堂引入

  我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

  在生活、生产、科研中经常遇到数的表示与数的.运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:—3,—2,—2。7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2。7%。

  五、讲授新课

  (1)、像—3,—2,—2。7%这样的数(即在以前学过的0以外的数前面加上负号“—”的数)叫做负数。而3,2,+2。7%在问题中分别表示零上3摄氏度,净胜2球,增长2。7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0。5,+,…就是3,2,0。5,…一个数前面的“+”、“—”号叫做它的符号,这种符号叫做性质符号。

  (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。

  (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。

  (4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

  用正负数表示具有相反意义的量

  (5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的。海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为—155m。记录账目时,通常用正数表示收入款额,负数表示支出款额。

  (6)、请学生解释课本中图1.1—2,图1.1—3中的正数和负数的含义。

  (7)、你能再举一些用正负数表示数量的实际例子吗?

  (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。

  六、巩固练习

  课本第3页,练习1、2、3、4题。

  七、课堂小结

  为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上“—”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上“—”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数。

  八、作业布置

  1、课本第5页习题1.1复习巩固第1、2、3题。

七年级上册数学教案优秀5

  【教学目标】

  1、使学生经历“提出问题—估算—口算—笔算”的计算过程,在多样化的算法中能自主最优化。

  2、使学生在尝试写竖式、小组讨论交流算法的过程中掌握笔算乘法的书写格式和算理。

  3、培养学生的问题意识和多策略解决问题的能力,体现联系生活学数学的思想。

  【教学过程】

  一、创设情境,提出问题。

  课件出示情景图。(对原教材的.信息作了丰富)

  师:“六一”节就要到了。每个班都要举行一些活动。图上的小朋友在干什么?(画画)一副画画的情景就有许多的数学信息,你们发现了吗?

  生:3个小朋友。两摞图画纸。三盒彩笔。……

  师生共同处理数学信息。并让学生独立提出数学问题:

  生1:一共有多少张图画纸?

  生2:一共有多少枝彩笔?

  生3:一共画了多少个苹果?

  师:同学们提出了这么多的问题,真了不起!我们先来解决其中的一个。要求一共有多少枝彩笔,会列算式吗?

  生:3×12     12×3

  二、猜想结果,方法验证:

  师:估计一下,12×3大约等于几?解说一下,你是怎样估计的?

  师:用什么方法就得到12×3正确的结果呢?同学们先商量一下,找出自己喜欢的方法。

  请几名代表汇报交流,师板书有代表性的思路:

  学生讲解各自的思路。

  三、提供空间,探索竖式

  师:数学讲究简炼,除了以上方法,你还能创造出一种更简单,计算得更快的一种书写形式吗?请你们发挥自己的聪明才智,试一试。(师巡回指导)

  教师指定几个人到黑板上板书:

  师:同学们自己想出了这么多的方法,真了不起,现在同学们来评价一下,你来说一说我的思路,我来说一说你的思路,猜一下,他们在做的时候是怎么想的,先在小组内说一说。

  生自由谈:

  生1:先用个位上的2和3相乘得6,把6写在个位上,再用十位上的1和3相乘得3,表示3个十,把3写在十位上。

  生2:先用十位上的1和3相乘得30,把3写在十位上,再用个位上的2和3相乘得6,把6写在个位上。

  生3:先用2和3相乘得6,再用10和3相乘得30,30加6得36。

  ……

  生评价得出最简练的方法:

  四、规范格式,归纳方法。

  师:(课件演示)

  师强调竖式的书写格式和计算方法。

  揭示课题:这就是我们这一节研究的内容:笔算乘法。

  师:乘法算式中,各部分都有自己的名称,我们把这两个相乘的数都叫做因数,最后的得数叫做积。

  师:现在请同学们,闭上眼睛回想一下,12×3笔算竖式的过程和方法。

  五、解决问题,拓展应用。

  1、解决问题,巩固应用。

  师:我们刚才解决了一个问题,还有两个问题没有解决。请同学们列式并用竖式解答。

  学生独立解答,相互交流算法。

  2、我会填!

  3、竖式计算。(可选期中两栏解答)

  14×2   33×3  21×4

  423×2  212×3  2442×2

  4、顺口溜:(抢答)

  一只小鸡2条腿,10只小鸡___条腿。

  一只青蛙4条腿,12只青蛙___条腿。

  一只蜘蛛8条腿,11只蜘蛛___条腿。

  一只蜈蚣42条腿,2只蜈蚣___条腿。

  5、 解决实际问题。

  小刚在布置房间的时候,发现桌子上应该放一瓶花,于是他到房间里选了这样4种鲜花:

  月季

  郁金香

  米兰

  百合

  6元

  12元

  14元

  22元

  ①买2束百合,应付多少元?2束米兰,3束郁金香呢?

