高二数学教案[优选15篇]
作为一名优秀的教育工作者,时常会需要准备好教案,教案是备课向课堂教学转化的关节点。教案应该怎么写呢?下面是小编帮大家整理的高二数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
高二数学教案1
教学目标
(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;
(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;
(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;
(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的 数学 思想,提高学生“建模”和解决实际问题的能力;
(5)结合教学内容,培养学生 学习 数学 的兴趣和“用 数学 ”的意识,激励学生勇于创新.
教学建议
一、知识结构
教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.
二、重点、难点分析
本小节的重点是二元一次不等式(组)表示平面的区域.
对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此 学习 二元一次不等式(组)表示平面的区域分为两个大的层次:
(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.
(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及 数学 建模方法解决实际问题的.基础.
难点是把实际问题转化为线性规划问题,并给出解答.
对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解 数学 应用题的最常见困难是不会将实际问题提炼成 数学 问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.
对学生而言解决应用问题的障碍主要有三类:
①不能正确理解题意,弄清各元素之间的关系;
②不能分清问题的主次关系,因而抓不住问题的本质,无法建立 数学 模型;
③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.
三、教法建议
(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念
(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.
(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.
(4)建议通过本节教学着重培养学生掌握“数形结合”的 数学 思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等 数学 能力是大有益处的.
(5)对作业、思考题、研究性题的建议:
①作业主要训练学生规范的解题步骤和作图能力;
②思考题主要供学有余力的学生课后完成;
③研究性题综合性较大,主要用于拓宽学生的思维.
(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.
如果可行域中的整点数目很少,采用逐个试验法也可.
(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.
高二数学教案2
教学准备
教学目标
熟练掌握三角函数式的求值
教学重难点
熟练掌握三角函数式的求值
教学过程
【知识点精讲】
三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形
三角函数式的求值的类型一般可分为:
(1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角
(2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
(4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之
三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的.变形和公式的变形
重视角的范围对三角函数值的影响,对角的范围要讨论
【例题选讲】
课堂小结】
三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形
三角函数式的求值的类型一般可分为:
(1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角
(2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
(4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之
三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形
重视角的范围对三角函数值的影响,对角的范围要讨论
高二数学教案3
第1课时算法的概念
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P2~P5,回答下列问题.
(1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在数学中算法通常指什么?
提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.
2.归纳总结,核心必记
(1)算法的概念
12世纪
的算法指的是用阿拉伯数字进行算术运算的过程
续表
数学中
的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤
现代算法通常可以编成计算机程序,让计算机执行并解决问题
(2)设计算法的目的
计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.
[问题思考]
(1)求解某一个问题的算法是否是的?
提示:不是.
(2)任何问题都可以设计算法解决吗?
提示:不一定.
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)算法的概念:;
(2)设计算法的目的:.
[思考1]应从哪些方面来理解算法的概念?
名师指津:对算法概念的三点说明:
(1)算法是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确的和有效的,而且能够在有限步骤之内完成.
(2)算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系.算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决.
(3)算法一方面具有具体化、程序化、机械化的特点,同时又有高度的抽象性、概括性、精确性,所以算法在解决问题中更具有条理性、逻辑性的特点.
[思考2]算法有哪些特征?
名师指津:(1)确定性:算法的每一个步骤都是确切的,能有效执行且得到确定结果,不能模棱两可.
(2)有限性:算法应由有限步组成,至少对某些输入,算法应在有限多步内结束,并给出计算结果.
(3)逻辑性:算法从初始步骤开始,分为若干明确的步骤,每一步都只能有一个确定的继任者,只有执行完前一步才能进入到后一步,并且每一步都确定无误后,才能解决问题.
(4)不性:求解某一个问题的算法不一定只有的一个,可以有不同的算法.
(5)普遍性:很多具体的问题,都可以设计合理的算法去解决.
V讲一讲
1.以下关于算法的.说法正确的是()
A.描述算法可以有不同的方式,可用自然语言也可用其他语言
B.算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题
C.算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果
D.算法要求按部就班地做,每一步可以有不同的结果
[尝试解答]算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题,故B不正确.
算法过程要一步一步执行,每一步执行操作,必须确切,只能有结果,而且经过有限步后,必须有结果输出后终止,故C、D都不正确.
描述算法可以有不同的语言形式,如自然语言、框图语言等,故A正确.
答案:A
判断算法的关注点
(1)明确算法的含义及算法的特征;
(2)判断一个问题是否是算法,关键看是否有解决一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步内完成.
V练一练
1.(20xx?西南师大附中检测)下列描述不能看作算法的是()
A.洗衣机的使用说明书
B.解方程x2+2x-1=0
C.做米饭需要刷锅、淘米、添水、加热这些步骤
D.利用公式S=πr2计算半径为3的圆的面积,就是计算π×32
解析:选BA、C、D都描述了解决问题的过程,可以看作算法,而B只描述了一个事例,没有说明怎样解决问题,不是算法.
假设家中生火泡茶有以下几个步骤:
a.生火b.将水倒入锅中c.找茶叶d.洗茶壶、茶碗e.用开水冲茶
[思考1]你能设计出在家中泡茶的步骤吗?
名师指津:a→a→c→d→e
[思考2]设计算法有什么要求?
名师指津:(1)写出的算法必须能解决一类问题;
(2)要使算法尽量简单、步骤尽量少;
(3)要保证算法步骤有效,且计算机能够执行.
V讲一讲
2.写出解方程x2-2x-3=0的一个算法.
[尝试解答]法一:算法如下.
第一步,将方程左边因式分解,得(x-3)(x+1)=0;①
第二步,由①得x-3=0,②或x+1=0;③
第三步,解②得x=3,解③得x=-1.
法二:算法如下.
第一步,移项,得x2-2x=3;①
第二步,①式两边同时加1并配方,得(x-1)2=4;②
第三步,②式两边开方,得x-1=±2;③
第四步,解③得x=3或x=-1.
法三:算法如下.
第一步,计算方程的判别式并判断其符号Δ=(-2)2+4×3=16>0;
第二步,将a=1,b=-2,c=-3,代入求根公式x1,x2=-b±b2-4ac2a,得x1=3,x2=-1.
设计算法的步骤
(1)认真分析问题,找出解决此题的一般数学方法;
(2)借助有关变量或参数对算法加以表述;
(3)将解决问题的过程划分为若干步骤;
(4)用简练的语言将步骤表示出来.V
练一练
2.设计一个算法,判断7是否为质数.
解:第一步,用2除7,得到余数1,所以2不能整除7.
第二步,用3除7,得到余数1,所以3不能整除7.
第三步,用4除7,得到余数3,所以4不能整除7.
第四步,用5除7,得到余数2,所以5不能整除7.
第五步,用6除7,得到余数1,所以6不能整除7.
因此,7是质数.
V讲一讲
3.一次青青草原草原长包包大人带着灰太狼、懒羊羊和一捆青草过河.河边只有一条船,由于船太小,只能装下两样东西.在无人看管的情况下,灰太狼要吃懒羊羊,懒羊羊要吃青草,请问包包大人如何才能带着他们平安过河?试设计一种算法.
[思路点拨]先根据条件建立过程模型,再设计算法.
[尝试解答]包包大人采取的过河的算法可以是:
第一步,包包大人带懒羊羊过河;
第二步,包包大人自己返回;
第三步,包包大人带青草过河;
第四步,包包大人带懒羊羊返回;
第五步,包包大人带灰太狼过河;
第六步,包包大人自己返回;
第七步,包包大人带懒羊羊过河.
实际问题算法的设计技巧
(1)弄清题目中所给要求.
(2)建立过程模型.
(3)根据过程模型建立算法步骤,必要时由变量进行判断.
V练一练
3.一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?
解:法一:算法如下.
第一步,任取2枚银元分别放在天平的两边,若天平左、右不平衡,则轻的一枚就是假银元,若天平平衡,则进行第二步.
第二步,取下右边的银元放在一边,然后把剩下的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银元.
法二:算法如下.
第一步,把9枚银元平均分成3组,每组3枚.
第二步,先将其中两组放在天平的两边,若天平不平衡,则假银元就在轻的那一组;否则假银元在未称量的那一组.
第三步,取出含假银元的那一组,从中任取2枚银元放在天平左、右两边称量,若天平不平衡,则假银元在轻的那一边;若天平平衡,则未称量的那一枚是假银元.
高二数学教案4
课题:命题
课时:001
课型:新授课
教学目标
1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;
2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
教学重点与难点
重点:命题的概念、命题的构成
难点:分清命题的条件、结论和判断命题的真假
教学过程
一、复习回顾
引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?
二、新课教学
下列语句的表述形式有什么特点?你能判断他们的真假吗?
(1)若直线a∥b,则直线a与直线b没有公共点.
(2)2+4=7.
(3)垂直于同一条直线的两个平面平行.
(4)若x2=1,则x=1.
(5)两个全等三角形的面积相等.
(6)3能被2整除.
讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
抽象、归纳:
1、命题定义:一般地,我们把用语言、符号或式子表达的.,可以判断真假的陈述句叫做命题.
命题的定义的要点:能判断真假的陈述句.
在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.
例1:判断下列语句是否为命题?
(1)空集是任何集合的子集.
(2)若整数a是素数,则是a奇数.
(3)指数函数是增函数吗?
(4)若平面上两条直线不相交,则这两条直线平行.
(5)=-2.
(6)x>15.
让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.
解略。
引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?
通过对此问的思考,学生将清晰地认识到定理、推论都是命题.
过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?