  ②如果搭配起来插一瓶花,你打算怎样插瓶?

  六、知识梳理,师生小结。(略)

七年级上册数学教案优秀6

  一、教学目标

  1、理解一个数平方根和算术平方根的意义;

  2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;

  3、通过本节的训练,提高学生的逻辑思维能力;

  4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

  二、教学重点和难点

  教学重点:平方根和算术平方根的概念及求法。

  教学难点:平方根与算术平方根联系与区别。

  三、教学方法

  讲练结合。

  四、教学手段

  多媒体

  五、教学过程

  (一)提问

  1、已知一正方形面积为50平方米,那么它的边长应为多少?

  2、已知一个数的平方等于1000,那么这个数是多少?

  3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?

  这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空

  1、(  )2=9;   2.(  )2 =0.25;

  5、(  )2=0.0081.

  学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

  由练习引出平方根的概念。

  (二)平方根概念

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

  用数学语言表达即为:若x2=a,则x叫做a的平方根。

  由练习知:±3是9的平方根;

  ±0.5是0.25的平方根;

  0的平方根是0;

  ±0.09是0.0081的平方根。

  由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

  (   )2=-4

  学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。

  (三)平方根性质

  1、一个正数有两个平方根,它们互为相反数。

  2.0有一个平方根,它是0本身。

  3、负数没有平方根。

  (四)开平方

  求一个数a的平方根的运算,叫做开平方的运算。

  由练习我们看到 3与-3的平方是9,9的平方根是 3和-3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的`运算结果是两个。

  (五)平方根的表示方法

  一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。

  练习:1.用正确的符号表示下列各数的平方根:

  ①26②247③0.2④3⑤

  解:①26 的平方根是

  ②247的平方根是

  ③0.2的平方根是

  ④3的平方根是

  ⑤ 的平方根是

七年级上册数学教案优秀7

  教学目标

  1 知识与技能:

  使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  2 过程与方法:

  通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

  3 情感态度与价值观:

  让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

  教学重难点

  1 教学重点:

  掌握用整十数除的口算方法。

  2 教学难点:

  理解用整十数除的口算算理。

  教学工具

  多媒体设备

  教学过程

  1 复习引入

  口算。

  20×3= 7×50= 6×3=

  20×5= 4×9= 8×60=

  24÷6= 8÷2= 12÷3=

  42÷6= 90÷3= 3000÷5=

  2 新知探究

  1、教学例1

  有80面彩旗,每班分20面,可以分给几个班?

  (1)提出问题,寻找解决问题的方法。

  师:从中你能获取什么数学信息?

  师:怎样解决这个问题?

  (2)列式 80÷20

  (3)学生独立探索口算的方法

  师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

  学生汇报:

  预设学生可能会有以下两种口算方法:

  A.因为20×4=80,所以80÷20=4 这是想乘算除

  B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成

  为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)

  这样我们就把除数是整十数的转化为我们已经学过的表内除法。

  (4)师小结:

  同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

  把你喜欢的方法说给同桌听。

  (5)检查正误

  师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)

  (6)用刚学会的方法再次口算,并与同桌交流你的想法

  40÷20 20÷10 60÷30 90÷30

  (7)探究估算的方法

  出示:83÷20≈ 80÷19≈

  师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

  生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

  师:谁想把你的方法跟大家说一说。

  预设:83接近于80,80除以20等于 4,所以83除以20约等于4。

  19接近于20,80除以20等于 4,所以80除以19约等于4。

  2、教学例2

  (1)创设情境引出问题

  师:谁会解决这个问题?

  150÷50

  (2)小组讨论口算方法

  (3)你是怎么这样快就算出的呢?

  A.因为15÷5=3,所以150÷50=3。

  B.因为3个50是150,所以150÷50=3。

  这一题跟刚才分彩旗的口算方法有不同吗?

  都是运用想乘算除和表内除法这两种方法来口算的。

  师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的'口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

  口算练习:150÷30 240÷80 300÷50 540÷90

  3、估算

  (1)探计估算的方法

  师:你能知道题目要求我们做什么吗?