2、命题的构成――条件和结论
定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.
例2:指出下列命题中的条件p和结论q,并判断各命题的真假.
(1)若整数a能被2整除,则a是偶数.
(2)若四边行是菱形,则它的对角线互相垂直平分.
(3)若a>0,b>0,则a+b>0.
(4)若a>0,b>0,则a+b<0.
(5)垂直于同一条直线的两个平面平行.
此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。
此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.
解略。
过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.
3、命题的分类
真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.
假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.
强调:
(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.
(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。
判断一个数学命题的真假方法:
(1)数学中判定一个命题是真命题,要经过证明.
(2)要判断一个命题是假命题,只需举一个反例即可.
例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:
(1)面积相等的两个三角形全等。
(2)负数的立方是负数。
(3)对顶角相等。
分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。
三、巩固练习:
P4第2,3。
四、作业:
P8:习题1.1A组~第1题
五、教学反思
师生共同回忆本节的学习内容.
1、什么叫命题?真命题?假命题?
2、命题是由哪两部分构成的?
3、怎样将命题写成“若P,则q”的形式.
4、如何判断真假命题.
高二数学教案5
教学 目标:
(1)掌握圆的一般方程及其特点.
(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.
(3)能用待定系数法,由已知条件求出圆的一般方程.
(4)通过本节课学习,进一步掌握配方法和待定系数法.
教学 重点:
(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.
(2)用待定系数法求圆的方程.
教学 难点:
圆的一般方程特点的研究.
教学 用具:
计算机.
教学 方法:
启发引导法,讨论法.
教学 过程 :
【引入】
前边已经学过了圆的标准方程
把它展开得
任何圆的方程都可以通过展开化成形如
①
的方程
【问题1】
形如①的方程的曲线是否都是圆?
师生共同讨论分析:
如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得
②
显然②是不是圆方程与 是什么样的数密切相关,具体如下:
(1)当 时,②表示以 为圆心、以 为半径的圆;
(2)当 时,②表示一个点 ;
(3)当 时,②不表示任何曲线.
总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.
圆的一般方程的定义:
当 时,①表示以 为圆心、以 为半径的圆,
此时①称作圆的一般方程.
即称形如 的方程为圆的一般方程.
【问题2】圆的一般方程的特点,与圆的标准方程的异同.
(1) 和 的系数相同,都不为0.
(2)没有形如 的二次项.
圆的一般方程与一般的二元二次方程
③
相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.
圆的一般方程与圆的标准方程各有千秋:
(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.
(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.
【实例分析】
例1:下列方程各表示什么图形.
(1) ;
(2) ;
(3) .
学生演算并回答
(1)表示点(0,0);
(2)配方得 ,表示以 为圆心,3为半径的圆;
(3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.
例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.
分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.
解:设圆的方程为
因为 、 、 三点在圆上,则有
解得: , ,
所求圆的方程为
可化为
圆心为 ,半径为5.
请同学们再用标准方程求解,比较两种解法的区别.
【概括总结】通过学生讨论,师生共同总结:
(1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.
(2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.
下面再看一个问题:
例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的`轨迹.
解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.
∵
∴
即
化简得
点 在曲线上,并且曲线为圆 内部的一段圆弧.
【练习巩固】
(1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)
(2)求经过三点 、 、 的圆的方程.
分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .
(3)课本第79页练习1,2.
【小结】师生共同总结:
(1)圆的一般方程及其特点.
(2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.
(3)用待定系数法求圆的方程.
【作业】课本第82页5,6,7,8.
【 板书 设计】
圆的一般方程
圆的一般方程
例1:
例2:
例3:
练习:
小结:
作业:
高二数学教案6
第06课时
2、2、3 直线的参数方程
学习目标
1.了解直线参数方程的条件及参数的意义;
2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。
学习过程
一、学前准备
复习:
1、若由 共线,则存在实数 ,使得 ,
2、设 为 方向上的 ,则 =︱ ︱ ;
3、经过点 ,倾斜角为 的直线的普通方程为 。
二、新课导学
探究新知(预习教材P35~P39,找出疑惑之处)
1、选择怎样的参数,才能使直线上任一点M的坐标 与点 的坐标 和倾斜角 联系起来呢?由于倾斜角可以与方向联系, 与 可以用距离或线段 数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。
如图,在直线上任取一点 ,则 = ,
而直线
的单位方向
向量
=( , )
因为 ,所以存在实数 ,使得 = ,即有 ,因此,经过点
,倾斜角为 的直线的参数方程为:
2.方程中参数的几何意义是什么?