  你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

  (2)谁想把你的方法跟大家说一说。

  (3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

  (4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?

  3 巩固提升

  1、独立口算

  观察每道题,怎样很快说出下面除法算式的商?

  如果估算的话把谁估成多少。

  2、算一算、说一说。

  (1)除数不变,被除数乘几,商也乘几。

  (2)被除数不变,除数乘几,商反而除以几。

  3、解决问题

  (1)一共要寄240本书,每包40本。要捆多少包?

  你能找到什么条件、问题。你会解决吗?

  240÷40 = 6(包)

  答:要捆6包。

  (2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

  出示条件:一共有120个小故事,每天看1个故事。

  问题:看完这本书大约需要几个月?

  问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

  120÷30 = 4(个)

  答:看完这本书大约需要4个月。

  课后小结

  这节课你有什么收获?还有什么问题?

  本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  板书

  口算除法

  有80面彩旗,每班分20面,可以分给几个班?

七年级上册数学教案优秀8

  第一课时

  教学目的

  让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。

  重点、难点

  1.重点:通过分析图形问题中的数量关系,建立方程解决问题。

  2.难点:找出“等量关系”列出方程。

  教学过程

  一、复习提问

  1.列一元一次方程解应用题的步骤是什么?

  2.长方形的周长公式、面积公式。

  二、新授

  问题3.用一根长60厘米的铁丝围成一个长方形。

  (1)使长方形的宽是长的专,求这个长方形的长和宽。

  (2)使长方形的宽比长少4厘米,求这个长方形的面积。

  (3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。

  (4)当长方形的长为18厘米,宽为12厘米时

  长方形的面积=18×12=216(平方厘米)

  当长方形的长为17厘米,宽为13厘米时

  长方形的面积=221(平方厘米)

  ∴(1)中的长方形面积比(2)中的长方形面积小。

  问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积最大呢?并加以验证。

  实际上,如果两个正数的和不变,当这两个数相等时,它们的积最大,通过以后的学习,我们就会知道其中的道理。

  三、巩固练习

  教科书第14页练习1、2。

  第l题等量关系是:圆柱的体积=长方体的体积。

  第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。

  四、小结

  运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。

  五、作业

  教科书第16页,习题6.3.1第1、2、3。

  第二课时

  教学目的

  通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

  重点、难点

  1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。

  2.难点:找出能表示整个题意的等量关系。

  教学过程

  一、复习

  1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

  本利和=本金×利息×年数+本金

  2.商品利润等有关知识。

  利润=售价-成本 ; =商品利润率

  二、新授

  问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

  利息-利息税=48.6

  可设小明爸爸前年存了x元,那么二年后共得利息为

  2.43%×X×2,利息税为2.43%X×2×20%

  根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6

  问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得

  2.43%x·2·80%=48.6

  解方程,得 x=1250

  例1.一家商店将某种服装按成本价提高40%后标价,又以8折 (即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

  大家想一想这15元的利润是怎么来的?

  标价的80%(即售价)-成本=15

  若设这种服装每件的成本是x元,那么

  每件服装的标价为:(1+40%)x

  每件服装的实际售价为:(1+40%)x·80%

  每件服装的利润为:(1+40%)x·80%-x

  由等量关系,列出方程:

  (1+40%)x·80%-x=15

  解方程,得 x=125

  答:每件服装的成本是125元。

  三、巩固练习

  教科书第15页,练习1、2。

  四、小结

  当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

  五、作业

  教科书第16页,习题6.3.1,第4、5题。

  三课时

  教学目的

  借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

  重点、难点

  1.重点:列一元一次方程解决有关行程问题。

  2.难点:间接设未知数。

  教学过程

  一、复习

  1.列一元一次方程解应用题的一般步骤和方法是什么?

  2.行程问题中的基本数量关系是什么?

  路程=速度×时间 速度=路程 / 时间

  二、新授

  例1.小张和父亲预定搭乘家门口的.公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?

  画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。

  1.坐公共汽车行了多少路程?乘的士行了多少路程?

  2.乘公共汽车用了多少时间,乘出租车用了多少时间?

  3.如果都乘公共汽车到火车站要多少时间?

  4,等量关系是什么?

  如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

  可设公共汽车从小张家到火车站要x小时。

  设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

  三、巩固练习

  教科书第17页练习1、2。

  四、小结

  有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

  四、作业

  教科书习题6.3.2,第1至5题。

  第四课时

  教学目的

  1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

  2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

  重点、难点

  重点:工程中的工作量、工作的效率和工作时间的关系。

  难点:把全部工作量看作“1”。

  教学过程

  一、复习提问

  1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全

  部工作量的多少?

  2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成

  全部工作量的多少?

  3.工作量、工作效率、工作时间之间有怎样的关系?

  二、新授

  阅读教科书第18页中的问题6。

  分析:

  1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

  2.怎样用列方程解决这个问题?本题中的等量关系是什么?

  [等量关系是:师傅做的工作量+徒弟做的工作量=1)

  [先要求出师傅与徒弟各完成的工作量是多少?]

  两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2

  师傅完成的工作量为= ,徒弟完成的工作量为=

  所以他们两人完成的工作量相同,因此每人各得225元。

  三、巩固练习

  一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时;

  请你提出问题,并加以解答。

  例如 (1)剩下的乙独做要几小时完成?

  (2)剩下的由甲、乙合作,还需多少小时完成?

  (3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

  四、小结

  1、本节课主要分析了工作问题中工作量、工作效率和工作时间之间的关系,即 工作量=工作效率×工作时间工作效率= 工作时间

  2、解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

  五、作业

  教科书习题6.3.3第1、2题。

七年级上册数学教案优秀9

  教学目标

  1 知识与技能:

  使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  2 过程与方法:

  通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

  3 情感态度与价值观:

  让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

  教学重难点

  1 教学重点:

  掌握用整十数除的口算方法。

  2 教学难点:

  理解用整十数除的口算算理。

  教学工具

  多媒体设备

  教学过程

  1 复习引入

  口算。

  20×3= 7×50= 6×3=

  20×5= 4×9= 8×60=

  24÷6= 8÷2= 12÷3=

  42÷6= 90÷3= 3000÷5=

  2 新知探究

  1、教学例1

  有80面彩旗,每班分20面,可以分给几个班?

  (1)提出问题,寻找解决问题的方法。

  师:从中你能获取什么数学信息?

  师:怎样解决这个问题?

  (2)列式 80÷20

  (3)学生独立探索口算的方法

  师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

  学生汇报:

  预设学生可能会有以下两种口算方法:

  A.因为20×4=80,所以80÷20=4 这是想乘算除

  B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成

  为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)

  这样我们就把除数是整十数的转化为我们已经学过的表内除法。

  (4)师小结:

  同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

  把你喜欢的.方法说给同桌听。

  (5)检查正误

  师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)

  (6)用刚学会的方法再次口算,并与同桌交流你的想法

  40÷20 20÷10 60÷30 90÷30

  (7)探究估算的方法

  出示:83÷20≈ 80÷19≈

  师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

  生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

  师:谁想把你的方法跟大家说一说。

  预设:83接近于80,80除以20等于 4,所以83除以20约等于4。

  19接近于20,80除以20等于 4,所以80除以19约等于4。

  2、教学例2

  (1)创设情境引出问题

  师:谁会解决这个问题?

  150÷50

  (2)小组讨论口算方法

  (3)你是怎么这样快就算出的呢?

  A.因为15÷5=3,所以150÷50=3。

  B.因为3个50是150,所以150÷50=3。

  这一题跟刚才分彩旗的口算方法有不同吗?

  都是运用想乘算除和表内除法这两种方法来口算的。

  师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

  口算练习:150÷30 240÷80 300÷50 540÷90

  3、估算

  (1)探计估算的方法

  师:你能知道题目要求我们做什么吗?

  你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

  (2)谁想把你的方法跟大家说一说。

  (3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

  (4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?

  3 巩固提升

  1、独立口算

  观察每道题,怎样很快说出下面除法算式的商?

  如果估算的话把谁估成多少。

  2、算一算、说一说。

  (1)除数不变,被除数乘几,商也乘几。

  (2)被除数不变,除数乘几,商反而除以几。

  3、解决问题

  (1)一共要寄240本书,每包40本。要捆多少包?

  你能找到什么条件、问题。你会解决吗?

  240÷40 = 6(包)

  答:要捆6包。

  (2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

  出示条件:一共有120个小故事,每天看1个故事。

  问题:看完这本书大约需要几个月?

  问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

  120÷30 = 4(个)

  答:看完这本书大约需要4个月。

  课后小结

  这节课你有什么收获?还有什么问题?

  本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  板书

  口算除法

  有80面彩旗,每班分20面,可以分给几个班?