应用示例
例1.已知直线 与抛物线 交于A、B两点,求线段AB的长和点 到A ,B两点的距离之积。(教材P36例1)
解:
例2.经过点 作直线 ,交椭圆 于 两点,如果点 恰好为线段 的中点,求直线 的方程.(教材P37例2)
解:
反馈练习
1.直线 上两点A ,B对应的参数值为 ,则 =( )
A、0 B、
C、4 D、2
2.设直线 经过点 ,倾斜角为 ,
(1)求直线 的'参数方程;
(2)求直线 和直线 的交点到点 的距离;
(3)求直线 和圆 的两个交点到点 的距离的和与积。
三、总结提升
本节小结
1.本节学习了哪些内容?
答:1.了解直线参数方程的条件及参数的意义;
2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。
学习评价
一、自我评价
你完成本节导学案的情况为( )
A.很好 B.较好 C. 一般 D.较差
课后作业
1. 已知过点 ,斜率为 的直线和抛物线 相交于 两点,设线段 的中点为 ,求点 的坐标。
2.经过点 作直线交双曲线 于 两点,如果点 为线段 的中点,求直线 的方程
3.过抛物线 的焦点作倾斜角为 的弦AB,求弦AB的长及弦的中点M到焦点F的距离。
高二数学教案7
一、课前准备:
【自主梳理】
1.对数:
(1) 一般地,如果 ,那么实数 叫做________________,记为________,其中 叫做对数的_______, 叫做________.
(2)以10为底的对数记为________,以 为底的对数记为_______.
(3) , .
2.对数的运算性质:
(1)如果 ,那么 ,
.
(2)对数的换底公式: .
3.对数函数:
一般地,我们把函数____________叫做对数函数,其中 是自变量,函数的定义域是______.
4.对数函数的图像与性质:
a1 0
图象性
质 定义域:___________
值域:_____________
过点(1,0),即当x=1时,y=0
x(0,1)时_________
x(1,+)时________ x(0,1)时_________
x(1,+)时________
在___________上是增函数 在__________上是减函数
【自我检测】
1. 的定义域为_________.
2.化简: .
3.不等式 的解集为________________.
4.利用对数的换底公式计算: .
5.函数 的奇偶性是____________.
6.对于任意的 ,若函数 ,则 与 的大小关系是___________________________.
二、课堂活动:
【例1】填空题:
(1) .
(2)比较 与 的大小为___________.
(3)如果函数 ,那么 的最大值是_____________.
(4)函数 的奇偶性是___________.
【例2】求函数 的定义域和值域.
【例3】已知函数 满足 .
(1)求 的解析式;
(2)判断 的奇偶性;
(3)解不等式 .
课堂小结
三、课后作业
1. .略
2.函数 的定义域为_______________.
3.函数 的值域是_____________.
4.若 ,则 的取值范围是_____________.
5.设 则 的大小关系是_____________.
6.设函数 ,若 ,则 的取值范围为_________________.
7.当 时,不等式 恒成立,则 的取值范围为______________.
8.函数 在区间 上的值域为 ,则 的最小值为____________.
9.已知 .
(1)求 的定义域;
(2)判断 的奇偶性并予以证明;
(3)求使 的 的取值范围.
10.对于函数 ,回答下列问题:
(1)若 的定义域为 ,求实数 的取值范围;
(2)若 的值域为 ,求实数 的`取值范围;
(3)若函数 在 内有意义,求实数 的取值范围.
四、纠错分析
错题卡 题 号 错 题 原 因 分 析
高二数学教案:对数与对数函数
一、课前准备:
【自主梳理】
1.对数
(1)以 为底的 的对数, ,底数,真数.
(2) , .
(3)0,1.
2.对数的运算性质
(1) , , .
(2) .
3.对数函数
, .
4.对数函数的图像与性质
a1 0
图象性质 定义域:(0,+)
值域:R
过点(1,0),即当x=1时,y=0
x(0,1)时y0
x(1,+)时y0 x(0,1)时y0
x(1,+)时y0
在(0,+)上是增函数 在(0,+)上是减函数
【自我检测】
1. 2. 3.
4. 5.奇函数 6. .
二、课堂活动:
【例1】填空题:
(1)3.
(2) .
(3)0.
(4)奇函数.
【例2】解:由 得 .所以函数 的定义域是(0,1).
因为 ,所以,当 时, ,函数 的值域为 ;当 时, ,函数 的值域为 .
【例3】解:(1) ,所以 .
(2)定义域(-3,3)关于原点对称,所以
,所以 为奇函数.
(3) ,所以当 时, 解得
当 时, 解得 .
高二数学教案8
教学目标
1、知识与技能:
(1)推广角的概念、引入大于角和负角;
(2)理解并掌握正角、负角、零角的定义;
(3)理解任意角以及象限角的概念;
(4)掌握所有与角终边相同的角(包括角)的表示方法;
(5)树立运动变化观点,深刻理解推广后的角的概念;
(6)揭示知识背景,引发学生学习兴趣;
(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。
2、过程与方法:
通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。
3、情态与价值:
通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。角的概念推广以后,知道角之间的关系。理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。
教学重难点
重点:理解正角、负角和零角的定义,掌握终边相同角的表示法。
难点:终边相同的角的表示。
教学工具
投影仪等。
教学过程
【创设情境】
思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?