  80÷20

七年级上册数学教案优秀10

  一、有理数的意义

  1、有理数的分类

  知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,5。2也可写作+3,+,+5。2;零既不是正数,也不是负数。

  2、数轴

  知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数

  3、相反数

  知识点:只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。

  4、绝对值

  知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a。若a=0,则∣a∣=0。若a<0,则∣a∣=﹣a;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a—b∣。

  二、有理数的运算

  1、有理数的加法

  知识点:有理数的加法法则:

  1)同号两数相加,取相同的符号,并把绝对值相加;

  2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  3)一个数和0相加仍得这个数。

  加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)

  多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。

  2、有理数的减法

  知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即a—b=a+(—b)。

  注意:运算符号“+”加号、“—”减号与性质符号“+”正号、“—”负号统一与转化,如a—b中的减号也可看成负号,看作a与b的相反数的'和:a+(—b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。

  3、有理数的加减混合运算

  知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把“+”号省略,使算式变得更加简洁。

  4、有理数的乘法

  知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。

  几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个数相乘,有一个因数为0,积就为0。

  乘法交换律:ab=ba乘法结合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc

  5、有理数的除法

  知识点:除法法则1:除以一个数等于乘上这数的倒数,即a÷b==a(b≠0即0不能做除数)。

  除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

  倒数:乘积是1的两数互为倒数,即a=1(a≠0),0没有倒数。

  注意:倒数与相反数的区别

  6、有理数的乘方

  知识点:乘方:求n个相同因数的积的运算。乘方的结果叫幂,an中,a叫做底数,n叫做指数。

  乘方的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。

  7、有理数的混合运算

  知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。

  技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。

七年级上册数学教案优秀11

  教学目标

  1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3, 体验分类是数学上的常用处理问题的方法。

  教学难点 正确理解分类的标准和按照一定的标准进行分类

  知识重点 正确理解有理数的概念

  教学过程

  探索新知

  在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

  问题1:观察黑板上的9个数,并给它们进行分类.

  学生思考讨论和交流分类的情况.

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

  例如,

  对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。

  按照书本的说法,得出“整数”“分数”和“有理数”的概念.

  看书了解有理数名称的由来.

  “统称”是指“合起来总的名称”的意思.

  试一试:

  按照以上的分类,你能作出一张有理数的`分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

  学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

  有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练

  1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

  2,教科书第10页练习.

  此练习中出现了集合的概念,可向学生作如下的说明.

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。

  思考:

  问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

  创新探究

  问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。

  小结与作业

  到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

七年级上册数学教案优秀12

  教学内容分析:

  《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的 加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。

  教学目标分析:

  (1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;

  (2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法

  (3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。

  教学重难点分析:

  1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的.理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。

  2、教学重、难点

  教学重点:理解乘方定义,会进行有理数的乘方运算;

  教学难点:有理数乘方运算的符号法则的形成与运用

  教法学法分析:

  教法:启发式教学,多媒体辅助教学;

  学法:观察、比较、归纳,合作探究。

  教学过程设计:

  1、创设情境提出问题

  (1)、边长为3的正方形的面积是___ 3×3可以记作___,读作_________.

  (2)、棱长为3的正方体的体积是___ 3×3×3可以记作___,读作_________.

  通过创设问题情境,唤起旧知,为学习新知做好铺垫

  2、自主探索形成新知

  观察下列各式有何特征?

  (1)2×2×2×2=

  (2)(-3)×(-3)×(-3)=

  引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。

  3、应用新知 巩固概念

  练习1、2巩固乘方定义及乘方表示的注意点,培养学(cn-生良好的学习习惯。例题进一步强化乘方运算

  4、探索研究 发现规律

  通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。

  5、应用新知 巩固训练

  进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力

  6、拓展思维 知识延伸

  利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。

  7、课堂小结 归纳反思

  锻炼学生及时总结的良好习惯和归纳能力

  教学评价分析:

  对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;

  (1)关注学生的智力参与度

  (2)学生的课堂参与度

  2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。

【七年级上册数学教案优秀】相关文章:

七年级上册数学教案15篇【优秀】06-10

七年级上册数学教案12-16

七年级上册数学教案01-19

【热门】七年级上册数学教案02-25

湘教版七年级上册数学教案01-16

(优选)七年级上册数学教案07-03

七年级上册数学教案【推荐】06-10

人教版七年级上册数学教案01-06

【热】七年级上册数学教案02-25

七年级上册数学教案13篇02-05