我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角。
【探究新知】
1、初中时,我们已学习了角的概念,它是如何定义的'呢?
[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。如图1.1—1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置OB,就形成角a。旋转开始时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点。
2、如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角。同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?
[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性。为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle)。如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle)。
3、学习小结:
(1)你知道角是如何推广的吗?
(2)象限角是如何定义的呢?
(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直线上的角的集合。
课后习题
作业:
1、习题1.1A组第1,2,3题。
2、多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,进一步理解具有相同终边的角的特点。
高二数学教案9
课题:2。1曲线与方程
课时:01
课型:新授课
一、教学目标
(一)知识教学点
使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法。
(二)能力训练点
通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力。
(三)学科渗透点
通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础。
二、教材分析
1、重点:求动点的轨迹方程的常用技巧与方法。
(解决办法:对每种方法用例题加以说明,使学生掌握这种方法。)
2、难点:作相关点法求动点的轨迹方法。
(解决办法:先使学生了解相关点法的思路,再用例题进行讲解。)
教具准备:与教材内容相关的资料。
教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。
三、教学过程
(一)复习引入
大家知道,平面解析几何研究的主要问题是:
(1)根据已知条件,求出表示平面曲线的方程;
(2)通过方程,研究平面曲线的性质。
我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析。
(二)几种常见求轨迹方程的方法
1、直接法
由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法。
例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;
(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹。
对(1)分析:
动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0。
解:设动点P(x,y),则有|OP|=2R或|OP|=0。
即x2+y2=4R2或x2+y2=0。
故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0。
对(2)分析:
题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数。由学生演板完成,解答为:
设弦的中点为M(x,y),连结OM,则OM⊥AM。∵kOM·kAM=—1,
其轨迹是以OA为直径的圆在圆O内的'一段弧(不含端点)。
2、定义法
利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法。这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。
直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程。
分析:
∵点P在AQ的垂直平分线上,∴|PQ|=|PA|。
又P在半径OQ上。∴|PO|+|PQ|=R,即|PO|+|PA|=R。
故P点到两定点距离之和是定值,可用椭圆定义
写出P点的轨迹方程。
解:连接PA ∵l⊥PQ,∴|PA|=|PQ|。
又P在半径OQ上。∴|PO|+|PQ|=2。
由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆。
3、相关点法
若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程。这种方法称为相关点法(或代换法)。
例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程。
分析:
P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系。
解:设点P(x,y),且设点B(x0,y0)
∵BP∶PA=1∶2,且P为线段AB的内分点。
4、待定系数法
求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求。
例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲
曲线方程。
分析:
因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方
ax2—4b2x+a2b2=0
∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2—4b2x+a2b2=0应有等根。
∴△=16b4—4a4b2=0,即a2=2b。
(以下由学生完成)
由弦长公式得:
即a2b2=4b2—a2。
(三)巩固练习
用十多分钟时间作一个小测验,检查一下教学效果。练习题用一小黑板给出。
1、△ABC一边的两个端点是B(0,6)和C(0,—6),另两边斜率的
2、点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形?
3、求抛物线y2=2px(p>0)上各点与焦点连线的中点的轨迹方程。
答案:
义法)
由中点坐标公式得:
(四)、教学反思
求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍。
四、布置作业
1、两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程。
2、动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹。
3、已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程。
作业答案:
1、以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4。
2、∵|PF2|—|PF|=2,且|F1F2|∴P点只能在x轴上且x<1,轨迹是一条射线。
高二数学教案10
一、教学目标
1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法、
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念、
(2)能从数和形两个角度熟悉单调性和奇偶性、
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程、
2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想、
3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度、
二、教学建议
(一)知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系、
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像、
(二)重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉、教学的难点是领悟函数单调性,奇偶性的.本质,把握单调性的证实、
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它、这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫、单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点、
(三)教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数、反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢、如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来、在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来、
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律、
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来、经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式、关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件、
高二数学教案11
一、教材分析
推理是高考的重要的内容,推理包括合情推理与演绎推理,由于解答高考题的过程就是推理的过程,因此本部分内容的考察将会渗透到每一个高考题中,考察推理的基本思想和方法,既可能在选择题中和填空题中出现,也可能在解答题中出现。
二、教学目标
(1)知识与能力:了解演绎推理的含义及特点,会将推理写成三段论的形式
(2)过程与方法:了解合情推理和演绎推理的区别与联系
(3)情感态度价值观:了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。
三、教学重点难点
教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系
教学难点:演绎推理的应用
四、教学方法:探究法
五、课时安排:1课时
六、教学过程
1. 填一填:
① 所有的金属都能够导电,铜是金属,所以 ;
② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ;
③ 奇数都不能被2整除,2007是奇数,所以 .
2.讨论:上述例子的推理形式与我们学过的.合情推理一样吗?
3.小结:
① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为____________.
要点:由_____到_____的推理.
② 讨论:演绎推理与合情推理有什么区别?
③ 思考:所有的金属都能够导电,铜是金属,所以铜能导电,它由几部分组成,各部分有什么特点?
小结:三段论是演绎推理的一般模式:
第一段:_________________________________________;
第二段:_________________________________________;
第三段:____________________________________________.
④ 举例:举出一些用三段论推理的例子.
例1:证明函数 在 上是增函数.
例2:在锐角三角形ABC中, ,D,E是垂足. 求证:AB的中点M到D,E的距离相等.
当堂检测:
讨论:因为指数函数 是增函数, 是指数函数,则结论是什么?
讨论:演绎推理怎样才能使得结论正确?
比较:合情推理与演绎推理的区别与联系?
课堂小结
课后练习与提高
1.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法( )
A.一般的原理原则; B.特定的命题;
C.一般的命题; D.定理、公式.
2.因为对数函数 是增函数(大前提),而 是对数函数(小前提),所以 是增函数(结论).上面的推理的错误是( )
A.大前提错导致结论错; B.小前提错导致结论错;
C.推理形式错导致结论错; D.大前提和小前提都错导致结论错.
3.下面几种推理过程是演绎推理的是( )
A.两条直线平行,同旁内角互补,如果A和B是两条平行直线的同旁内角,则B =180B.由平面三角形的性质,推测空间四面体的性质;.
4.补充下列推理的三段论:
(1)因为互为相反数的两个数的和为0,又因为 与 互为相反数且________________________,所以 =8.
(2)因为_____________________________________,又因为 是无限不循环小数,所以 是无理数.
七、板书设计
八、教学反思
高二数学教案12
一、内容和内容解析
1.内容
本节课主要内容是让学生了解在客观世界中要认识客观现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象。如何取得有代表性的观测资料并能够正确的加以分析,是正确的认识未知现象的基础,也是统计所研究的基本问题。
2.内容解析
本节课是高中阶段学习统计学的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。学生在九年义务阶段已经学习了收集、整理、描述和分析数据等处理数据的基本方法。在高中学习统计的过程中还将逐步让学生体会确定性思维与统计思维的差异,注意到统计结果的随机性特征,统计推断是有可能错的,这是由统计本身的性质所决定的。统计有两种。一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如我国进行的人口普查。但是在很多情况下我们无法采用描述性统计对所有的个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计。例如有的产品数量非常的大或者有的产品的质量检查是破坏性的。统计和概率的基础知识已经成为一个未来公民的必备常识。
抽样调查是我们收集数据的一种重要途径,是一种重要的、科学的非全面调查方法。它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据来推断总体。其中蕴涵了重要的统计思想——样本估计总体。而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则为:保证样本能够很好地代表总体。而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑。
本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性。
二、目标和目标解析
1.目标
(1)通过对具体的案例分析,逐步学会从现实生活中提出具有一定价值的统计问题,(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性;
(3)以问题链的形式深刻理解样本的代表性。
2.目标解析
本章章头图列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义。同时通过具体的实例,使学生能够尝试从实际问题中发现统计问题,提出统计问题。让学生养成从现实生活或其他学科中发现问题、提出问题的习惯,培养学生发现问题与提出问题的能力与意识。
对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大,出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查,在这个过程中让学生逐步体会到随机抽样的必要性和重要性。抽样调查,就是通过从总体中抽取一部分个体进行调查,借以获得对整体的了解。为了使由样本到总体的推断有效,样本必须是总体的代表,否则就可能出现方便样本。由此在对实例的分析过程中探讨获取能够代表总体的样本的.方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系。
三、教学问题诊断分析
学生在九年义务教育阶段已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对于如何抽样更能使样本代表总体的意识还不强;在以前的学习中,学生的学习内容以确定性数学学习为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学,而随机抽样学习则要求学生通过对具体问题的解决,能体会到统计中的重要思想——样本估计总体以及统计结果的不确定性。学生已有知识经验与本节要达成的教学目标之间还有很大的差距。主要的困难有:对样本估计总体的思想、对统计结果的“不确定性”产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑。
在教学过程中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批电灯泡的寿命是否符合要求等等。在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本,通过这样一个教学过程,更能激起学生的学习兴趣,能学有所用,拉近知识与实践的距离,培养学生从现实生活或其他学科中提出具有一定价值的统计问题的能力。在这个过程中提升学生对统计抽样概念的理解,初步培养学生运用统计思想表述、思考和理解现实世界中的问题能力,这样教学效果可能会更佳。
根据这一分析,确定本课时的教学难点是:如何使学生真正理解样本的抽取是随机的,随机抽取的样本将能够代表总体。
四、教学支持条件分析
准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学。
五、教学过程设计
(一)感悟数据、引入课题
问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?
师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?
设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯。
问题2:我发现我们班级有很多的同学都是戴眼镜的,谁能告诉我我们班的近视率?
普查:为了一定的目的而对考察对象进行的全面调查称为普查。
总体:所要考察对象的全体称为总体(population)
个体:组成总体的每一个考察对象称为个体(individual)
普查是我们进行调查得到全部信息的一种方式,比如我国10年一次的人口普查等。
设计意图:通过与学生比较贴近的案例入手,让学生体会到统计是从日常生活中产生的。
(二)操作实践、展开课题
问题3:如果我想了解榆次二中所有高一学生的近视率,你打算怎么做呢?
抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查(samplinginvestigation).
样本:从总体中抽取的一部分个体叫做总体的一个样本(sample).
师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案。
设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的。
列举:一个的案例
高二数学教案13
[新知初探]
1、向量的数乘运算
(1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:λa,它的长度和方向规定如下:
①|λa|=|λ||a|;
②当λ>0时,λa的方向与a的方向相同;
当λ<0时,λa的方向与a的方向相反。
(2)运算律:设λ,μ为任意实数,则有:
①λ(μa)=(λμ)a;
②(λ+μ)a=λa+μa;
③λ(a+b)=λa+λb;
特别地,有(—λ)a=—(λa)=λ(—a);
λ(a—b)=λa—λb。
[点睛](1)实数与向量可以进行数乘运算,但不能进行加减运算,如λ+a,λ—a均无法运算。
(2)λa的'结果为向量,所以当λ=0时,得到的结果为0而不是0。
2、向量共线的条件
向量a(a≠0)与b共线,当且仅当有一个实数λ,使b=λa。
[点睛](1)定理中a是非零向量,其原因是:若a=0,b≠0时,虽有a与b共线,但不存在实数λ使b=λa成立;若a=b=0,a与b显然共线,但实数λ不,任一实数λ都能使b=λa成立。
(2)a是非零向量,b可以是0,这时0=λa,所以有λ=0,如果b不是0,那么λ是不为零的实数。
3、向量的线性运算
向量的加、减、数乘运算统称为向量的线性运算。对于任意向量a,b及任意实数λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。
[小试身手]
1、判断下列命题是否正确。(正确的打“√”,错误的打“×”)
(1)λa的方向与a的方向一致。()
(2)共线向量定理中,条件a≠0可以去掉。()
(3)对于任意实数m和向量a,b,若ma=mb,则a=b。()
答案:(1)×(2)×(3)×
2、若|a|=1,|b|=2,且a与b方向相同,则下列关系式正确的是()
A、b=2aB、b=—2a
C、a=2bD、a=—2b
答案:A
3、在四边形ABCD中,若=—12,则此四边形是()
A、平行四边形B、菱形
C、梯形D、矩形
答案:C
4、化简:2(3a+4b)—7a=XXXXXX。
答案:—a+8b
向量的线性运算
[例1]化简下列各式:
(1)3(6a+b)—9a+13b;
(2)12?3a+2b?—a+12b—212a+38b;
(3)2(5a—4b+c)—3(a—3b+c)—7a。
[解](1)原式=18a+3b—9a—3b=9a。
(2)原式=122a+32b—a—34b=a+34b—a—34b=0。
(3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。
向量线性运算的方法
向量的线性运算类似于代数多项式的运算,共线向量可以合并,即“合并同类项”“提取公因式”,这里的“同类项”“公因式”指的是向量。
高二数学教案14
教学内容
教科书125页,练习三十.
一、素质教育目标
(一)知识教学点
1.通过整理和复习,进一步掌握方程的有关知识。
2.通过整理和复习,进一步掌握用方程解应用题。
(二)能力训练点
1.通过整理和复习,加强知识间的联系,形成知识网络。
2.通过整理和复习,培养学生计算的敏捷性和灵活性。
(三)德育渗透点
通过知识化间的联系,使学生受到辩证唯物主义的启蒙教育。
(四)美育渗透点
通过整理和复习,使学生感受到数学知识内在联系的逻辑之美,从而感悟到数学知识的魅力。
二、学法指导
1.引导学生回忆所学过知识,使知识系统化。
2.指导学生利用已有经验,进行体验,巩固所学知识。
三、教学重点
通过知识间的联系,掌握方程的概念和解方程的能力。
四、教学难点
知识间的内在联系。
五、教具学具准备
投影仪、投影片等。
六、教学步骤
(一)导入(略)
(二)复习
1.这单元学习了什么内容
2.回忆并概括,板书
(1)用字母表示数
(2)解简易方程
(3)列方程解应用题。
(先启发学生回忆学过的知识,为整理和复习做准备)。
(三)整理
1.用字母表示数
用字母表示数每天跑步的米数用X表示。
用字母表示数量关系一星期跑的米数7X。
用含有字母的式子表示数量现在每天跑步的米数x+2凹
(2)出示1(2),引导学生解答。
(把用字母表示数,按整理和复习的类型进行梳理,形成知识结构。)
2.解简易方程
(1)方程的意义,引导学生回忆。
解方程的.意义
出示练习三十二1题,进行反馈练习。
(2)整理和复习3题
①口述解题步骤
②使学生明确:根据加、减、乘、除运算关系进解答,这在以前解含有未知数尤的等式中已经掌握。
③出示练习三十三3、4题,部分题分组进行解答,订正,并说一说是怎样想的
(边整理边反馈练习,使学生已有的经验得到充分体验和发展,提高学生的计算能力。)
④引导学生总结,解方程应注意的问题。
3.列方程解应用题
列方程解应用题,用方程的方法解决实际问题。
(1)列方程解应用题的特点是
①用字母表示未知数
②分析题中的等量关系
③列出含有未知数x的等式方程
④解答,检验与答答话。
(2)整理和复习4题
分组进行交流,订正时说一说是怎样想的
(3)练习三十三4题,用方程解,独立计算。
(4)整理和复习5题
①先分组用不同方法解答
②引导学生进行比较
使学生明确:
用方程解应用题:用算术方法解应用题
1.未知数用字母表示,勃口列式。
1.未知数不参加列式。
2。根据题意找出数量间的相等
2.根据题里已知数和未知数间关系,引出含有未知数x的关系,引出含有末知数x的等式。的关系,确定解答步骤,再列式计算。
注意:用方程解应用题,得数不注明单位名称;而用算术方法解应用题,得数要注明单位名称。
今后题目中除指定解题方法以外,自己选择解题方法。
(5)练习三十三6题
订正时,引导学生分析、比较。
七、布置作业
练习三十三3、4题部分题,7、8题。
八、板书设计(略)
高二数学教案15
一、教学目的
使学生掌握等腰三角形性质定理(包括推论)及其证明.
二、教学重点、难点
重点:等腰三角形的性质.
难点:文字命题的证明.
三、教学过程
复习提问
什么叫做等腰三角形?什么是等腰三角形的腰、底边、顶点和底角?
引入新课
教师演示事先备好的等腰三角形纸片对折,使两腰叠在一起,发现它的两底角重合,从而得到等腰三角形两底角相等的命题,当然此命题的真实性还需推理论证.
新课
1.等腰三角形的性质定理等腰三角形的两底角相等(简写成“等边对等角”).
让学生回忆前面学过的文字命题证明的全过程.引导学生写出已知、求证,并且都要结合图形使之具体化.
2.推论1等腰三角形顶角平分线平分底边且垂直于底边.
从性质定理的证明过程可以知道(如图1)BD=DC,∠ADB=∠ADC,所以AD平分BC,且AD⊥BC,即得推论.
从推论1可以知道,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.
推论2等边三角形的'各角都相等,并且每一个角都等于60°.
3.等腰三角形性质的应用.等腰三角形的性质有着重要的应用,一般说,利用“等腰三角形两底角相等”的性质证明两角相等;利用“等腰三角形底边上的三条主要线段重合”的性质,来证明两条线段相等、两个角相等及两条直线互相垂直;利用“等边三角形各角相等,并且每一个角都等于60°”的性质,来证明一个角是60°,或作图中通过作等边三角形,作出一个60°的角.
例1已知:如图2,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC、屋椽AB=AC.求顶架上∠B、∠C、∠BAD、∠CAD的度数.
这是一道几何计算题,要使学生熟悉解计算题的步骤,引导学生写出解题过程.
小结
1.叙述等腰三角形的性质(本堂所讲定理及推论)及其应用.
2.等腰三角形顶角与底角之间的常用关系式:在△ABC中,AB=AC,则
(1)∠A=180°-2∠B=180°-2∠C;
3.已知等腰三角形一个角的度数,求其它两个角的度数:(1)若已知角是钝角或直角,则此角一定为顶角,于是由2中(2)可求出两底角;(2)若已知角是锐角,则此角可能是顶角,也可能是底角.若为前者,可按2中(2)求出两底角.若为后者,则可按2中(1)求出顶角.
练习:略
作业:略
四、教学注意问题
1.等腰三角形的性质在今后解(证)几何题中有着重要的应用,务必引起学生重视.且应反复练习.
2.几何计算题的一般解题步骤.
【高二数学教案】相关文章:
高二数学教案12-04
高二数学教案01-26
关于高二数学教案12-01
关于高二数学教案12-16
高二优秀数学教案11-14
高二数学教案范文01-06
高二数学教案精品01-24
高二数学教案优秀10-12
高二数学教案(合集)03-26
中职高二数学教案11-07